1
|
Mateus NS, Perez-Martinez V, Lavres J, Tissue DT, Choat B. The double-edged sword of potassium and sodium fertilization in xylem embolism resistance of two Eucalyptus species under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5641-5654. [PMID: 38829345 DOI: 10.1093/jxb/erae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Sodium (Na+) is a beneficial element for most plants and may replace potassium (K+) in osmoregulatory process to a certain extent, increasing plant water use efficiency. Thus, understanding coordinated mechanisms underlying the combined use of K+ and Na+ in tree drought tolerance is a key challenge for forestry in dealing with productivity and water limitations. A pot experiment with three ratios of K/Na (K-supplied, partial K replacement by Na, and K-deficient plants) and two water regimes, well-watered (W+) and water-stressed (W-), was conducted on saplings of two Eucalyptus species with contrasting drought sensitivities. We evaluated the point of stomatal closure (Pgs90), xylem water potential at 12, 50, and 88% embolized xylem area (P12, P50, P88), hydraulic safety margin, leaf gas exchange (A, E, gs, and dark respiration), pre-dawn and midday leaf water potential (ΨPD and ΨMD), long-term water use efficiency (WUEL) and total dry mass. Partial K replacement by Na increased leaf gas exchange, WUEL, and total dry mass, while Pgs90, P12, P50, P88, and ΨMD decreased (were more negative), compared with plants exclusively supplied with K and K-deficient plants of both species. Fertilized plants had narrower hydraulic safety margins than K-deficient plants, indicating that these Eucalyptus species adopt the functional adaptive strategy of operating close to their hydraulic limits to maximize carbon uptake while increasing the risk of hydraulic failure under drought stress.
Collapse
Affiliation(s)
- Nikolas Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Victoria Perez-Martinez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jose Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
2
|
Florentino AL, Carvalho MEA, Mateus NDS, Ferraz ADV, Rossi ML, Gaziola SA, Azevedo RA, Linhares FS, Lavres J, Gonçalves JLDM. Integrated Ca, Mg, Cu, and Zn supply upregulates leaf anatomy and metabolic adjustments in Eucalyptus seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108446. [PMID: 38422579 DOI: 10.1016/j.plaphy.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO2 assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.
Collapse
Affiliation(s)
- Antonio Leite Florentino
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 134160-000, São Paulo, Brazil; Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, São Paulo, Brazil.
| | - Marcia Eugenia Amaral Carvalho
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, São Paulo, Brazil
| | - Nikolas de Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 134160-000, São Paulo, Brazil
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 134160-000, São Paulo, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, São Paulo, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, São Paulo, Brazil
| | - Francisco Scaglia Linhares
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 134160-000, São Paulo, Brazil
| | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 134160-000, São Paulo, Brazil
| | - José Leonardo de Moraes Gonçalves
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, São Paulo, Brazil
| |
Collapse
|
3
|
de Souza Mateus N, Oliveira Ferreira EV, Florentino AL, Vicente Ferraz A, Domec JC, Jordan-Meille L, Bendassolli JA, Moraes Gonçalves JL, Lavres J. Potassium supply modulates Eucalyptus leaf water-status under PEG-induced osmotic stress: integrating leaf gas exchange, carbon and nitrogen isotopic composition and plant growth. TREE PHYSIOLOGY 2022; 42:59-70. [PMID: 34302172 DOI: 10.1093/treephys/tpab095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to quantify the effect of potassium (K) supply on osmotic adjustment and drought avoidance mechanisms of Eucalyptus seedlings growing under short-term water stress. The effects of K supply on plant growth, nutritional status, leaf gas exchange parameters, leaf water potential (Ψw), leaf area (LA), stomatal density (SD), leaf carbon (C) and nitrogen (N) isotopic compositions (δ13C and δ15N ‰) and leaf C/N ratio under polyethylene glycol (PEG)-induced water deficit were measured. Under both control (non-PEG) and osmotic stress (+PEG) conditions, K supply increased plant growth, boosting dry matter yield with decreased C/N leaf ratio and δ15N ‰ values. The +PEG significantly reduced LA, plant growth, dry matter yield, Ψw, number of stomata per plant and leaf gas exchange, relative to non-PEG condition. Potassium supply alleviated osmotic-induced alterations in Eucalyptus seedlings by better regulating leaf development as well as SD, thus improving the rate of leaf gas exchange parameters, mesophyll conductance to CO2 (lower δ13C ‰ values) and water use efficiency (WUE). Consequently, K-supplied plants under drought better acclimated to osmotic stress than K-deficient plants, which in turn induced lower CO2 assimilation and dry matter yield, as well as higher leaf δ13C ‰ and δ15N ‰ values. In conclusion, management practices should seek to optimize K-nutrition to improve WUE, photosynthesis-related parameters and plant growth under water deficit conditions.
