1
|
Song Y, Sun X, Guo X, Ding X, Chen J, Tang H, Zhang Z, Dong W. Shading increases the susceptibility of alfalfa (Medicago sativa) to Pst. DC3000 by inhibiting the expression of MsIFS1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109191. [PMID: 39406004 DOI: 10.1016/j.plaphy.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Shade is a stressful factor for most plants, leading to both morphological and physiological changes, and often resulting in increased susceptibility to diseases and pathogen attacks. Our study revealed that the isoflavonoid synthesis pathway was inhibited in alfalfa under shade, resulting in a significant reduction in disease resistance. Overexpression of MsIFS1, a switch regulator in isoflavonoid synthesis, led to a notable increase in endogenous isoflavonoids and enhanced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Conversely, MsIFS1-RNAi had the opposite effect. Yeast one-hybrid (Y1H) assays revealed that the shade-responsive transcription factor MsWRKY41 could directly bind to the MsIFS1 promoter. This interaction was confirmed through Dual-Luciferase Reporter (Dual-LUC) and Chromatin Immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays, both in vitro and in vivo. Overexpression of MsWRKY41 not only enhanced alfalfa's resistance to Pst. DC3000 but also promoted the accumulation of isoflavonoids. Additionally, yeast two-hybrid (Y2H) assays showed that neither MsWRKY41 nor MsIFS1 physically interacted with the Type III effector (T3SE) HopZ1 secreted by Pst. DC3000, suggesting that the MsWRKY41-MsIFS1 module is not a direct target of HopZ1. These findings provide valuable theoretical insights and genetic resources for the development of shade-tolerant alfalfa with enhanced disease resistance.
Collapse
Affiliation(s)
- Yuguang Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xueying Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xinying Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xinru Ding
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Jifeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Haoyan Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Zhaoran Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Wei Dong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China.
| |
Collapse
|
2
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
3
|
Wang X, Tang H, Lu T, Shen P, Chen J, Dong W, Song Y. Novel underlying regulatory mechanism of the MsDAD2-mediated salt stress response in alfalfa. Biochem Biophys Res Commun 2024; 690:149252. [PMID: 37995452 DOI: 10.1016/j.bbrc.2023.149252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Alfalfa (Medicago sativa L.), a crucial and widely grown forage legume, faces yield and quality challenges due to salinity stress. The defender against apoptotic death (DAD) gene, recognized initially as an apoptosis suppressor in mammals, plays a pivotal role in catalyzing N-glycosylation, acting as a positive regulator for protein folding and endoplasmic reticulum (ER) export. Here, we found that the MsDAD2 gene was specially induced in the salt-tolerant alfalfa cultivar (DL) under salinity stress, but not in the salt-sensitive cultivar (SD). Overexpression of MsDAD2 enhanced the salinity resistance of transgenic alfalfa by promoting NAD(P)H-quinone oxidoreductase (NQO1) and cytochrome b6f complex subunit (Cyt b6/f) expression, thereby mitigating reactive oxygen species (ROS) production. ChIP-qPCR analysis suggested that the differential expression of MsDAD2 in DL and SD under salinity stress may be linked to dynamic histone modifications in its promoter. Therefore, our findings elucidate a novel regulatory mechanism of MsDAD2 in alfalfa's response to salinity stress, underscoring its significance as a target for alfalfa breeding to enhance salt tolerance.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Haoyan Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Tongchen Lu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Peihan Shen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Jifeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Wei Dong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Yuguang Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China.
