1
|
Guo W, Lu Y, Du S, Li Q, Zou X, Zhang Z, Sui L. Endophytic Colonization of Beauveria bassiana Enhances Drought Stress Tolerance in Tomato via "Water Spender" Pathway. Int J Mol Sci 2024; 25:11949. [PMID: 39596021 PMCID: PMC11594164 DOI: 10.3390/ijms252211949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Drought stress is one of the most important climate-related factors affecting crop production. Tomatoes (Solanum lycopersicum L.) are economically important crops which are highly sensitive to drought. The entomopathogenic fungus Beauveria bassiana, a widely used biological insecticide, can form symbiotic relationships with plants via endophytic colonization, increasing plant biomass and the ability to resist biotic stress. Under simulated drought stress conditions, the biomass of tomato seedlings such as plant height, root length, stem diameter, fresh weight, and relative water content, as well as the density and size of stomata in tomato leaves were significantly increased after B. bassiana colonization via root irrigation (p < 0.05). Meanwhile, the physicochemical properties associated with drought resistance such as peroxidase activity and proline content increased significantly (p < 0.05), while malondialdehyde reduced significantly (p < 0.05), and the expression levels of key genes related to stomatal development and drought tolerance pathways increased significantly (p < 0.05). These results indicate that the colonization of B. bassiana enhances the water absorption capacity of tomato seedlings and the rate of transpiration significantly and increases drought tolerance in tomato via the "water spender" pathway, which provides a new strategy for improving crop resistance to drought stress.
Collapse
Affiliation(s)
- Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Song Du
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
- College of Agriculture, Jilin University of Agricultural Science and Technology, Jilin 132109, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (W.G.); (Y.L.); (S.D.); (Q.L.); (X.Z.)
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, China
| |
Collapse
|
2
|
Conti V, Parrotta L, Romi M, Del Duca S, Cai G. Tomato Biodiversity and Drought Tolerance: A Multilevel Review. Int J Mol Sci 2023; 24:10044. [PMID: 37373193 DOI: 10.3390/ijms241210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ongoing global climate change suggests that crops will be exposed to environmental stresses that may affect their productivity, leading to possible global food shortages. Among these stresses, drought is the most important contributor to yield loss in global agriculture. Drought stress negatively affects various physiological, genetic, biochemical, and morphological characteristics of plants. Drought also causes pollen sterility and affects flower development, resulting in reduced seed production and fruit quality. Tomato (Solanum lycopersicum L.) is one of the most economically important crops in different parts of the world, including the Mediterranean region, and it is known that drought limits crop productivity, with economic consequences. Many different tomato cultivars are currently cultivated, and they differ in terms of genetic, biochemical, and physiological traits; as such, they represent a reservoir of potential candidates for coping with drought stress. This review aims to summarize the contribution of specific physio-molecular traits to drought tolerance and how they vary among tomato cultivars. At the genetic and proteomic level, genes encoding osmotins, dehydrins, aquaporins, and MAP kinases seem to improve the drought tolerance of tomato varieties. Genes encoding ROS-scavenging enzymes and chaperone proteins are also critical. In addition, proteins involved in sucrose and CO2 metabolism may increase tolerance. At the physiological level, plants improve drought tolerance by adjusting photosynthesis, modulating ABA, and pigment levels, and altering sugar metabolism. As a result, we underline that drought tolerance depends on the interaction of several mechanisms operating at different levels. Therefore, the selection of drought-tolerant cultivars must consider all these characteristics. In addition, we underline that cultivars may exhibit distinct, albeit overlapping, multilevel responses that allow differentiation of individual cultivars. Consequently, this review highlights the importance of tomato biodiversity for an efficient response to drought and for preserving fruit quality levels.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agri-Food Industrial Research, University of Bologna, 40126 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
3
|
Saeed F, Chaudhry UK, Raza A, Charagh S, Bakhsh A, Bohra A, Ali S, Chitikineni A, Saeed Y, Visser RGF, Siddique KHM, Varshney RK. Developing future heat-resilient vegetable crops. Funct Integr Genomics 2023; 23:47. [PMID: 36692535 PMCID: PMC9873721 DOI: 10.1007/s10142-023-00967-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia
| | - Sumbul Ali
- Akhuwat Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan
| | - Annapurna Chitikineni
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, 15, Wageningen, The Netherlands
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6001, Australia
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia.
