1
|
Zhaogao L, Yaxuan W, Mengwei X, Haiyu L, Lin L, Delin X. Molecular mechanism overview of metabolite biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108125. [PMID: 37883919 DOI: 10.1016/j.plaphy.2023.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Medicinal plants are essential and rich resources for plant-based medicines and new drugs. Increasing attentions are paid to the secondary metabolites of medicinal plants due to their unique biological activity, pharmacological action, and high utilization value. However, the development of medicinal plants is constrained by limited natural resources and an unclear understanding of the mechanisms underlying active medicinal ingredients, thereby rendering the utilization and exploration of secondary metabolites more challenging. Besides, with the advancement of research on biosynthesis and molecular metabolism of natural products from medicinal plants, the methods for studying the biological activity and pharmacological effects of these products are constantly evolving. In recent years, significant progress has been made in the biosynthetic pathways and related regulatory genes of secondary metabolites in medicinal plants, which has greatly advanced both basic research and the development of clinical applications for medicinal plants. In this review, we discuss the past two decades of international research on the development of medicinal plant resources, mainly focusing on the biosynthetic pathway of secondary metabolites, intracellular signal transduction processes, multi-omics applications, and the application of gene editing technology in related research progress. We also discuss future development trends to promote the deep mining and development of natural products from medicinal plants, providing a useful reference.
Collapse
Affiliation(s)
- Li Zhaogao
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Wang Yaxuan
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Mengwei
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Liu Haiyu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Li Lin
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Delin
- Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
2
|
Hernández ML, Muñoz-Ocaña C, Posada P, Sicardo MD, Hornero-Méndez D, Gómez-Coca RB, Belaj A, Moreda W, Martínez-Rivas JM. Functional Characterization of Four Olive Squalene Synthases with Respect to the Squalene Content of the Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15701-15712. [PMID: 37815987 PMCID: PMC10723762 DOI: 10.1021/acs.jafc.3c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
The release of new olive cultivars with an increased squalene content in their virgin olive oil is considered an important target in olive breeding programs. In this work, the variability of the squalene content in a core collection of 36 olive cultivars was first studied, revealing two olive cultivars, 'Dokkar' and 'Klon-14', with extremely low and high squalene contents in their oils, respectively. Next, four cDNA sequences encoding squalene synthases (SQS) were cloned from olive. Sequence analysis and functional expression in bacteria confirmed that they encode squalene synthases. Transcriptional analysis in distinct olive tissues and cultivars indicated that expression levels of these four SQS genes are spatially and temporally regulated in a cultivar-dependent manner and pointed to OeSQS2 as the gene mainly involved in squalene biosynthesis in olive mesocarp and, therefore, in the olive oil. In addition, the biosynthesis of squalene appears to be transcriptionally regulated in water-stressed olive mesocarp.
Collapse
Affiliation(s)
- M. Luisa Hernández
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Cristina Muñoz-Ocaña
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Pilar Posada
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - M. Dolores Sicardo
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Dámaso Hornero-Méndez
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Raquel B. Gómez-Coca
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - Angjelina Belaj
- IFAPA
Centro Alameda del Obispo, Avda. Menéndez Pidal s/n, 14080 Córdoba, Spain
| | - Wenceslao Moreda
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| | - José M. Martínez-Rivas
- Instituto
de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera Km.1, 41013 Sevilla, Spain
| |
Collapse
|
3
|
Sabater-Jara AB, Marín-Marín MJ, Almagro L, Pedreño MA. Cyclodextrins Increase Triterpene Production in Solanum lycopersicum Cell Cultures by Activating Biosynthetic Genes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2782. [PMID: 36297806 PMCID: PMC9609435 DOI: 10.3390/plants11202782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this work, Solanum lycopersicum cv. Micro-Tom suspension-cultured cells were used to analyze the effect of different elicitors including β-cyclodextrins (CD), methyl jasmonate (MJ), β-glucan (Glu) and 3-hexenol (Hex) separately and the combined treatments of CD + MJ, CD + glu and CD + Hex on triterpene compound production after 24, 72 and 96 h. Moreover, we studied the changes induced by elicitors in the expression of key biosynthetic genes to elucidate the regulation of the triterpene biosynthetic pathway. The relative abundance of the triterpene compounds identified in the extracellular medium after elicitation (squalene, fucosterol, avenasterol, β-sitosterol, cycloartenol and taraxasterol) was determined by gas chromatography coupled to mass spectrometry, and the expression level of genes in treated-cells was analyzed by real-time quantitative polymerase chain reaction (qRT-PCR). Results showed that, in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex), specialized metabolites were accumulated mainly in the extracellular medium after 72 h of elicitation. Moreover, qRT-PCR analysis revealed that the highest triterpene levels in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex) were highly correlated with the expression of cycloartenol synthase, 3-hydroxy-3-methylglutaryl-CoA reductase and squalene epoxidase genes at 24 h of treatment, whereas the expression of sterol methyltransferase was increased at 72 h. According to our findings, CD acts as a true elicitor of triterpene biosynthesis and can promote the release of bioactive compounds from the tomato cells into the extracellular medium. The results obtained provide new insights into the regulation of the triterpene metabolic pathway, which might be useful for implementing metabolic engineering techniques in tomato.
