1
|
Song Y, Wang J, Zhu J, Shang W, Jia W, Sun Y, He S, Yang X, Wang Z. Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony ( Paeonia ostii T. Hong et J. X. Zhang). PLANTS (BASEL, SWITZERLAND) 2024; 13:2697. [PMID: 39409567 PMCID: PMC11479246 DOI: 10.3390/plants13192697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
SERK is a marker gene for early somatic embryogenesis. We screened and functionally verified a SERK-interacting protein to gain insights into tree-peony somatic embryogenesis. Using PoSERK as bait, we identified PorbcL (i.e., the large subunit of Rubisco) as a SERK-interacting protein from a yeast two-hybrid (Y2H) library of cDNA from developing tree-peony somatic embryos. The interaction between PorbcL and PoSERK was verified by Y2H and bimolecular fluorescence complementation analyses. PorbcL encodes a 586-amino-acid acidic non-secreted hydrophobic non-transmembrane protein that is mainly localized in the chloroplast and plasma membrane. PorbcL was highly expressed in tree-peony roots and flowers and was up-regulated during zygotic embryo development. PorbcL overexpression caused the up-regulation of PoSERK (encoding somatic embryogenesis receptor-like kinase), PoAGL15 (encoding agamous-like 15), and PoGPT1 (encoding glucose-6-phosphate translocator), while it caused the down-regulation of PoLEC1 (encoding leafy cotyledon 1) in tree-peony callus. PorbcL overexpression led to increased indole-3-acetic acid (IAA) content but decreasing contents of abscisic acid (ABA) and 6-benzyladenosine (BAPR). The changes in gene expression, high IAA levels, and increased ratio of IAA to ABA, BAPR, 1-Aminocyclopropanecarboxylic acid (ACC), 5-Deoxystrigol (5DS), and brassinolide (BL) promoted embryogenesis. These results provide a foundation for establishing a tree-peony embryogenic callus system.
Collapse
Affiliation(s)
- Yinglong Song
- Postdoctoral Innovation Practice Base, Henan Institute of Science and Technology, Xinxiang 453003, China;
- Postdoctoral Workstation, Henan Bainong Seed Industry Co., Ltd., Xinxiang 453003, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Jiale Zhu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Wenqing Jia
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Yuke Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Songlin He
- Postdoctoral Innovation Practice Base, Henan Institute of Science and Technology, Xinxiang 453003, China;
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Xitian Yang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| |
Collapse
|
2
|
Liu C, Fan H, Zhang J, Wu J, Zhou M, Cao F, Tao G, Zhou X. Combating browning: mechanisms and management strategies in in vitro culture of economic woody plants. FORESTRY RESEARCH 2024; 4:e032. [PMID: 39524408 PMCID: PMC11524309 DOI: 10.48130/forres-0024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
Browning presents a significant challenge in the in vitro culture of economically important woody plants, primarily due to high levels of lignification and the accumulation of secondary metabolites. This phenomenon hampers the development of efficient regeneration and genetic transformation systems across diverse species. This review examines the internal and external factors contributing to browning, including genetic attributes, tree genotypes, physiological state of explants, explant surface sterilization, medium composition, and overall culture conditions. It explores the underlying mechanisms of browning, particularly enzymatic browning caused by the oxidation of phenolic compounds, and highlights the crucial role of redox pathways and phenolic metabolism. Conventional methods for assessing browning, such as sensory evaluation by researchers and the examination of paraffin sections stained with toluidine blue, are commonly used but introduce significant delays and potential biases. The review emphasizes the importance of accurate and timely browning assessment methods, notably the use of Fluorescein diacetate (FDA) staining, as a reliable and quantitative measure of cell viability to better evaluate browning intensity and progression. Additionally, this review explores the potential manipulation of key genes in the phenylpropanoid pathway to lower phenolic biosynthesis. Advanced strategies, such as regenerative gene manipulation and natural product encapsulation, are also discussed for their potential to improve regeneration outcomes. By integrating recent advancements in molecular biology and tissue culture techniques, this review offers novel insights and potential solutions for mitigating browning, thereby enhancing the regeneration capacities of woody plants. This comprehensive approach addresses the mechanistic bases of browning and underscores the importance of optimizing cultural practices and genetic strategies to overcome this challenge.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Hongrui Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Jianing Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Fuliang Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Guiyun Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute , Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
3
|
Lou X, Wang J, Wang G, He D, Shang W, Song Y, Wang Z, He S. Genome-Wide Analysis of the WOX Family and Its Expression Pattern in Root Development of Paeonia ostii. Int J Mol Sci 2024; 25:7668. [PMID: 39062910 PMCID: PMC11277081 DOI: 10.3390/ijms25147668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a woody plant with high ornamental, medicinal, and oil values. However, its low rooting rate and poor rooting quality are bottleneck issues in the micropropagation of P. ostii. The WUSCHEL-related homeobox (WOX) family plays a crucial role in root development. In this study, based on the screening of the genome and root transcriptome database, we identified ten WOX members in P. ostii. Phylogenetic analysis revealed that the ten PoWOX proteins clustered into three major clades, the WUS, intermediate, and ancient clade, respectively. The conserved motifs and tertiary structures of PoWOX proteins located in the same clade exhibited higher similarity. The analysis of cis-regulatory elements in the promoter indicated that PoWOX genes are involved in plant growth and development, phytohormones, and stress responses. The expression analysis revealed that PoWOX genes are expressed in distinct tissues. PoWOX4, PoWOX5, PoWOX11, and PoWOX13b are preferentially expressed in roots at the early stage of root primordium formation, suggesting their role in the initiation and development of roots. These results will provide a comprehensive reference for the evolution and potential function of the WOX family and offer guidance for further study on the root development of tree peony.
