1
|
Mettakoonpitak J, Chanthabun A, Hatsakhun P, Sirasunthorn N, Siripinyanond A, Henry CS. Microfluidic paper-based analytical devices for simple and nondestructive durian fruit maturity assessment. Anal Chim Acta 2024; 1329:343252. [PMID: 39396311 DOI: 10.1016/j.aca.2024.343252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Accurately predicting durian maturity is a critically unresolved worldwide issue. Farmers currently determine durian ripeness based on their own observation and experience leading to inconsistencies in harvest timing. This reliance on human judgment often results in premature or overripe harvests, impacting fruit quality, yield, and market value. Existing technological solutions, such as sensors are often complex and require specialized expertise, hindering their adoption by farmers and consumers. Developing sensors that can accurately measure durian ripeness without damaging the fruit, are easy to use, and affordable remains a challenge. We introduce a microfluidic paper-based analytical device (μPAD) for on-site, safe matching to meet the demands of durian maturity evaluation. The μPAD automatically collected peduncle fluid without destroying the durian fruit for dual detection of total sugar and amino acid. For determining total sugar including sucrose, glucose, and fructose, several enzymatic steps were reduced to a single step of invertase for sucrose hydrolysis before total reducing sugar was measured using gold nanoparticle (AuNP) generation. Kinetics study of invertase on the μPAD showed Vmax and Km values of 1.42 mM min-1 and 2.17 mM, respectively, that agreed with the direct study of sucrose conversion. To increase device reliability, amino acid was also simultaneously measured with sugar using the simple ninhydrin test with the addition of SnCl2. The developed sensor provided LODs of 3.50, 3.10, 3.30 μM, and 0.02 mg mL-1 for glucose, fructose, sucrose, and amino acid respectively. The μPADs were able to nondestructively discriminate between the mature and immature durians, showing high linear correlation with the standard dry weight method. The development of this μPAD technology has the potential to revolutionize durian cultivation practices, reduce post-harvest losses, and enhance the overall sustainability and profitability of the durian value chain, and can be further developed for maturity tests of other fruits.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Atcha Chanthabun
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Patcharaporn Hatsakhun
- Microbiology Program, Department of Biology, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand
| | - Nichanun Sirasunthorn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Zhou H, Wang L, Su M, Zhang X, Du J, Li X, Zhang M, Hu Y, Zheng X, Ye Z, Huan C. Comparative network analysis reveals the regulatory mechanism of 1-methylcyclopropene on sugar and acid metabolisms in yellow peach stored at non-chilling temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109100. [PMID: 39250845 DOI: 10.1016/j.plaphy.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Soluble carbohydrates and organic acids are critical determinants of fruit flavor and consumer preference, both of which are susceptible to postharvest treatments and storage conditions. While the individual effectiveness of 1-methylcyclopropene (1-MCP) and non-chilling temperature storage in delaying fruit ripening and influencing flavor development has been established, their combined effects on peach storage traits remain unexplored. This study investigated the impact of 1-MCP combined with non-chilling temperature storage on the quality and flavor attributes of yellow peach. Our results revealed that 1-MCP treatment reduced ethylene production during storage and delayed ripening and softening by down-regulating ethylene biosynthesis and signaling genes. Transcriptomic analysis indicated that 1-MCP maintained higher levels of soluble carbohydrates by up-regulating sucrose phosphate synthase (PpSPS1/2) and sorbitol dehydrogenase (PpSDH1) while down-regulating hexokinase (PpHXK1). Concurrently, 1-MCP preserved citric and malic acid levels by suppressing aconitate hydratase (PpACO1) and inducing malate dehydrogenase (PpMDH1), thereby delaying flavor degradation. Co-expression network analysis implicated ethylene response factors (PpERFs) as major regulators of sugar and acid metabolisms genes, with PpERF19 potentially functioning as a key transcriptional controller. Overall, this study verified the efficacy of combined 1-MCP and non-chilling storage for yellow peach preservation, identified key 1-MCP-modulated genes involved in sugar and acid metabolisms, and provided insights into regulating peach flavor development via postharvest approaches.
Collapse
Affiliation(s)
- Huijuan Zhou
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Lufan Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Mingshen Su
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Jihong Du
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xiongwei Li
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Minghao Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Yang Hu
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China.