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
4
|
Transcriptomic Analysis Provides Novel Insights into the Heat Stress-Induced Response in Codonopsis tangshen. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010168. [PMID: 36676120 PMCID: PMC9867074 DOI: 10.3390/life13010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Codonopsis tangshen Oliv (C. tangshen) is a valuable traditional Chinese medicinal herb with tremendous health benefits. However, the growth and development of C. tangshen are seriously affected by high temperatures. Therefore, understanding the molecular responses of C. tangshen to high-temperature stress is imperative to improve its thermotolerance. Here, RNA-Seq analysis was performed to investigate the genome-wide transcriptional changes in C. tangshen in response to short-term heat stress. Heat stress significantly damages membrane stability and chlorophyll biosynthesis in C. tangshen, as evidenced by pronounced malonaldehyde (MDA), electrolyte leakage (EL), and reduced chlorophyll content. Transcriptome analysis showed that 2691 differentially expressed genes (DEGs) were identified, including 1809 upregulated and 882 downregulated. Functional annotations revealed that the DEGs were mainly related to heat shock proteins (HSPs), ROS-scavenging enzymes, calcium-dependent protein kinases (CDPK), HSP-HSP network, hormone signaling transduction pathway, and transcription factors such as bHLHs, bZIPs, MYBs, WRKYs, and NACs. These heat-responsive candidate genes and TFs could significantly regulate heat stress tolerance in C. tangshen. Overall, this study could provide new insights for understanding the underlying molecular mechanisms of thermotolerance in C. tangshen.
Collapse
|
5
|
Chaudhary S, Devi P, HanumanthaRao B, Jha UC, Sharma KD, Prasad PVV, Kumar S, Siddique KHM, Nayyar H. Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:878498. [PMID: 35837452 PMCID: PMC9274134 DOI: 10.3389/fpls.2022.878498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity and form an important part of the healthy diet of the human being. Besides providing basic nutrition, they have great potential for boosting human health. The balanced consumption of vegetables is highly recommended for supplementing the human body with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds. However, the production and quality of fresh vegetables are influenced directly or indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits and harvestable yield are the most common effects of HS among vegetable crops. Heat-induced morphological damage, such as poor vegetative growth, leaf tip burning, and rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion, and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation unprofitable. Further studies to trace down the possible physiological and biochemical effects associated with crop failure reveal that the key factors include membrane damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues, which may be the key factors governing heat-induced crop failure. The reproductive stage of plants has extensively been studied for HS-induced abnormalities. Plant reproduction is more sensitive to HS than the vegetative stages, and affects various reproductive processes like pollen germination, pollen load, pollen tube growth, stigma receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound and robust adaptation and mitigation strategies are needed to overcome the adverse impacts of HS at the morphological, physiological, and biochemical levels to ensure the productivity and quality of vegetable crops. Physiological traits such as the stay-green trait, canopy temperature depression, cell membrane thermostability, chlorophyll fluorescence, relative water content, increased reproductive fertility, fruit numbers, and fruit size are important for developing better yielding heat-tolerant varieties/cultivars. Moreover, various molecular approaches such as omics, molecular breeding, and transgenics, have been proved to be useful in enhancing/incorporating tolerance and can be potential tools for developing heat-tolerant varieties/cultivars. Further, these approaches will provide insights into the physiological and molecular mechanisms that govern thermotolerance and pave the way for engineering "designer" vegetable crops for better health and nutritional security. Besides these approaches, agronomic methods are also important for adaptation, escape and mitigation of HS protect and improve yields.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Bindumadhava HanumanthaRao
- World Vegetable Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Hyderabad, India
- Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, India
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kadambot H. M. Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