Collapse
Affiliation(s)
- Xueyuan Lou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China;
| | - Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Dan He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| |
Collapse
|
4
|
Wang J, Song Y, Wang Z, Shi L, Yu S, Xu Y, Wang G, He D, Jiang L, Shang W, He S. RNA Sequencing Analysis and Verification of Paeonia ostii 'Fengdan' CuZn Superoxide Dismutase ( PoSOD) Genes in Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:421. [PMID: 38337954 PMCID: PMC10856844 DOI: 10.3390/plants13030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Tree peony (Paeonia suffruticosa) is a significant medicinal plant. However, the low rooting number is a bottleneck problem in the micropropagation protocols of P. ostii 'Fengdan'. The activity of superoxide dismutase (SOD) is closely related to root development. But research on the SOD gene's impact on rooting is still lacking. In this study, RNA sequencing (RNA-seq) was used to analyze the four crucial stages of root development in P. ostii 'Fengdan' seedlings, including the early root primordium formation stage (Gmfq), root primordium formation stage (Gmf), root protrusion stage (Gtq), and root outgrowth stage (Gzc). A total of 141.77 GB of data were obtained; 71,718, 29,804, and 24,712 differentially expressed genes (DEGs) were identified in the comparison groups of Gmfq vs. Gmf, Gmf vs. Gtq, and Gtq vs. Gzc, respectively. Among the 20 most highly expressed DEGs in the three comparison groups, only the CuZnSOD gene (SUB13202229, PoSOD) was found to be significantly expressed in Gtq vs. Gzc. The overexpression of PoSOD increased the number of adventitious roots and promoted the activities of peroxidase (POD) and SOD in P. ostii 'Fengdan'. The gene ADVENTITIOUS ROOTING RELATED OXYGENASE1 (PoARRO-1), which is closely associated with the development of adventitious roots, was also significantly upregulated in overexpressing PoSOD plants. Furthermore, PoSOD interacted with PoARRO-1 in yeast two-hybrid (Y2H) and biomolecular luminescence complementation (BiFC) assays. In conclusion, PoSOD could interact with PoARRO-1 and enhance the root development of tube plantlets in P. ostii 'Fengdan'. This study will help us to preliminarily understand the molecular mechanism of adventitious root formation and improve the root quality of tree peony and other medicinal plants.
Collapse
Affiliation(s)
- Jiange Wang
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Yinglong Song
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Zheng Wang
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Liyun Shi
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Shuiyan Yu
- Shanghai Chen Shan Botanical Garden, Shanghai 201602, China;
| | - Yufeng Xu
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Guiqing Wang
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Dan He
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Liwei Jiang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China;
| | - Wenqian Shang
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
| | - Songlin He
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (Y.S.); (Z.W.); (L.S.); (Y.X.); (G.W.); (D.H.)