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
3
|
Wen X, Yuan J, Bozorov TA, Waheed A, Kahar G, Haxim Y, Liu X, Huang L, Zhang D. An efficient screening system of disease-resistant genes from wild apple, Malus sieversii in response to Valsa mali pathogenic fungus. PLANT METHODS 2023; 19:138. [PMID: 38042829 PMCID: PMC10693133 DOI: 10.1186/s13007-023-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
For molecular breeding of future apples, wild apple (Malus sieversii), the primary progenitor of domesticated apples, provides abundant genetic diversity and disease-resistance traits. Valsa canker (caused by the fungal pathogen Valsa mali) poses a major threat to wild apple population as well as to cultivated apple production in China. In the present study, we developed an efficient system for screening disease-resistant genes of M. sieversii in response to V. mali. An optimal agrobacterium-mediated transient transformation of M. sieversii was first used to manipulate in situ the expression of candidate genes. After that, the pathogen V. mali was inoculated on transformed leaves and stems, and 3 additional methods for slower disease courses were developed for V. mali inoculation. To identify the resistant genes, a series of experiments were performed including morphological (incidence, lesion area/length, fungal biomass), physiological (H2O2 content, malondialdehyde content), and molecular (Real-time quantitative Polymerase Chain Reaction) approaches. Using the optimized system, we identified two transcription factors with high resistance to V. mali, MsbHLH41 and MsEIL3. Furthermore, 35 and 45 downstream genes of MsbHLH41 and MsEIL3 were identified by screening the V. mali response gene database in M. sieversii, respectively. Overall, these results indicate that the disease-resistant gene screening system has a wide range of applications for identifying resistant genes and exploring their immune regulatory networks.
Collapse
Affiliation(s)
- Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- National Positioning Observation and Research Station of Forest Ecosystem in Yili (XinJiang), Academy of Forestry in Yili, Yili, 835100, China
| | - Jiangxue Yuan
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
4
|
Ustun H, Dogan A, Peker B, Ural C, Cetin M, Ozyigit Y, Erkan M. Determination of the relationship between respiration rate and ethylene production by fruit sizes of different tomato types. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:176-184. [PMID: 35852771 DOI: 10.1002/jsfa.12129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tomatoes of different types and cultivars are grown in different parts of the world. Accordingly, the phenological, pomological and biochemical characteristics of these types and cultivars may differ from each other, and therefore their ripening behaviours may also differ. The present study aimed to determine the respiration rate and ethylene production of twelve commonly grown cultivars in Turkey at harvest and during the ripening stage. The fruits were harvested at the mature green stage and categorized according to their size as small, medium and large-fruited cultivars. RESULTS At harvest time, the highest respiration rate was determined from 'Moda' (small-fruited) cultivar and the lowest was from 'Elips' (medium-fruited). The highest ethylene production was determined from 'Sarikiz' (small-fruited) and the lowest was from 'Alberty' (large-fruited). All tomato cultivars examined in the study showed climacteric respiration behavior during the ripening, and it was determined that small-fruited types had a higher respiration rate and ethylene production compared to medium and large-fruited ones. 'Sarikiz' (small-fruited) had the highest climacteric peak and 'Gulpembe' (large-fruited) had the lowest. Moreover, it was determined that the respiration rate of small-fruited cultivars were 5.01-fold higher compared to other cultivars and this type of cultivars produced 4.19-fold higher ethylene compared to big-fruited cultivars at harvest. Medium-fruited tomatoes had 1.90-fold higher respiration rate and 1.64-fold ethylene production compared to big-fruited tomatoes. CONCLUSION It was determined that fruit size and respiration rate were related independently of the cultivars, although there was no relationship between fruit size and ethylene production. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hayri Ustun
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Adem Dogan
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
- Department of Plant and Animal Production, Elmalı Vocational School, Akdeniz University, Antalya, Turkey
| | - Bunyamin Peker
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Cansu Ural
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Mustafa Cetin
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Yunus Ozyigit
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Mustafa Erkan
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Ran Y, Zheng Y, Du M, Jia X, Wang X, Wang L, Li X. Automatic periodical sulfur dioxide fumigation in combination with