Collapse
|
4
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Noushahi HA, Khan AH, Noushahi UF, Hussain M, Javed T, Zafar M, Batool M, Ahmed U, Liu K, Harrison MT, Saud S, Fahad S, Shu S. Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency. PLANT GROWTH REGULATION 2022; 97:439-454. [PMID: 35382096 PMCID: PMC8969394 DOI: 10.1007/s10725-022-00818-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 05/13/2023]
Abstract
"Triterpenoids" can be considered natural products derived from the cyclization of squalene, yielding 3-deoxytriterpenes (hydrocarbons) or 3-hydroxytriterpenes. Triterpenoids are metabolites of these two classes of triterpenes, produced by the functionalization of their carbon skeleton. They can be categorized into different groups based on their structural formula/design. Triterpenoids are an important group of compounds that are widely used in the fields of pharmacology, food, and industrial biotechnology. However, inadequate synthetic methods and insufficient knowledge of the biosynthesis of triterpenoids, such as their structure, enzymatic activity, and the methods used to produce pure and active triterpenoids, are key problems that limit the production of these active metabolites. Here, we summarize the derivatives, pharmaceutical properties, and biosynthetic pathways of triterpenoids and review the enzymes involved in their biosynthetic pathway. Furthermore, we concluded the screening methods, identified the genes involved in the pathways, and highlighted the appropriate strategies used to enhance their biosynthetic production to facilitate the commercial process of triterpenoids through the synthetic biology method.
Collapse
Affiliation(s)
- Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
- Plant Breeding and Phenomic Centre, Faculty of Agricultural Sciences, University of Talca, 3460000 Talca, Chile
| | - Aamir Hamid Khan
- National Key Lab of Crop Genetics Improvement, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Usama Farhan Noushahi
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Mubashar Hussain
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Maimoona Zafar
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Umair Ahmed
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Shah Saud
- College of Life Science, Linyi University, 276000 Linyi, Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, 570228 Haikou, China
- Department of Agronomy, The University of Haripur, 22620 Haripur, Pakistan
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
6
|
Huang Y, An W, Yang Z, Xie C, Liu S, Zhan T, Pan H, Zheng X. Metabolic stimulation-elicited transcriptional responses and biosynthesis of acylated triterpenoids precursors in the medicinal plant Helicteres angustifolia. BMC PLANT BIOLOGY 2022; 22:86. [PMID: 35216551 PMCID: PMC8876399 DOI: 10.1186/s12870-022-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Helicteres angustifolia has long been used in Chinese traditional medicine. It has multiple pharmacological benefits, including anti-inflammatory, anti-viral and anti-tumor effects. Its main active chemicals include betulinic acid, oleanolic acid, helicteric acid, helicterilic acid, and other triterpenoid saponins. It is worth noting that some acylated triterpenoids, such as helicteric acid and helicterilic acid, are characteristic components of Helicteres and are relatively rare among other plants. However, reliance on natural plants as the only sources of these is not enough to meet the market requirement. Therefore, the engineering of its metabolic pathway is of high research value for enhancing the production of secondary metabolites. Unfortunately, there are few studies on the biosynthetic pathways of triterpenoids in H. angustifolia, hindering its further investigation. RESULTS Here, the RNAs of different groups treated by metabolic stimulation were sequenced with an Illumina high-throughput sequencing platform, resulting in 121 gigabases of data. A total of 424,824 unigenes were obtained after the trimming and assembly of the raw data, and 22,430 unigenes were determined to be differentially expressed. In addition, three oxidosqualene cyclases (OSCs) and four Cytochrome P450 (CYP450s) were screened, of which one OSC (HaOSC1) and one CYP450 (HaCYPi3) achieved functional verification, suggesting that they could catalyze the production of lupeol and oleanolic acid, respectively. CONCLUSION In general, the transcriptomic data of H. angustifolia was first reported and analyzed to study functional genes. Three OSCs, four CYP450s and three acyltransferases were screened out as candidate genes to perform further functional verification, which demonstrated that HaOSC1 and HaCYPi3 encode for lupeol synthase and β-amyrin oxidase, which produce corresponding products of lupeol and oleanolic acid, respectively. Their successful identification revealed pivotal steps in the biosynthesis of acylated triterpenoids precursors, which laid a foundation for further study on acylated triterpenoids. Overall, these results shed light on the regulation of acylated triterpenoids biosynthesis.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Ting Zhan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Huaigeng Pan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| |