SlSPS, a Sucrose Phosphate Synthase Gene, Mediates Plant Growth and Thermotolerance in Tomato. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Heat stress (HS) has been considered as a severe threat to crop yields in recent years. Sucrose, as a major product of photosynthesis, plays an important role in plant growth and stress response. Sucrose phosphate synthase (SPS) is a key rate-limiting enzyme in the sucrose synthesis pathway in plants. However, its molecular mechanism and signaling pathway remain unclear. In this study, we identified a novel SPS gene (SlSPS) in tomato and generated over-expression and knock-out of SlSPS gene transgenic tomato plants to investigate its biological functions related to the growth and thermotolerance of tomato. Over-expression of SlSPS gene increased the growth and biomass of transgenic tomato plants, such as fresh weight, dry weight, plant height, fruit weight and root length. In contrast, knock-out of SlSPS gene decreased the growth and biomass of transgenic tomato plants. Under heat stress, the survival rates were positively correlated with the expression level of SlSPS gene in different tomato varieties. Furthermore, SlSPS-overexpressing tomato plants showed higher SPS activity and sucrose content and heat stress resistant phenotypes. By comparison, knock-out tomato plants showed lower SPS activity and sucrose content and susceptible to heat stress. The determination of several reference values of oxidative stress parameters were also consistent with their heat resistance of these transgenic plants. In summary, SlSPS gene could positively mediate the growth and thermotolerance in tomato plants.
Collapse
|
7
|
Conti V, Cantini C, Romi M, Cesare MM, Parrotta L, Del Duca S, Cai G. Distinct Tomato Cultivars Are Characterized by a Differential Pattern of Biochemical Responses to Drought Stress. Int J Mol Sci 2022; 23:5412. [PMID: 35628226 PMCID: PMC9141555 DOI: 10.3390/ijms23105412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Future climate scenarios suggest that crop plants will experience environmental changes capable of affecting their productivity. Among the most harmful environmental stresses is drought, defined as a total or partial lack of water availability. It is essential to study and understand both the damage caused by drought on crop plants and the mechanisms implemented to tolerate the stress. In this study, we focused on four cultivars of tomato, an economically important crop in the Mediterranean basin. We investigated the biochemical mechanisms of plant defense against drought by focusing on proteins specifically involved in this stress, such as osmotin, dehydrin, and aquaporin, and on proteins involved in the general stress response, such as HSP70 and cyclophilins. Since sugars are also known to act as osmoprotectants in plant cells, proteins involved in sugar metabolism (such as RuBisCO and sucrose synthase) were also analyzed. The results show crucial differences in biochemical behavior among the selected cultivars and highlight that the most tolerant tomato cultivars adopt quite specific biochemical strategies such as different accumulations of aquaporins and osmotins. The data set also suggests that RuBisCO isoforms and aquaporins can be used as markers of tolerance/susceptibility to drought stress and be used to select tomato cultivars within breeding programs.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Maria Michela Cesare
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| |
Collapse
|
8
|
Teng L, Liu H, Chu X, Song X, Shi L. Effect of precipitation change on the photosynthetic performance of Phragmites australis under elevated temperature conditions. PeerJ 2022; 10:e13087. [PMID: 35291483 PMCID: PMC8918233 DOI: 10.7717/peerj.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background As a fundamental metabolism, leaf photosynthesis not only provides necessary energy for plant survival and growth but also plays an important role in global carbon fixation. However, photosynthesis is highly susceptible to environmental stresses and can be significantly influenced by future climate change. Methods In this study, we examined the photosynthetic responses of Phragmites australis (P. australis) to three precipitation treatments (control, decreased 30%, and increased 30%) under two thermal regimes (ambient temperature and +4 °C) in environment-controlled chambers. Results Our results showed that the net CO2 assimilation rate (P n), maximal rate of Rubisco (V cmax), maximal rate of ribulose-bisphosphate (RuBP) regeneration (J max) and chlorophyll (Chl) content were enhanced under increased precipitation condition, but were declined drastically under the condition of water deficit. The increased precipitation had no significant effect on malondialdehyde (MDA) content (p > 0.05), but water deficit drastically enhanced the MDA content by 10.1%. Meanwhile, a high temperature inhibited the positive effects of increased precipitation, aggravated the adverse effects of drought. The combination of high temperature and water deficit had more detrimental effect on P. australis than a single factor. Moreover, non-stomatal limitation caused by precipitation change played a major role in determining carbon assimilation rate. Under ambient temperature, Chl content had close relationship with P n (R2 = 0.86, p < 0.01). Under high temperature, P n was ralated to MDA content (R2 = 0.81, p < 0.01). High temperature disrupted the balance between V cmax and J max (the ratio of J max to V cmax decreased from 1.88 to 1.12) which resulted in a negative effect on the photosynthesis of P. australis. Furthermore, by the analysis of Chl fluorescence, we found that the xanthophyll cycle-mediated thermal dissipation played a major role in PSII photoprotection, resulting in no significant change on actual PSII quantum yield (Φ PSII) under both changing precipitation and high temperature conditions. Conclusions Our results highlight the significant role of precipitation change in regulating the photosynthetic performance of P. australis under elevated temperature conditions, which may exacerbate the drought-induced primary productivity reduction of P. australis under future climate scenarios.