CO
2
‐enriched atmosphere extends the storage life of durian (
Durio zibethinus
Murr.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yalin Ran
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Yanli Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Meijun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Xiaoyu Jia
- Institute of Agricultural Products Preservation and Processing Technology Tianjin Academy of Agricultural Sciences Tianjin China
- Tianjin Gasin‐DH Preservation Technology Limited Co. Ltd. Tianjin China
| | - Xiaodong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Luyin Wang
- Xinjiang Red Flag Slope Agricultural Development Group Co., Ltd. Xinjiang China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
6
|
Luo S, Ma Q, Zhong Y, Jing J, Wei Z, Zhou W, Lu X, Tian Y, Zhang P. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. PLANT MOLECULAR BIOLOGY 2022; 106:67-84. [PMID: 34792751 DOI: 10.1007/s11103-021-01130-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 05/25/2023]
Abstract
The production of high-amylose cassava through CRISPR/Cas9-mediated mutagenesis of the starch branching enzyme gene SBE2 was firstly achieved. High-amylose cassava (Manihot esculenta Crantz) is desirable for starch industrial applications and production of healthier processed food for human consumption. In this study, we report the production of high-amylose cassava through CRISPR/Cas9-mediated mutagenesis of the starch branching enzyme 2 (SBE2). Mutations in two targeted exons of SBE2 were identified in all regenerated plants; these mutations, which included nucleotide insertions, and short or long deletions in the SBE2 gene, were classified into eight mutant lines. Three mutants, M6, M7 and M8, with long fragment deletions in the second exon of SBE2 showed no accumulation of SBE2 protein. After harvest from the field, significantly higher amylose (up to 56% in apparent amylose content) and resistant starch (up to 35%) was observed in these mutants compared with the wild type, leading to darker blue coloration of starch granules after quick iodine staining and altered starch viscosity with a higher pasting temperature and peak time. Further 1H-NMR analysis revealed a significant reduction in the degree of starch branching, together with fewer short chains (degree of polymerization [DP] 15-25) and more long chains (DP>25 and especially DP>40) of amylopectin, which indicates that cassava SBE2 catalyzes short chain formation during amylopectin biosynthesis. Transition from A- to B-type crystallinity was also detected in the starches. Our study showed that CRISPR/Cas9-mediated mutagenesis of starch biosynthetic genes in cassava is an effective approach for generating novel varieties with valuable starch properties for food and industrial applications.
Collapse
Affiliation(s)
- Shu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yingying Zhong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Sanshu Biotechnology Co., LTD, Shanghai, 201210, China
| | - Jianling Jing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zusheng Wei
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Sanshu Biotechnology Co., LTD, Shanghai, 201210, China
| | - Xinlu Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yinong Tian
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Kou X, Feng Y, Yuan S, Zhao X, Wu C, Wang C, Xue Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. PLANT MOLECULAR BIOLOGY 2021; 107:477-497. [PMID: 34633626 DOI: 10.1007/s11103-021-01199-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
This review contains the regulatory mechanisms of plant hormones in the ripening process of climacteric and non-climacteric fruits, interactions between plant hormones and future research directions. The fruit ripening process involves physiological and biochemical changes such as pigment accumulation, softening, aroma and flavor formation. There is a great difference in the ripening process between climacteric fruits and non-climacteric fruits. The ripening of these two types of fruits is affected by endogenous signals and exogenous environments. Endogenous signaling plant hormones play an important regulatory role in fruit ripening. This paper systematically reviews recent progress in the regulation of plant hormones in fruit ripening, including ethylene, abscisic acid, auxin, jasmonic acid (JA), gibberellin, brassinosteroid (BR), salicylic acid (SA) and melatonin. The role of plant hormones in both climacteric and non-climacteric fruits is discussed, with emphasis on the interaction between ethylene and other adjustment factors. Specifically, the research progress and future research directions of JA, SA and BR in fruit ripening are discussed, and the regulatory network between JA and other signaling molecules remains to be further revealed. This study is meant to expand the understanding of the importance of plant hormones, clarify the hormonal regulation network and provide a basis for targeted manipulation of fruit ripening.