Collapse
|
7
|
Sheng YY, Xiang J, Wang KR, Li ZY, Li K, Lu JL, Ye JH, Liang YR, Zheng XQ. Extraction of Squalene From Tea Leaves (Camellia sinensis) and Its Variations With Leaf Maturity and Tea Cultivar. Front Nutr 2022; 9:755514. [PMID: 35223940 PMCID: PMC8866563 DOI: 10.3389/fnut.2022.755514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Squalene is a precursor of steroids with diverse bioactivities. Tea was previously found to contain squalene, but its variation between tea cultivars remains unknown. In this study, tea leaf squalene sample preparation was optimized and the squalene variation among 30 tea cultivars was investigated. It shows that squalene in the unsaponified tea leaf extracts was well separated on gas chromatography profile. Saponification led to a partial loss of squalene in tea leaf extract and so it is not an essential step for preparing squalene samples from tea leaves. The tea leaf squalene content increased with the maturity of tea leaf and the old leaves grown in the previous year had the highest level of squalene among the tested samples. The squalene levels in the old leaves of the 30 tested cultivars differentiated greatly, ranging from 0.289 to 3.682 mg/g, in which cultivar “Pingyun” had the highest level of squalene. The old tea leaves and pruned littering, which are not used in tea production, are an alternative source for natural squalene extraction.
Collapse
Affiliation(s)
- Yue Yue Sheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jing Xiang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Kai Rong Wang
- Forest Technology Extension Center, Ningbo Agricultural and Rural Affairs Bureau, Ningbo, China
| | - Ze Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Kai Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
- *Correspondence: Yue Rong Liang
| | - Xin Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
- Xin Qiang Zheng
| |
Collapse
|
8
|
Wu J, Xu R, Lu J, Liu W, Yu H, Liu M, Li J, Yin M, Peng H, Zha L. Molecular cloning and functional characterization of two squalene synthase genes in Atractylodes lancea. PLANTA 2021; 255:8. [PMID: 34845523 DOI: 10.1007/s00425-021-03797-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Two squalene synthase genes AlSQS1 and AlSQS2 were isolated from Atractylodes lancea and functionally characterized using in vitro enzymatic reactions. Atractylodes lancea is a traditional herb used for the treatment of rheumatic diseases, gastric disorders, and influenza. Its major active ingredients include sesquiterpenoids and triterpenes. Squalene synthase (SQS; EC 2.5.1.21) catalyzes the first enzymatic step in the central isoprenoid pathway towards sterol and triterpenoid biosynthesis. In this study, we aimed to investigate two SQSs from A. lancea using cloning and in vitro enzymatic characterization. Bioinformatics and phylogenetic analyses revealed that the AlSQSs exhibited high homology with other plant SQSs. Furthermore, AlSQS1 was observed to be localized in both the nucleus and cytoplasm, whereas AlSQS2 was localized in the cytoplasm and endoplasmic reticulum. To obtain soluble recombinant enzymes, AlSQS1 and AlSQS2 were successfully expressed as glutathione S-transferase (GST)-tagged fusion proteins in Escherichia coli Transetta (DE3). Approximately 68 kDa recombinant proteins were obtained using GST-tag affinity chromatography and Western blot analysis. Results of the in vitro enzymatic reactions established that both AlSQS1 and AlSQS2 were functional, which verifies their catalytic ability in converting two farnesyl pyrophosphates to squalene. The expression patterns of AlSQS and selected terpenoid genes were also investigated in two A. lancea chemotypes using available RNA sequencing data. AlSQS1 and AlSQS2, which showed relatively similar expression in the three tissues, were more highly expressed in the stems than in the leaves and rhizomes. Methyl jasmonate (MeJA) was used as an elicitor to analyze the expression profiles of AlSQSs. The results of qRT-PCR analysis revealed that the gene expression of AlSQS1 and AlSQS2 plummeted at lowest value at 12 h and reached its peak at 24 h. This study is the first report on the cloning, characterization, and expression of SQSs in A. lancea. Therefore, our findings contribute novel insights that may be useful for future studies regarding terpenoid biosynthesis in A. lancea.