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
5
|
Zhang W, Zhang H, Zhao G, Wang N, Guo L, Hou X. Molecular mechanism of somatic embryogenesis in paeonia ostii 'Fengdan' based on transcriptome analysis combined histomorphological observation and metabolite determination. BMC Genomics 2023; 24:665. [PMID: 37924006 PMCID: PMC10625268 DOI: 10.1186/s12864-023-09730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Tree peony (Paeonia sect. Moutan DC.) is a famous flower native to China with high ornamental, medicinal, and oil value. However, the low regeneration rate of callus is one of the main constraints for the establishment of a genetic transformation system in tree peony. By histomorphological observation, transcriptomic analysis and metabolite determination, we investigated the molecular mechanism of somatic embryogenesis after the establishment of a culture system and the induction of somatic embryo(SE) formation. RESULTS We found that SE formation was successfully induced when cotyledons were used as explants. A total of 3185 differentially expressed genes were screened by comparative transcriptomic analysis of embryogenic callus (EC), SE, and non-embryogenic callus (NEC). Compared to NEC, the auxin synthesis-related genes GH3.6 and PCO2 were up-regulated, whereas cytokinin dehydrogenase (CKX6) and CYP450 family genes were down-regulated in somatic embryogenesis. In SE, the auxin content was significantly higher than the cytokinin content. The methyltransferase-related gene S-adenosylmethionine synthase (SAMS) and the flavonoid biosynthesis-related gene (ANS and F3'5'H) were down-regulated in somatic embryogenesis. The determination of flavonoids showed that rhoifolin and hyperoside had the highest content in SE. The results of transcriptome analysis were consistent with the relative expression of 8 candidate genes by quantitative polymerase chain reaction analysis. CONCLUSION The results revealed that auxin and cytokinin may play a key role in 'Fengdan' somatic embryogenesis. The genes related to somatic embryogenesis were revealed, which has partly elucidated the molecular mechanism of somatic embryogenesis in 'Fengdan'.
Collapse
Affiliation(s)
- Wanqing Zhang
- Agricultural college, Henan University of Science and Technology, 471023, Luoyang, Henan, China
| | - Hongxiao Zhang
- Agricultural college, Henan University of Science and Technology, 471023, Luoyang, Henan, China
| | - Guodong Zhao
- National Peony Gene Bank, 471011, Luoyang, Henan, China
| | - Na Wang
- Agricultural college, Henan University of Science and Technology, 471023, Luoyang, Henan, China
| | - Lili Guo
- Agricultural college, Henan University of Science and Technology, 471023, Luoyang, Henan, China
| | - Xiaogai Hou
- Agricultural college, Henan University of Science and Technology, 471023, Luoyang, Henan, China.
| |
Collapse
|
6
|
Xu Y, Shang W, Li L, Song Y, Wang G, Shi L, Shen Y, Sun Y, He S, Wang Z. Transcriptome Landscape Analyses of the Regulatory Network for Zygotic Embryo Development in Paeonia ostii. Int J Mol Sci 2023; 24:10715. [PMID: 37445891 DOI: 10.3390/ijms241310715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Paeonia ostii is a worldwide ornamental flower and an emerging oil crop. Zyotic embryogenesis is a critical process during seed development, and it can provide a basis for improving the efficiency of somatic embryogenesis (SE). In this study, transcriptome sequencing of embryo development was performed to investigate gene expression profiling in P. ostii and identified Differentially expressed genes (DEGs) related to transcription factors, plant hormones, and antioxidant enzymes. The results indicated that IAA (Indole-3-acetic acid), GA (Gibberellin), BR (Brassinosteroid) and ETH (Ethylene) were beneficial to early embryonic morphogenesis, while CTK (Cytokinin) and ABA (Abscisic Acid) promoted embryo morphogenesis and maturation. The antioxidant enzymes' activity was the highest in early embryos and an important participant in embryo formation. The high expression of the genes encoding fatty acid desaturase was beneficial to fast oil accumulation. Representative DEGs were selected and validated using qRT-PCR. Protein-protein interaction network (PPI) was predicted, and six central node proteins, including AUX1, PIN1, ARF6, LAX3, ABCB19, PIF3, and PIF4, were screened. Our results provided new insights into the formation of embryo development and even somatic embryo development in tree peonies.