Collapse
Affiliation(s)
- Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yuan Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Shuai Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
8
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
9
|
Zhang L, Wu C. Influence of 1‐methylcyclopropene (1‐MCP) on ripening and ethylene biosynthesis‐related enzyme gene expression in harvested blueberries. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lei Zhang
- School of Food Engineering Jilin Agriculture and Technology University Jilin P.R. China
| | - Chunling Wu
- Forest College, Bei Hua University Jilin PR China
| |
Collapse
|
10
|
Velázquez-López AA, De La Cruz-Medina J, García HS, Vela-Gutiérrez G, Torres-Palacios C, León-García E. Lipoxygenase and Its Relationship with Ethylene During Ripening of Genetically Modified Tomato ( Solanum lycopersicum). Food Technol Biotechnol 2020; 58:223-229. [PMID: 32831574 PMCID: PMC7416120 DOI: 10.17113/ftb.58.02.20.6207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research background TomloxB is the main isoform of lipoxygenase associated with ripening and senescence of fruits. On the other hand, ethylene, a gaseous hormone, is essential for the regulation of ripening in climacteric fruits like tomatoes. However, the relationship between TomloxB and ethylene production has not been thoroughly studied. Therefore, we aim to assess the effect of exogenous ethylene in transgenic tomatoes that contain a silenced TomloxB gene, and subsequently evaluate lipoxygenase activity, 1-aminocyclopropane-1-carboxylic acid oxidase and ethylene production; as well as to quantify the expression of the genes encoding 1-aminocyclopropane-1-carboxylic acid oxidase and TomloxB. Experimental approach To investigate the effect of lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase activity, fruits harvested at the stages of break, turning and pink were used. Tomatoes at break stage collected from transgenic and wild type plants were used to determine ethylene production and gene expression. Genetically modified and wild type tomato fruits were exposed to 100 μL/L exogenous ethylene. Lipoxygenase activity was measured spectrophotometrically. Activity of 1-aminocyclopropane-1-carboxylic acid oxidase and ethylene production were determined by gas chromatography. Oligonucleotides for differentially expressed genes: 1-aminocyclopropane-1-carboxylic acid oxidase and TomloxB were used to determine gene expression by real-time PCR. Results and conclusions The data showed that silencing of TomloxB caused a reduction in lipoxygenase activity and ethylene production in tomato fruits, and also reduced 1-aminocyclopropane-1-carboxylic acid oxidase activity. Hence, the addition of exogenous ethylene increased lipoxygenase activity in all treatments and 1-aminocyclopropane-1-carboxylic acid oxidase activity only in transgenic lines at break stage, consequently there was a positive regulation between TomloxB and ethylene, as increasing the amount of ethylene increased the activity of lipoxygenase. The results suggest that lipoxygenase may be a regulator of 1-aminocyclopropane-1-carboxylic acid oxidase and production of ethylene at break stage. Novelty and scientific contribution These results lead to a better understanding of the metabolic contribution of TomloxB in fruit ripening and how it is linked to the senescence-related process, which can lead to a longer shelf life of fruits. Understanding this relationship between lipoxygenase and ethylene can be useful for better post-harvest handling of tomatoes.
Collapse
Affiliation(s)
| | - Javier De La Cruz-Medina
- Mexican National Technology/Technological Institute of Veracruz, 2779 M.A. de Quevedo, 91897 Veracruz, Mexico
| | - Hugo Sergio García
- Mexican National Technology/Technological Institute of Veracruz, 2779 M.A. de Quevedo, 91897 Veracruz, Mexico
| | - Gilber Vela-Gutiérrez
- Faculty of Food and Nutrition Sciences, University of Science and Arts of Chiapas, 1150 Northwest bypass, 29000 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Cristóbal Torres-Palacios
- Mexican National Technology/Technological Institute of Veracruz, 2779 M.A. de Quevedo, 91897 Veracruz, Mexico
| | - Elizabeth León-García
- National Institute of Forestry, Agricultural and Livestock Research, La Posta Experimental Field, Km 22.5 Federal Highway Veracruz-Córdoba, Medellín de Bravo, 94277 Veracruz, Mexico
| |
Collapse
|
11
|
Effect of 1-methylcyclopropene on the aroma volatiles, polyphenols contents and antioxidant activity of post-harvest ripening peach (Prunus persica L.) fruit. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2020. [DOI: 10.15586/qas.v12i2.717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Guofang XIE, Lirong WANG, Kuanxiu FAN, Na LIU, Yongling LIU, Zhibing ZHAO. Postharvest 1-methylcyclopropene treatments maintain the quality of Rosa sterilis D. shi during storage. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.32818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- XIE Guofang