Collapse
Affiliation(s)
- Junxian Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Rui Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jimei Lu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weiwei Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Minzhen Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
9
|
Chen X, Chen B, Shang X, Fang S. RNA in situ hybridization and expression of related genes regulating the accumulation of triterpenoids in Cyclocarya paliurus. TREE PHYSIOLOGY 2021; 41:2189-2197. [PMID: 33960380 DOI: 10.1093/treephys/tpab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja, a woody medicinal species in the Juglandaceae, grows extensively in subtropical areas of China. Triterpenoids in the leaves have health-promoting effects, including hypoglycemic and hypolipidemic activities. To understand triterpenoid biosynthesis, transport and accumulation in C. paliurus during the growing season, gene cloning, gene expression and RNA in situ hybridization of related genes were used, and accumulation was examined in various organs. The complete coding sequences (CDSs) of three genes, CpHMGR, CpDXR and CpSQS, were obtained from GenBank and RACE. RNA in situ hybridization signals of the three genes mainly occurred in the epidermis, palisade tissue, phloem and xylem of leaf, shoot and root, with the signals generally consistent with the accumulation of metabolites in tissues, except in the xylem. Both gene expression and triterpenoid accumulations showed seasonal variations in all organs. However, total triterpenoid content in the leaves was significantly higher than that in the shoots, with the maximum in shoots in August and in leaves in October. According to Pearson correlation analysis, triterpenoid accumulation in the leaves was significantly positively related with the relative expression of CpSQS. However, the relation between gene expression and accumulation was dependent on the role of the gene in the pathway as well as on the plant organ. The results suggested that most of the intermediates catalyzed by CpHMGR and CpDXR in young shoots and roots were used in growth and flowering in the spring, whereas subsequent triterpenoid biosynthesis in the downstream catalyzed by CpSQS mainly occurred in the leaves by using transferred and in situ intermediates as substrates. Thus, this study provides a reference to improve triterpenoid accumulation in future C. paliurus plantations.
Collapse
Affiliation(s)
- Xiaoling Chen
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| | - Biqin Chen
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| |
Collapse
|
10
|
Gao JX, Chen YG, Li DS, Lin L, Liu Y, Li SH. Cloning and Functional Characterization of a Squalene Synthase from Paris polyphylla var. yunnanensis. Chem Biodivers 2021; 18:e2100342. [PMID: 34148286 DOI: 10.1002/cbdv.202100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. is a precious traditional Chinese medicine, and steroidal saponins are its major bioactive constituents possessing extensive biological activities. Squalene synthase (SQS) catalyzes the first dedicated step converting two molecular of farnesyl diphosphate (FDP) into squalene, a key intermediate in the biosynthetic pathway of steroidal saponins. In this study, a squalene synthase gene (PpSQS1) was cloned and functionally characterized from P. polyphylla var. yunnanensis, representing the first identified SQS from the genus Paris. The open reading frame of PpSQS1 is 1239 bp, which encodes a protein of 412 amino acids showing high similarity to those of other plant SQSs. Expression of PpSQS1 in Escherichia coli resulted in production of soluble recombinant proteins. Gas chromatography-mass spectrometry analysis showed that the purified recombinant PpSQS1 protein could produce squalene using FDP as a substrate in the in vitro enzymatic assay. qRT-PCR analysis indicated that PpSQS1 was highly expressed in rhizomes, consistent with the dominant accumulation of steroidal saponins there, suggesting that PpSQS1 is likely involved in the biosynthesis of steroidal saponins in the plant. The findings lay a foundation for further investigation on the biosynthesis and regulation of steroidal saponins, and also provide an alternative gene for manipulation of steroid production using synthetic biology.
Collapse
Affiliation(s)
- Jian-Xiong Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Lin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
11
|
Liu G, Yang M, Yang X, Ma X, Fu J. Five TPSs are responsible for volatile terpenoid biosynthesis in Albizia julibrissin. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153358. [PMID: 33453433 DOI: 10.1016/j.jplph.2020.153358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Silk tree, Albizia julibrissin Duraz, is an old ornamental plant and extensively cultivated in Asia. Previous works have discovered that the terpenoids were the dominating compounds in the floral VOC of A. julibrissin, however the biosynthesis of these terpenoids was poorly understood so far. Here, 11 terpene synthase genes (TPSs) were identified by transcriptome sequencing that fell into TPS-a, TPS-b and TPS-g subfamilies. The enzymatic activity tests showed that five genes were functional: AjTPS2 was a sesquiterpene synthase and produced α-farnesene and (Z, E)-β-farnesene; AjTPS5 was able to catalyze the formation of five monoterpenes and nine sesquiterpenes; AjTPS7, AjTPS9 and AjTPS10 were dedicated monoterpene synthases, as AjTPS7 and AjTPS10 formed the single product β-ocimene and linalool, respectively, and AjTPS9 produced γ-terpinene with other three monoterpenes. More importantly, the main catalytic products of the characterized AjTPSs were consistent with the terpenoids observed in A. julibrissin volatiles. Combining terpene chemistry, TPSs biochemical activities and gene expression analysis, we demonstrate that AjTPS2, AjTPS5, AjTPS7, AjTPS9 and AjTPS10 are responsible for the volatile terpenoids biosynthesis in A. julibrissin.