Collapse
Affiliation(s)
- Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Linda Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuke Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
- Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Liu X, Zhai Y, Liu J, Xue J, Markovic T, Wang S, Zhang X. Comparative transcriptome sequencing analysis to postulate the scheme of regulated leaf coloration in Perilla frutescens. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01342-8. [PMID: 37155022 PMCID: PMC10165580 DOI: 10.1007/s11103-023-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
Perilla as herb, ornamental, oil and edible plant is widely used in East Asia. Until now, the mechanism of regulated leaf coloration is still unclear. In this study, four different kinds of leaf colors were used to measure pigment contents and do transcriptome sequence to postulate the mechanism of leaf coloration. The measurements of chlorophyll, carotenoid, flavonoid, and anthocyanin showed that higher contents of all the aforementioned four pigments were in full purple leaf 'M357', and they may be determined front and back leaf color formation with purple. Meanwhile, the content of anthocyanin was controlled back leaf coloration. The chromatic aberration analysis and correlative analysis between different pigments and L*a*b* values analysis also suggested front and back leaf color change was correlated with the above four pigments. The genes involved in leaf coloration were identified through transcriptome sequence. The expression levels of chlorophyll synthesis and degradation related genes, carotenoid synthesis related genes and anthocyanin synthesis genes showed up-/down-regulated expression in different color leaves and were consistent of accumulation of these pigments. It was suggested that they were the candidate genes regulated perilla leaf color formation, and genes including F3'H, F3H, F3',5'H, DFR, and ANS are probably important for regulating both front and back leaf purple formation. Transcription factors involved in anthocyanin accumulation, and regulating leaf coloration were also identified. Finally, the probable scheme of regulated both full green and full purple leaf coloration and back leaf coloration was postulated.
Collapse
Affiliation(s)
- Xiaoning Liu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanning Zhai
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingyu Liu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tatjana Markovic
- Nstitute for Medicinal Plants Research "Dr Josif Pancic", 11000, Belgrade, Serbia
| | - Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Dong Y, Qin Q, Zhong G, Mu Z, Cai Y, Wang X, Xie H, Zhang S. Integrated transcriptomic and metabolomic analyses revealed the molecular mechanism of terpenoid formation for salicylic acid resistance in Pulsatilla chinensis callus. FRONTIERS IN PLANT SCIENCE 2023; 13:1054317. [PMID: 36684800 PMCID: PMC9854134 DOI: 10.3389/fpls.2022.1054317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
As a kind of traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel is well known for its anti-inflammation and anti-cancer activities, which are attributed to its active components including total saponins and monomers. To clarify the synthesis and metabolism mechanisms of class components in callus terpenes of P. chinensis, a certain concentration of salicylic acid (SA) hormone elicitor was added to the callus before being analysed by transcriptomic and metabolomic techniques. Results showed that the content of Pulsatilla saponin B4 in the callus suspension culture was significantly increased up to 1.99% with the addition of SA. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the differentially expressed genes were mainly enriched in 122 metabolic pathways, such as terpenoid metabolism-related pathways: terpenoid skeleton synthesis pathway, monoterpenoid biosynthesis pathways, diterpenoid biosynthesis pathways, and ubiquinone and other terpenoid-quinone biosynthesis pathways. A total of 31 differentially accumulated metabolites were obtained from four differential groups. Amongst 21 kinds of known chemical components in P. chinensis, deoxyloganic acid was the only monoterpenoid; the others are triterpenoids. In summary, this study found that SA elicitors can affect the metabolic changes of terpenoids in P. chinensis callus, which provided a basis for analysing the genetic regulation of terpenoid components of leucons.
Collapse
Affiliation(s)
- Yanjing Dong
- Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Qian Qin
- Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Guoyue Zhong
- Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Zejing Mu
- Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Yating Cai
- Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Xiaoyun Wang
- Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Huan Xie
- Pharmacy school of Nanchang Medical College, Nanchang, China
| | - Shouwen Zhang
- Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Jiangxi, China
| |
Collapse
|
9
|
Duan S, Xin R, Guan S, Li X, Fei R, Cheng W, Pan Q, Sun X. Optimization of callus induction and proliferation of Paeonia lactiflora Pall. and Agrobacterium-mediated genetic transformation. FRONTIERS IN PLANT SCIENCE 2022; 13:996690. [PMID: 36589115 PMCID: PMC9800923 DOI: 10.3389/fpls.2022.996690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Paeonia lactiflora Pall. is an important ornamental plant with high economic and medicinal value, which has considerable development prospects worldwide. The lack of efficient tissue culture techniques and genetic transformation systems has become a master obstacle for P. lactiflora research. The purpose of the present study focuses on obtaining an efficient and stable genetic transformation method using callus as the receptor and exploring an efficient protocol for callus induction and proliferation associated with P. lactiflora. Callus induction and proliferation were performed using MS medium with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1-Naphthaleneacetic acid (NAA), 6-Benzylaminopurine (6-BA) and thidiazuron (TDZ). The sensitivity of callus to kanamycin and cefotaxime was determined. Several parameters such as Agrobacterium cell density, infection time and co-culture duration were studied to optimize transformation efficiency. Agrobacterium strains EHA105 and pBI121 binary vector harboring the β-glucuronidase (GUS) gene were used for transformation. Expression of the GUS reporter gene was detected by GUS assay, polymerase chain reaction (PCR) and Quantitative Real-time PCR (RT-qPCR). The MS medium containing 1.0 mg·L-1 NAA, 0.5 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was optimal for callus induction and MS medium containing 0.5 mg·L-1 NAA, 1.0 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was the best for callus proliferation. The concentrations of kanamycin and cefotaxime used for screening positive callus were 125 mg·L-1 and 200 mg·L-1, respectively. Among various combinations analyzed, the best transformation result was obtained via the 25 min of infection of Agrobacterium at 0.6 OD600 and 3 d of co-culture. Overall, this study provided technical support and theoretical guidance for improving the callus induction and proliferation efficiency and the study of gene function in P. lactiflora.