Collapse
Affiliation(s)
- Nikolas de Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo 13400-970, Brazil
| | | | | | | | | | | | | | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo 13400-970, Brazil
| |
Collapse
|
4
|
Mateus NS, Florentino AL, Oliveira JB, Santos EF, Gaziola SA, Rossi ML, Linhares FS, Bendassolli JA, Azevedo RA, Lavres J. Leaf 13C and 15N composition shedding light on easing drought stress through partial K substitution by Na in eucalyptus species. Sci Rep 2021; 11:20158. [PMID: 34635753 PMCID: PMC8505639 DOI: 10.1038/s41598-021-99710-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to investigate the partial K-replacement by Na supply to alleviate drought-induced stress in Eucalyptus species. Plant growth, leaf gas exchange parameters, water relations, oxidative stress (H2O2 and MDA content), chlorophyll concentration, carbon (C) and nitrogen (N) isotopic leaf composition (δ13C and δ15N) were analyzed. Drought tolerant E. urophylla and E. camaldulensis showed positive responses to the partial K substitution by Na, with similar dry mass yields, stomatal density and total stomatal pore area relative to the well K-supplied plants under both water conditions, suggesting that 50% of the K requirements is pressing for physiological functions that is poorly substituted by Na. Furthermore, E. urophylla and E. camaldulensis up-regulated leaf gas exchanges, leading to enhanced long-term water use efficiency (WUEL). Moreover, the partial K substitution by Na had no effects on plants H2O2, MDA, δ13C and δ15N, confirming that Na, to a certain extent, can effectively replace K in plants metabolism. Otherwise, the drought-sensitive E. saligna species was negatively affected by partial K replacement by Na, decreasing plants dry mass, even with up-regulated leaf gas exchange parameters. The exclusive Na-supplied plants showed K-deficient symptoms and lower growth, WUEL, and δ13C, besides higher Na accumulation, δ15N, H2O2 and MDA content.
Collapse
Affiliation(s)
- Nikolas Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil.
| | | | - Jessica Bezerra Oliveira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Elcio Ferreira Santos
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Francisco Scaglia Linhares
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - José Albertino Bendassolli
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Ricardo Antunes Azevedo
- College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, 13418-900, Brazil
| | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil.
| |
Collapse
|
5
|
Santos EF, Mateus NS, Rosário MO, Garcez TB, Mazzafera P, Lavres J. Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. PHYSIOLOGIA PLANTARUM 2021; 172:552-563. [PMID: 33022105 DOI: 10.1111/ppl.13228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Eucalyptus are widely planted in regions with low rainfall, occasioning frequent drought stresses. To alleviate the stress-induced effects on plants growing in these environments, soil fertilization with potassium (K) may affect drought-adaptive plant mechanisms, notably on tropical soils with low K availability. This work aimed to evaluate the K dynamic nutrition in eucalyptus in response to soil-K and -water availabilities, correlating the K-nutritional status with the physiological responses of contrasting eucalyptus clones to drought tolerance. A complete randomized design was used to investigate the effects of three water regimes (well-watered, moderate water deficit, and severe water deficit) and two K soil supplies (sufficient and low K) on growth and physiological responses of two elite eucalyptus clones: "VM01" (Eucalyptus urophylla × camaldulensis) and "AEC 0144" (E. urophylla). Results depicted that the K-well-nourished E. urophylla × camaldulensis clone under severe water deficit maintained shoot biomass accumulation by upregulating the K-content in leaves and stems, gas exchange, water-use efficiency (WUEI ), leaf water potential (Ψw), and chlorophyll a fluorescence parameters, compared to E. urophylla clone. Meanwhile, E. urophylla with a severe water deficit showed a decreased of K content in leaves and stem, as well as a reduction in the accumulation of dry mass. Therefore, the K-use efficiency and the apparent electron transport rate through photosystem II were positively correlated in plants grown in low K, indicating the importance of K in maintaining leaf photochemical processes. In conclusion, management strategy should seek to enhance K-nutrition to optimize water-use efficiencies and photosynthesis.