Collapse
Affiliation(s)
- Guanhua Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China
| | - Xuemin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoying Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China.
| |
Collapse
|
12
|
Zhang B, Chen L, Huo Y, Feng J, Ma Z, Zhang X, Zhu C. Enhanced production of celastrol in Tripterygium wilfordii hairy root cultures by overexpression of TwSQS2. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Cloning, functional characterization and expression analysis of LoTPS5 from Lilium 'Siberia'. Gene 2020; 756:144921. [PMID: 32593719 DOI: 10.1016/j.gene.2020.144921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 02/05/2023]
Abstract
Lilium 'Siberia' is a perennial herbaceous plant that is commercially significant because of its snowy white floral color and appealing scent which is mainly due to the presence of monoterpenes and benzoids compounds in floral volatile profile. In the current study, LoTPS5 was cloned and functionally characterized. Results revealed that LoTPS5 specifically generates squalene from FPP, whereas no product was produced when it was incubated with GPP or GGPP. The subcellular localization experiment showed that LoTPS5 was located in plastids. Furthermore, LoTPS5 showed its high expression in the leaf followed by petals and sepals of the flower. Moreover, the expression of LoTPS5 gradually increased from the bud stage and peak at the full-bloom stage. Besides, LoTPS5 showed a diurnal circadian rhythmic pattern with a peak in the afternoon (16:00) followed by deep night (24:00) and morning (8:00), respectively. LoTPS5 is highly responsive to mechanical wounding by rapidly elevating its mRNA transcript level. The current study will provide significant information for future studies of terpenoid and squalene biosynthesis in Lilium 'Siberia'.
Collapse
|
14
|
Zhang P, Liu X, Yu X, Wang F, Long J, Shen W, Jiang D, Zhao X. The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC PLANT BIOLOGY 2020; 20:254. [PMID: 32493275 PMCID: PMC7271526 DOI: 10.1186/s12870-020-02475-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Limonoids are major bioactive compounds that are produced by the triterpenoid metabolic pathway. The detailed biochemical process of limonoid biosynthesis and the mechanism of its molecular regulation remain elusive. The identification of transcription factors that regulate limonoid biosynthetic pathways is very important for understanding the underlying regulatory mechanisms. This information could also provide tools for manipulating biosynthesis genes to modulate limonoid production. RESULTS In this study, the CiMYB42 transcription factor was isolated to identify its role in limonoid biosynthesis. Multiple alignment analysis and phylogenetic analysis demonstrated that CiMYB42 is a typical R2R3MYB transcription factor that shares high similarity of its amino acid sequence with AtMYB42. Limonoids contents were higher in Citrus sinensis and Citrus grandis than in other species. Limonoid accumulation during leaf development also showed diverse trends in different genotypes. The expression of CiMYB42 was significantly related to the limonoid content and the expression of CiOSC in some citrus accessions. The overexpression of CiMYB42 in sweet orange resulted in significant accumulation of limonin, whereas the downregulation of CiMYB42 by RNAi resulted in a dwarf phenotype and less nomilin accumulation. Furthermore, the results of a yeast one-hybrid assay and EMSA indicated that CiMYB42 binds exclusively to the TTGTTG sequence (type II MYB core) in the promoter of CiOSC. Together, these results suggest that CiMYB42 positively regulates limonoid biosynthesis by regulating the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core) of its promoter. CONCLUSIONS CiMYB42 is an important transcription activator involved in limonoid biosynthesis that regulates the expression of CiOSC by binding to the TTGTTG sequence (type II MYB core).
Collapse
Affiliation(s)
- Pan Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaofeng Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xin Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Fusheng Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Junhong Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Dong Jiang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, 400712, China.
- National Citrus Engineering Research Center, Beibei, Chongqing, 400712, China.
| |
Collapse
|
15
|
Xingfei L, Shunshun P, Wenji Z, Lingli S, Qiuhua L, Ruohong C, Shili S. Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its anti-hypertensive activity. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|