- Guiyang University, China; Guizhou Engineering Research Center for Fruit Processing, China
| | | | - FAN Kuanxiu
- Guiyang University, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - LIU Na
- Guiyang University, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - LIU Yongling
- Guiyang University, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - ZHAO Zhibing
- Guiyang University, China; Guizhou Engineering Research Center for Fruit Processing, China
| |
Collapse
|
13
|
Salzano AM, Renzone G, Sobolev AP, Carbone V, Petriccione M, Capitani D, Vitale M, Novi G, Zambrano N, Pasquariello MS, Mannina L, Scaloni A. Unveiling Kiwifruit Metabolite and Protein Changes in the Course of Postharvest Cold Storage. FRONTIERS IN PLANT SCIENCE 2019; 10:71. [PMID: 30778366 PMCID: PMC6369206 DOI: 10.3389/fpls.2019.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 05/07/2023]
Abstract
Actinidia deliciosa cv. Hayward fruit is renowned for its micro- and macronutrients, which vary in their levels during berry physiological development and postharvest processing. In this context, we have recently described metabolic pathways/molecular effectors in fruit outer endocarp characterizing the different stages of berry physiological maturation. Here, we report on the kiwifruit postharvest phase through an integrated approach consisting of pomological analysis combined with NMR/LC-UV/ESI-IT-MSn- and 2D-DIGE/nanoLC-ESI-LIT-MS/MS-based proteometabolomic measurements. Kiwifruit samples stored under conventional, cold-based postharvest conditions not involving the use of dedicated chemicals were sampled at four stages (from fruit harvest to pre-commercialization) and analyzed in comparison for pomological features, and outer endocarp metabolite and protein content. About 42 metabolites were quantified, together with corresponding proteomic changes. Proteomics showed that proteins associated with disease/defense, energy, protein destination/storage, cell structure and metabolism functions were affected at precise fruit postharvest times, providing a justification to corresponding pomological/metabolite content characteristics. Bioinformatic analysis of variably represented proteins revealed a central network of interacting species, modulating metabolite level variations during postharvest fruit storage. Kiwifruit allergens were also quantified, demonstrating in some cases their highest levels at the fruit pre-commercialization stage. By lining up kiwifruit postharvest processing to a proteometabolomic depiction, this study integrates previous observations on metabolite and protein content in postharvest berries treated with specific chemical additives, and provides a reference framework for further studies on the optimization of fruit storage before its commercialization.
Collapse
Affiliation(s)
- Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Milena Petriccione
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Caserta, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
| | - Monica Vitale
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gianfranco Novi
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Maria Silvia Pasquariello
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Caserta, Italy
| | - Luisa Mannina
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| |
Collapse
|
14
|
Tang Q, Zhu F, Cao X, Zheng X, Yu T, Lu L. Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses. Food Chem 2018; 278:240-247. [PMID: 30583368 DOI: 10.1016/j.foodchem.2018.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
This research aimed to investigate the roles of phytohormone ethylene in cherry tomato fruit immune response against gray mold caused by Botrytis cinerea. Pretreatment with antagonistic yeast Cryptococcus laurentii resulted in a significantly decreased disease incidence of B. cinerea infection, and accompanied by a burst of ethylene production in the whole fruit. Blocking the ethylene perception by adding 1-MCP (5 μL L-1 or greater) remarkably weaken the protection ability of fruit itself and suppressed the C. laurentii-stimulated host immune response. 5 μL L-1 1-MCP prefumigation decreased the expression of ethylene biosynthesis and perception related genes SlACO1, SlACS2, SlERF1, SlPti5 and SlMPK3, and ethylene production in C. laurentii treated fruit. Consequently, the expressions of SlCHI9, SlGlub, SlPAL3, SlPR1 and SlPR5 up-regulated by the yeast were all impaired to different degrees by the 1-MCP prefumigation. These findings demonstrate that ethylene contributes to fruit immunity and C. laurentii-mediated immune responses of cherry tomato.
Collapse
Affiliation(s)
- Qiong Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Fanghuan Zhu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xuan Cao
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|