Collapse
Affiliation(s)
- Siyang Duan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xueting Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Riwen Fei
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Wan Cheng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Qing Pan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Sun X, Wang Y, Yang T, Wang X, Wang H, Wang D, Liu H, Wang X, Zhang G, Wei Z. Establishment of an efficient regeneration and Agrobacterium transformation system in mature embryos of calla lily ( Zantedeschia spp.). Front Genet 2022; 13:1085694. [PMID: 36561313 PMCID: PMC9763309 DOI: 10.3389/fgene.2022.1085694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Calla lily (Zantedeschia spp.) have great aesthetic value due to their spathe-like appearance and richness of coloration. However, embryonic callus regeneration is absent from its current regeneration mechanism. As a result, constructing an adequate and stable genetic transformation system is hampered, severely hindering breeding efforts. In this research, the callus induction effectiveness of calla lily seed embryos of various maturities was evaluated. The findings indicated that mature seed embryos were more suitable for in vitro regeneration. Using orthogonal design experiments, the primary elements influencing in vitro regeneration, such as plant growth regulators, genotypes, and nanoscale materials, which was emergent uses for in vitro regeneration, were investigated. The findings indicated that MS supplemented with 6-BA 2 mg/L and NAA 0.1 mg/L was the optimal medium for callus induction (CIM); the germination medium (GM) was MS supplemented with 6-BA 2 mg/L NAA 0.2 mg/L and 1 mg/L CNTs, and the rooting medium (RM) was MS supplemented with 6-BA 2 mg/L NAA 0.7 mg/L and 2 mg/L CNTs. This allowed us to verify, in principle, that the Agrobacterium tumefaciens-mediated genetic transformation system operates under optimal circumstances using the GUS reporter gene. Here, we developed a seed embryo-based genetic transformation regeneration system, which set the stage for future attempts to create new calla lily varieties.
Collapse
Affiliation(s)
- Xuan Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Horticulture, China Agricultural University, Beijing, China
| | - Tuo Yang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xue Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Huanxiao Wang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Di Wang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongyan Liu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xian Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guojun Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China,Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, China,*Correspondence: Guojun Zhang, ; Zunzheng Wei,
| | - Zunzheng Wei
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,*Correspondence: Guojun Zhang, ; Zunzheng Wei,
| |
Collapse
|
11
|
Zhu X, Zhu H, Ji W, Hong E, Lu Z, Li B, Chen X. Callus induction and transcriptomic analysis of in vitro embryos at different developmental stages of peony. FRONTIERS IN PLANT SCIENCE 2022; 13:1046881. [PMID: 36407591 PMCID: PMC9669619 DOI: 10.3389/fpls.2022.1046881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The efficient induction of peony embryogenic callus is of great significance to the improvement and establishment of its regeneration technology system. In this study, the in vitro embryos of 'Fengdanbai' at different developmental stages were selected as explants, the effects of different concentrations and types of plant growth regulator combinations on the induction and proliferation of embryonic callus at different developmental stages were investigated, and comparative transcriptome analysis of callus with different differentiation potentials were performed to explore the molecular mechanisms affecting callus differentiation. The results showed that the germination rate of 90d seed embryo was the best, which was 94.17%; the 70d and 80d cotyledon callus induction effect was the best, both reaching 100%, but the 80d callus proliferation rate was higher, the proliferation rate reached 5.31, and the optimal induction medium was MS+0.1 mg·L-1NAA+0.3 mg·L-1TDZ+3 mg·L-12,4-D, the callus proliferation multiple was 4.77. Based on the comparative transcriptomic analysis, we identified 3470 differentially expressed genes (DEGs) in the callus with high differentiation rate and low differentiation rate, including 1767 up-regulated genes and 1703 down-regulated genes. Pathway enrichment analysis showed that the "Phenylpropanoid biosynthesis" metabolic pathway was significantly enriched, which is associated with promoting further development of callus shoots and roots. This study can provide reference for genetic improvement and the improvement of regeneration technology system of peony.