Collapse
Affiliation(s)
| | | | | | | | - Lianhui Shi
- Shandong Agricultural University, Taian, China
| |
Collapse
|
9
|
Yu B, Ming F, Liang Y, Wang Y, Gan Y, Qiu Z, Yan S, Cao B. Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions. Int J Mol Sci 2022; 23:ijms23031817. [PMID: 35163740 PMCID: PMC8837171 DOI: 10.3390/ijms23031817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress.
Collapse
Affiliation(s)
- Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Ming
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yixi Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| |
Collapse
|
10
|
Francesca S, Vitale L, Arena C, Raimondi G, Olivieri F, Cirillo V, Paradiso A, de Pinto MC, Maggio A, Barone A, Rigano MM. The efficient physiological strategy of a novel tomato genotype to adapt to chronic combined water and heat stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:62-74. [PMID: 34605594 PMCID: PMC9293464 DOI: 10.1111/plb.13339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/26/2021] [Indexed: 05/28/2023]
Abstract
Climate change is increasing the frequency of high temperature shocks and water shortages, pointing to the need to develop novel tolerant varieties and to understand the mechanisms employed to withstand combined abiotic stresses. Two tomato genotypes, a heat-tolerant Solanum lycopersicum accession (LA3120) and a novel genotype (E42), previously selected as a stable yielding genotype under high temperatures, were exposed to single and combined water and heat stress. Plant functional traits, pollen viability and physiological (leaf gas exchange and chlorophyll a fluorescence emission measurements) and biochemical (antioxidant content and antioxidant enzyme activity) measurements were carried out. A Reduced Representation Sequencing approach allowed exploration of the genetic variability of both genotypes to identify candidate genes that could regulate stress responses. Both abiotic stresses had a severe impact on plant growth parameters and on the reproductive phase of development. Growth parameters and leaf gas exchange measurements revealed that the two genotypes used different physiological strategies to overcome individual and combined stresses, with E42 having a more efficient capacity to utilize the limiting water resources. Activation of antioxidant defence mechanisms seemed to be critical for both genotypes to counteract combined abiotic stresses. Candidate genes were identified that could explain the different physiological responses to stress observed in E42 compared with LA3120. Results here obtained have shown how new tomato genetic resources can be a valuable source of traits for adaptation to combined abiotic stresses and should be used in breeding programmes to improve stress tolerance in commercial varieties.