Collapse
Affiliation(s)
- Elcio Ferreira Santos
- Federal Institute of Mato Grosso do Sul, Laboratory of Plant Nutriton, Nova Andradina, Brazil
| | - Nikolas Souza Mateus
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| | | | - Tiago Barreto Garcez
- Federal University of Sergipe, Campus do Sertão, Nossa Senhora da Glória, Brazil
| | - Paulo Mazzafera
- University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, Brazil
- University of Campinas, Institute of Biology, Campinas, Brazil
| | - José Lavres
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| |
Collapse
|
6
|
Mateus NDS, Florentino AL, Santos EF, Ferraz ADV, Goncalves JLDM, Lavres J. Partial Substitution of K by Na Alleviates Drought Stress and Increases Water Use Efficiency in Eucalyptus Species Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:632342. [PMID: 33790923 PMCID: PMC8005639 DOI: 10.3389/fpls.2021.632342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 05/13/2023]
Abstract
Eucalyptus, the most widely planted tree genus worldwide, is frequently cultivated in soils with low water and nutrient availability. Sodium (Na) can substitute some physiological functions of potassium (K), directly influencing plants' water status. However, the extent to which K can be replaced by Na in drought conditions remains poorly understood. A greenhouse experiment was conducted with three Eucalyptus genotypes under two water conditions (well-watered and water-stressed) and five combination rates of K and Na, representing substitutions of 0/100, 25/75, 50/50, 75/25, and 100/0 (percentage of Na/percentage of K), to investigate growth and photosynthesis-related parameters. This study focused on the positive effects of Na supply since, depending on the levels applied, the Na supply may induce plants to salinity stress (>100 mM of NaCl). Plants supplied with low to intermediate K replacement by Na reduced the critical level of K without showing symptoms of K deficiency and provided higher total dry matter (TDM) than those Eucalyptus seedlings supplied only with K in both water conditions. Those plants supplied with low to intermediate K replacement by Na had improved CO2 assimilation (A), stomatal density (Std), K use efficiency (UE K ), and water use efficiency (WUE), in addition to reduced leaf water potential (Ψw) and maintenance of leaf turgidity, with the stomata partially closed, indicated by the higher values of leaf carbon isotope composition (δ13C‰). Meanwhile, combination rates higher than 50% of K replacement by Na led to K-deficient plants, characterized by the lower values of TDM, δ13C‰, WUE, and leaf K concentration and higher leaf Na concentration. There was positive evidence of partial replacement of K by Na in Eucalyptus seedlings; meanwhile, the ideal percentage of substitution increased according to the drought tolerance of the species (Eucalyptus saligna < Eucalyptus urophylla < Eucalyptus camaldulensis).
Collapse
Affiliation(s)
- Nikolas de Souza Mateus
- Stable Isotope Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Nikolas de Souza Mateus,
| | - Antônio Leite Florentino
- Applied Ecology Laboratory, Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | - José Leonardo de Moraes Goncalves
- Applied Ecology Laboratory, Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - José Lavres
- Stable Isotope Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
7
|
The Regulatory Role of Silicon in Mitigating Plant Nutritional Stresses. PLANTS 2020; 9:plants9121779. [PMID: 33333938 PMCID: PMC7765459 DOI: 10.3390/plants9121779] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
It has been long recognized that silicon (Si) plays important roles in plant productivity by improving mineral nutrition deficiencies. Despite the fact that Si is considered as ‘quasi–essential’, the positive effect of Si has mostly been described in resistance to biotic and tolerance to abiotic stresses. During the last decade, much effort has been aimed at linking the positive effects of Si under nutrient deficiency or heavy metal toxicity (HM). These studies highlight the positive effect of Si on biomass production, by maintaining photosynthetic machinery, decreasing transpiration rate and stomatal conductance, and regulating uptake and root to shoot translocation of nutrients as well as reducing oxidative stress. The mechanisms of these inputs and the processes driving the alterations in plant adaptation to nutritional stress are, however, largely unknown. In this review, we focus on the interaction of Si and macronutrient (MaN) deficiencies or micro-nutrient (MiN) deficiency, summarizing the current knowledge in numerous research fields that can improve our understanding of the mechanisms underpinning this cross-talk. To this end, we discuss the gap in Si nutrition and propose a working model to explain the responses of individual MaN or MiN disorders and their mutual responses to Si supplementation.
Collapse
|