| |
Collapse
|
4
|
Liu L, Wang J, Zhang Q, Sun T, Wang P. Cloning of the Soybean GmNHL1 Gene and Functional Analysis under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3869. [PMID: 38005766 PMCID: PMC10675494 DOI: 10.3390/plants12223869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
When encountered in the soybean seedling stage, salt stress has serious impacts on plant growth and development. This study explores the role of the soybean NDR1/HIN1-like family gene GmNHL1 under salt stress. First, the GmNHL1 gene was successfully cloned, and bioinformatic analysis revealed multiple cis-acting elements which are related to adversity stress and involved in the oxidative response in the promoter region. Sub-cellular localization analysis indicated that the protein expressed by GmNHL1 was localized on the cell membrane. An over-expression vector of the target gene and a CRISPR/Cas9 gene-editing vector were constructed, and the recipient soybean variety Jinong 74 was genetically transformed using the Agrobacterium tumefaciens-mediated method. By analyzing the performance of the different plants under salt stress, the results showed that GmNHL1 was over-expressed in the T2 generation. The germination potential, germination rate, germination index, and vitality index of the strain were significantly higher than those of the recipient control JN74. Under salt stress conditions, the root microanatomical structure of the GmNHL1 over-expressing material remained relatively intact, and its growth was better than that of the recipient control JN74. Measurement of physiological and biochemical indicators demonstrated that, compared with the receptor control JN74, the malondialdehyde and O2- contents of the GmNHL1 over-expressing material were significantly reduced, while the antioxidant enzyme activity, proline content, and chlorophyll content significantly increased; however, the results for GmNHL1 gene-edited materials were the opposite. In summary, over-expression of GmNHL1 can improve the salt tolerance of plants and maintain the integrity of the root anatomical structure, thereby more effectively and rapidly reducing the accumulation of malondialdehyde and O2- content and increasing antioxidant enzyme activity. This reduces cell membrane damage, thereby improving the salt tolerance of soybean plants. These results help to better understand the mechanism of salt tolerance in soybean plants, laying a theoretical foundation for breeding new stress-resistant varieties of soybean.
Collapse
Affiliation(s)
- Lu Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jiabao Wang
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| | - Qi Zhang
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| | - Tingting Sun
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| | - Piwu Wang
- The Center of Biotechnology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Singer SD, Lehmann M, Zhang Z, Subedi U, Burton Hughes K, Lim NZL, Ortega Polo R, Chen G, Acharya S, Hannoufa A, Huan T. Elucidation of Physiological, Transcriptomic and Metabolomic Salinity Response Mechanisms in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2059. [PMID: 37653976 PMCID: PMC10221938 DOI: 10.3390/plants12102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
Alfalfa (Medicago sativa L.) is a widely grown perennial leguminous forage crop with a number of positive attributes. However, despite its moderate ability to tolerate saline soils, which are increasing in prevalence worldwide, it suffers considerable yield declines under these growth conditions. While a general framework of the cascade of events involved in plant salinity response has been unraveled in recent years, many gaps remain in our understanding of the precise molecular mechanisms involved in this process, particularly in non-model yet economically important species such as alfalfa. Therefore, as a means of further elucidating salinity response mechanisms in this species, we carried out in-depth physiological assessments of M. sativa cv. Beaver, as well as transcriptomic and untargeted metabolomic evaluations of leaf tissues, following extended exposure to salinity (grown for 3-4 weeks under saline treatment) and control conditions. In addition to the substantial growth and photosynthetic reductions observed under salinity treatment, we identified 1233 significant differentially expressed genes between growth conditions, as well as 60 annotated differentially accumulated metabolites. Taken together, our results suggest that changes to cell membranes and walls, cuticular and/or epicuticular waxes, osmoprotectant levels, antioxidant-related metabolic pathways, and the expression of genes encoding ion transporters, protective proteins, and transcription factors are likely involved in alfalfa's salinity response process. Although some of these alterations may contribute to alfalfa's modest salinity resilience, it is feasible that several may be disadvantageous in this context and could therefore provide valuable targets for the further improvement of tolerance to this stress in the future.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Madeline Lehmann
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zixuan Zhang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Nathaniel Z.-L. Lim
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Surya Acharya
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
6
|