Collapse
Affiliation(s)
- Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
| | - Huijun Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Wen Ji
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Erman Hong
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Zeyun Lu
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Bole Li
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Xia Chen
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| |
Collapse
|
12
|
Gu H, Ding W, Shi T, Ouyang Q, Yang X, Yue Y, Wang L. Integrated transcriptome and endogenous hormone analysis provides new insights into callus proliferation in Osmanthus fragrans. Sci Rep 2022; 12:7609. [PMID: 35534621 PMCID: PMC9085794 DOI: 10.1038/s41598-022-11801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Osmanthus fragrans is an important evergreen species with both medicinal and ornamental value in China. Given the low efficiency of callus proliferation and the difficulty of adventitious bud differentiation, tissue culture and regeneration systems have not been successfully established for this species. To understand the mechanism of callus proliferation, transcriptome sequencing and endogenous hormone content determination were performed from the initial growth stages to the early stages of senescence on O. fragrans calli. In total, 47,340 genes were identified by transcriptome sequencing, including 1798 previously unidentified genes specifically involved in callus development. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes (DEGs) was significantly enriched in plant hormone signal transduction pathways. Furthermore, our results from the orthogonal projections to latent structures discrimination analysis (OPLS-DA) of six typical hormones in five development stages of O. fragrans calli showed jasmonic acid (JA) could play important role in the initial stages of calli growth, whereas JA and auxin (IAA) were dominant in the early stages of calli senescence. Based on the weighted gene co-expression network analysis, OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b were selected as hub genes from the modules with the significant relevance to JA and IAA respectively. The gene regulation network and quantitative real-time PCR implied that during the initial stages of callus growth, the transcription factors (TFs) OfERF4 and OfMYC2a could down-regulate the expression of hub genes OfSRC2 and OfPP2CD5, resulting in decreased JA content and rapid callus growth; during the late stage of callus growth, the TFs OfERF4, OfMYC2a and OfTGA21c, OfHSFA1 could positively regulate the expression of hub genes OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b, respectively, leading to increased JA and IAA contents and inducing the senescence of O. fragrans calli. Hopefully, our results could provide new insights into the molecular mechanism of the proliferation of O. fragrans calli.
Collapse
|
13
|
A Preliminary Investigation on the Functional Validation and Interactions of PoWOX Genes in Peony (Paeonia ostii). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
As a woody plant, peony (Paeonia suffruticosa) has a long growth cycle and inefficient traditional breeding techniques. There is an urgent need in peony molecular breeding to establish an efficient and stable in vitro regeneration and genetic transformation system, in order to overcome the recalcitrant characteristics of peony regeneration and shorten the breeding cycle. The development of plant somatic embryos is an important way to establish an efficient and stable in vitro regeneration and genetic transformation system. Plant-specific WUSCHEL-related homeobox (WOX) family transcription factors play important roles in plant development, from embryogenesis to lateral organ development. Therefore, in this research, four PoWOX genes of “Fengdan” (Paeonia ostii) were cloned from the peony genome and transcriptome data of preliminary peony somatic embryos. The sequence characteristics and evolutionary relationships of the PoWOX genes were analyzed. It was demonstrated that the four PoWOX genes, named PoWOX1, PoWOX4, PoWOX11, and PoWOX13, belonged to three branches of the WOX gene family. Their expression patterns were analyzed at different stages of development and in different tissues of peony seedlings. The expression localization of the PoWOX genes was determined to be the nucleus via subcellular localization assay. Finally, the interaction protein of the PoWOX genes was identified via yeast two-hybrid assay combined with bimolecular fluorescence complementation assay. It was shown that PoWOX1 and PoWOX13 proteins could form homodimers by themselves, and PoWOX11 interacted with PoWOX1 and PoWOX13 to form heterodimers. Peony stem cell activity may be regulated from PoWOX1 and PoWOX13 by forming dimers and moving to peony stem cells through plasmodesmata. Additionally, PoWOX11–PoWOX1 and PoWOX11–PoWOX13 may play important regulatory functions in promoting the proliferation of stem cells and maintaining the homeostasis of stem cells in the SAM of peony stems. Exploring the critical genes and regulatory factors in the development of the peony somatic embryo is beneficial not only to understand the molecular and regulatory mechanisms of peony somatic embryo development but also to achieve directed breeding and improvements in efficiency through genetic engineering breeding technology to accelerate the fundamental process of molecular breeding in peony.
Collapse
|
14
|
Yang S, Liu X, He J, Liu M. Insight into Seasonal Change of Phytochemicals, Antioxidant, and Anti-Aging Activities of Root Bark of Paeonia suffruticosa (Cortex Moutan) Combined with Multivariate Statistical Analysis. Molecules 2021; 26:6102. [PMID: 34684685 PMCID: PMC8538470 DOI: 10.3390/molecules26206102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Chemical compositions, antioxidants, and anti-aging activities of Cortex Moutan (CM), from different collection periods and different producing areas, were measured and compared in order to obtain excellent CM extracts. The bioactivities of CM extracts were examined by an in vitro antioxidant method and a UVB irradiated human dermal fibroblast (HDF) model. Phytochemical properties were obtained from ultra-fast liquid chromatography quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF-MS) prior to the multivariate statistical analysis. As for the results, the extracts of Heze CM (HZCM) and Luoyang CM (LYCM) collected in June had better in vitro antioxidant activities, significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduced the content of malondialdehyde (MDA), compared to other CM extracts. HZCM and LYCM extracts could upregulate the relative expression of SOD and GSH-Px mRNA. The extract of HZCM collected in June could significantly repress the production of matrix metalloproteinase 1 (MMP-1) and improve the production of procollagen type I (PCOL)-I in UVB irradiated HDF. In total, 50 compounds, including 17 monoterpenoids, 19 flavonoids, 13 phenols, and 1 amino acid were identified or tentatively identified in the CM extracts. Gallic acid, p-hydroxybenzoic acid, oxypaeoniflorin, paeoniflorin, 1,2,3,4,6-O-pentagalloyl glucose, and paeonol were predominant compounds in the CM extracts. Taken together, CM collected from April to September had better antioxidant and anti-aging effects for external usage.
Collapse
Affiliation(s)
- Shicong Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Xiaoyan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Jingyu He
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
15
|
Chavan JJ, Kshirsagar PR, Jadhav SG, Nalavade VM, Gurme ST, Pai SR. Elicitor-mediated enhancement of biomass, polyphenols, mangiferin production and antioxidant activities in callus cultures of Salacia chinensis L. 3 Biotech 2021; 11:285. [PMID: 34094804 PMCID: PMC8140032 DOI: 10.1007/s13205-021-02836-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
The present investigation aimed to improve callus biomass, polyphenolic content, biosynthesis of mangiferin and biological potential following application of different elicitor treatments for medicinally important Salacia chinensis L. The leaf-derived callus cultures were established on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D: 2.0 mg/l) and 6-benzylaminopurine (BAP: 1.5 mg/l). These cultures were treated with different elicitors viz. jasmonic acid (JA), methyl jasmonate (MeJA) and yeast extracts (YE). The highest calli biomass (five-fold increase within 4 weeks) was achieved when callus was treated with JA (75 µM). The callus obtained on MS medium supplemented with 2,4-D (2.0 mg/l), BAP (1.5 mg/l) and treated with JA (75 µM) displayed augmented values for total phenolics, flavonoids and mangiferin contents. Besides, same treatment elicits the calli for antioxidant properties as evaluated by 2,2-diphenyl-2-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) and metal chelating assays. This is the first report on the elicitation study in genus Salacia and, therefore, the discoveries suggested that, S. chinensis calli might be a perfect source for large-scale production of industrially important secondary metabolites. Concurrently data provide accumulated information demonstrating its prominent antioxidant effect revealing its potential without disturbing natural resources.
Collapse
Affiliation(s)
- Jaykumar J. Chavan
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Satara, 415 001 India
- Department of Biotechnology, Yashavantrao Chavan Institute of Science (Autonomous), Satara, 415 001 India
| | | | - Sharad G. Jadhav
- Department of Biotechnology, Yashavantrao Chavan Institute of Science (Autonomous), Satara, 415 001 India
| | - Virdhaval M. Nalavade
- Department of Biotechnology, Yashavantrao Chavan Institute of Science (Autonomous), Satara, 415 001 India
| | - Swati T. Gurme
- Department of Biotechnology, Yashavantrao Chavan Institute of Science (Autonomous), Satara, 415 001 India
| | - Sandeep R. Pai
- Department of Botany, Dada Patil Mahavidyalaya, Karjat, 414402 India
| |
Collapse
|
16
|
Secure and Sustainable Sourcing of Plant Tissues for the Exhaustive Exploration of Their Chemodiversity. Molecules 2020; 25:molecules25245992. [PMID: 33352821 PMCID: PMC7766005 DOI: 10.3390/molecules25245992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
The main challenge of plant chemical diversity exploration is how to develop tools to study exhaustively plant tissues. Their sustainable sourcing is a limitation as bioguided strategies and dereplication need quite large amounts of plant material. We examine if alternative solutions could overcome these difficulties by obtaining a secure, sustainable, and scalable source of tissues able to biosynthesize an array of metabolites. As this approach would be as independent of the botanical origin as possible, we chose eight plant species from different families. We applied a four steps culture establishment procedure, monitoring targeted compounds through mass spectrometry-based analytical methods. We also characterized the capacities of leaf explants in culture to produce diverse secondary metabolites. In vitro cultures were successfully established for six species with leaf explants still producing a diversity of compounds after the culture establishment procedure. Furthermore, explants from leaves of axenic plantlets were also analyzed. The detection of marker compounds was confirmed after six days in culture for all tested species. Our results show that the first stage of this approach aiming at easing exploration of plant chemodiversity was completed, and leaf tissues could offer an interesting alternative providing a constant source of natural compounds.