Jiang X, Yu A, Zhang F, Yang T, Wang C, Gao T, Yang Q, Yu LX, Wang Z, Kang J. Identification of QTL and candidate genes associated with biomass yield and Feed Quality in response to water deficit in alfalfa ( Medicago sativa L.) using linkage mapping and RNA-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:996672. [PMID: 36325545 PMCID: PMC9619099 DOI: 10.3389/fpls.2022.996672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Biomass yield and Feed Quality are the most important traits in alfalfa (Medicago sativa L.), which directly affect its economic value. Drought stress is one of the main limiting factors affecting alfalfa production worldwide. However, the genetic and especially the molecular mechanisms for drought tolerance in alfalfa are poorly understood. In this study, linkage mapping was performed in an F1 population by combining 12 phenotypic data (biomass yield, plant height, and 10 Feed Quality-related traits). A total of 48 significant QTLs were identified on the high-density genetic linkage maps that were constructed in our previous study. Among them, nine main QTLs, which explained more than 10% phenotypic variance, were detected for biomass yield (one), plant height (one), CP (two), ASH (one), P (two), K(one), and Mg (one). A total of 31 candidate genes were identified in the nine main QTL intervals based on the RNA-seq analysis under the drought condition. Blast-P was further performed to screen candidate genes controlling drought tolerance, and 22 functional protein candidates were finally identified. The results of the present study will be useful for improving drought tolerance of alfalfa varieties by marker-assisted selection (MAS), and provide promising candidates for further gene cloning and mechanism study.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Andong Yu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long-Xi Yu
- Plant Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, Prosser, WA, United States
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Zeeshan M, Qiu CW, Naz S, Cao F, Wu F. Genome-Wide Discovery of miRNAs with Differential Expression Patterns in Responses to Salinity in the Two Contrasting Wheat Cultivars. Int J Mol Sci 2021; 22:ijms222212556. [PMID: 34830438 PMCID: PMC8621374 DOI: 10.3390/ijms222212556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/16/2023] Open
Abstract
Salinity is a serious environmental issue. It has a substantial effect on crop yield, as many crop species are sensitive to salinity due to climate change, and it impact is continuing to increase. Plant microRNAs (miRNAs) contribute to salinity stress response in bread wheat. However, the underlying molecular mechanisms by which miRNAs confer salt tolerance in wheat are unclear. We conducted a genome-wide discovery study using Illumina high throughput sequencing and comprehensive in silico analysis to obtain insight into the underlying mechanisms by which small RNAs confer tolerance to salinity in roots of two contrasting wheat cvv., namely Suntop (salt-tolerant) and Sunmate (salt-sensitive). A total of 191 microRNAs were identified in both cultivars, consisting of 110 known miRNAs and 81 novel miRNAs; 181 miRNAs were shared between the two cultivars. The known miRNAs belonged to 35 families consisted of 23 conserved and 12 unique families. Salinity stress induced 43 and 75 miRNAs in Suntop and Sunmate, respectively. Among them, 14 and 29 known and novel miRNAs were expressed in Suntop and 37 and 38 in Sunmate. In silico analysis revealed 861 putative target mRNAs for the 75 known miRNAs and 52 putative target mRNAs for the 15 candidate novel miRNAs. Furthermore, seven miRNAs including tae-miR156, tae-miR160, tae-miR171a-b, tae-miR319, tae-miR159a-b, tae-miR9657 and novel-mir59 that regulate auxin responsive-factor, SPL, SCL6, PCF5, R2R3 MYB, and CBL-CIPK, respectively, were predicted to contribute to salt tolerance in Suntop. This information helps further our understanding of how the molecular mechanisms of salt tolerance are mediated by miRNAs and may facilitate the genetic improvement of wheat cultivars.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (C.-W.Q.); (S.N.); (F.C.)
- Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning 530004, China
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (C.-W.Q.); (S.N.); (F.C.)
| | - Shama Naz
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (C.-W.Q.); (S.N.); (F.C.)
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (C.-W.Q.); (S.N.); (F.C.)
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.Z.); (C.-W.Q.); (S.N.); (F.C.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel./Fax: +86-571-8898-2827
| |
Collapse
|
8
|
Medina CA, Samac DA, Yu LX. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci Rep 2021; 11:17203. [PMID: 34446782 PMCID: PMC8390513 DOI: 10.1038/s41598-021-96712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alfalfa is an important legume forage grown worldwide and its productivity is affected by environmental stresses such as drought and high salinity. In this work, three alfalfa germplasms with contrasting tolerances to drought and high salinity were used for unraveling the transcriptomic responses to drought and salt stresses. Twenty-one different RNA samples from different germplasm, stress conditions or tissue sources (leaf, stem and root) were extracted and sequenced using the PacBio (Iso-Seq) and the Illumina platforms to obtain full-length transcriptomic profiles. A total of 1,124,275 and 91,378 unique isoforms and genes were obtained, respectively. Comparative analysis of transcriptomes identified differentially expressed genes and isoforms as well as transcriptional and post-transcriptional modifications such as alternative splicing events, fusion genes and nonsense-mediated mRNA decay events and non-coding RNA such as circRNA and lncRNA. This is the first time to identify the diversity of circRNA and lncRNA in response to drought and high salinity in alfalfa. The analysis of weighted gene co-expression network allowed to identify master genes and isoforms that may play important roles on drought and salt stress tolerance in alfalfa. This work provides insight for understanding the mechanisms by which drought and salt stresses affect alfalfa growth at the whole genome level.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA
| | - Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, 495 Borlaug Hall St, Paul, MN, 55108, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA.
| |
Collapse
|