Collapse
|
17
|
Wang S, Ren X, Xue J, Xue Y, Cheng X, Hou X, Zhang X. Molecular characterization and expression analysis of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE gene family in Paeonia suffruticosa. PLANT CELL REPORTS 2020; 39:1425-1441. [PMID: 32737566 DOI: 10.1007/s00299-020-02573-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 05/25/2023]
Abstract
A total of 16 PsSPL genes were identified in tree peony. PsSPLs potentially regulated flowering time, lateral bud and seed development, and the juvenile-to-adult phase transition. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors are important for plant growth and development. Here, we report the identification of 16 full-length PsSPLs in tree peony (Peaonia suffruticosa Andr.) and 9 PsSPLs that have miR156 target sites. Phylogenetic analysis of the relationship of SPLs in P. suffruticosa and Arabidopsis suggested that they can be classified into six groups, and PsSPLs were highly correlated with Arabidopsis SPLs counterparts in the same group. Cis-element of promoter region analysis suggested that PsSPL genes play roles in physiological processes and developmental events. Expression analysis indicated that most PsSPL genes exhibited high expression levels in the tissues and organs examined here. The increasing expression levels of PsSPL1, PsSPL2, PsSPL8, PsSPL9, PsSPL12, and PsSPL16, and decreasing expression levels of PsSPL1A and PsSPL1B in buds over time suggested that they were probably regulated by the juvenile-to-adult phase transition. In addition, the expression profiles of PsSPL genes in different developmental buds and seeds suggested that PsSPL2, PsSPL3, PsSPL9, PsSPL10, PsSPL13, and PsSPL13A were important genes for regulating the flowering time of the tree peony; PsSPL2 and PsSPL8 might play a role in suppressing lateral bud development, and PsSPL2, PsSPL13, and PsSPL14 positively controlled grain size and number, and pod branching. These results provide a foundation for future functional analysis of PsSPL genes in tree peony growth and development.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xiuxia Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yuqian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xiaodan Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
18
|
Wang S, Xue J, Zhang S, Zheng S, Xue Y, Xu D, Zhang X. Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:1-12. [PMID: 33092723 DOI: 10.1016/j.plaphy.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The colorful petals of tree peony (Paeonia suffruticosa Andrews) are widely used as a source of additives in food, fragrances, and cosmetics. However, the nutritional composition of peony petals is undetermined, thereby limiting utility and product development. In this work, fresh petals of 15 traditional Chinese tree peony cultivars were selected to analyze the composition of soluble sugars, starch, and soluble protein. Extracted fatty acids (FAs) and flavonoids from petals were characterized by GC-MS and UPLC-triple-TOF-MS, respectively. The oxidative stress resistance (generated by paraquat) effects of petal extracts of three cultivars were also investigated in the model organism Caenorhabditis elegans. Our results showed that the petals were highly enriched in soluble sugars. 11 FAs were found in tree peony petals, and their compositions were similar to that of tree peony seeds. A total of 56 flavonoids were detected in tree peony petals, 28 of which were reported for the first time in tree peony petals, indicating that UPLC-triple-TOF-MS can improve the identification efficiency of flavonoids. Further analysis of tree peony petal metabolites indicated that anthocyanidin and flavonol composition might be used as specific chemotaxonomic biomarkers for cultivar classification. Flavonoids, linoleic acid, and α-linolenic acid (ALA) in petals might provide antioxidant activity. 150 mg/L of petal extracts of all three tested cultivars increased the lifespan of C. elegans. It was suggested that the petal extracts possessed anti-aging effects and oxidative stress resistance. These results highlight that tree peony petals can serve as natural antioxidant food resources in the future.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shuangfeng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shuning Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yuqian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Donghui Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|