Collapse
Affiliation(s)
- S. Francesca
- Department of Agricultural SciencesUniversity of Naples “Federico II”PorticiItaly
| | - L. Vitale
- Department of Biology, Agriculture and Food SciencesNational Research CouncilInstitute for Agricultural and Forestry Systems in the MediterraneanPorticiItaly
| | - C. Arena
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- BATCenter ‐ Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyPorticiItaly
| | - G. Raimondi
- Department of Agricultural SciencesUniversity of Naples “Federico II”PorticiItaly
| | - F. Olivieri
- Department of Agricultural SciencesUniversity of Naples “Federico II”PorticiItaly
| | - V. Cirillo
- Department of Agricultural SciencesUniversity of Naples “Federico II”PorticiItaly
| | - A. Paradiso
- Department of BiologyUniversity of Bari “Aldo Moro”BariItaly
| | - M. C. de Pinto
- Department of BiologyUniversity of Bari “Aldo Moro”BariItaly
| | - A. Maggio
- Department of Agricultural SciencesUniversity of Naples “Federico II”PorticiItaly
| | - A. Barone
- Department of Agricultural SciencesUniversity of Naples “Federico II”PorticiItaly
| | - M. M. Rigano
- Department of Agricultural SciencesUniversity of Naples “Federico II”PorticiItaly
| |
Collapse
|
11
|
Serafini-Fracassini D, Della Mea M, Parrotta L, Faleri C, Cai G, Del Duca S, Aloisi I. AtPng1 knockout mutant of Arabidopsis thaliana shows a juvenile phenotype, morpho-functional changes, altered stress response and cell wall modifications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:11-21. [PMID: 34325356 DOI: 10.1016/j.plaphy.2021.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
In order to ascertain the role of plant transglutaminases (TGase) in growth and abiotic stress response, the AtPng1 knock out (KO) line of A. thaliana has been analyzed during plant development and under heat and wound stress. Comparing wild type (WT) and KO lines a 58-kDa band was immunodetected by anti-AtPng1p antibody in the cell wall and chloroplasts only in the WT line. A residual TGase activity, not showing correlation with development nor stress response, was still present in the KO line. The KO line was less developed, with a juvenile phenotype characterized by fewer, smaller and less differentiated cells. Chloroplast TGase activity was insensitive to mutation. Data on stressed plants showed that (i) KO plants under heat stress were more juvenile compared to WT, (ii) different responses between WT and KO lines after wounding took place. TGase activity was not completely absent in the KO line, presenting high activity in the plastidial fraction. In general, the mutation affected A. thaliana growth and development, causing less differentiated cytological and anatomical features.
Collapse
Affiliation(s)
- D Serafini-Fracassini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - M Della Mea
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - L Parrotta
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - C Faleri
- Dipartimento di Scienze Della Vita, Università Degli Studi di Siena, Via Mattioli 4, Siena, 53100, Italy
| | - G Cai
- Dipartimento di Scienze Della Vita, Università Degli Studi di Siena, Via Mattioli 4, Siena, 53100, Italy
| | - S Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy.
| | - I Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| |
Collapse
|
12
|
Marcelino-Pérez G, Ruiz-Medrano R, Gallardo-Hernández S, Xoconostle-Cázares B. Adsorption of Recombinant Human β-Defensin 2 and Two Mutants on Mesoporous Silica Nanoparticles and Its Effect against Clavibacter michiganensis subsp. michiganensis. NANOMATERIALS 2021; 11:nano11082144. [PMID: 34443974 PMCID: PMC8400394 DOI: 10.3390/nano11082144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022]
Abstract
Solanum lycopersicum L. is affected among other pests and diseases, by the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm), causing important economic losses worldwide. Antimicrobial peptides (AMPs) are amphipathic cationic oligopeptides with which the development of pathogenic microorganisms has been inhibited. Therefore, in this study, we evaluate antimicrobial activity of mesoporous silica nanoparticles (MSN5.4) loaded with human β-defensin-2 (hβD2) and two mutants (TRX-hβD2-M and hβD2-M) against Cmm. hβD2, TRX-hβD2-M and hβD2-M presented a half-maximum inhibitory concentration (IC50) of 3.64, 1.56 and 6.17 μg/mL, respectively. MSNs had average particle sizes of 140 nm (SEM) and a tunable pore diameter of 4.8 up to 5.4 nm (BJH). AMPs were adsorbed more than 99% into MSN and a first release after 24 h was observed. The MSN loaded with the AMPs inhibited the growth of Cmm in solid and liquid media. It was also determined that MSNs protect AMPs from enzymatic degradation when the MSN/AMPs complexes were exposed to a pepsin treatment. An improved AMP performance was registered when it was adsorbed in the mesoporous matrix. The present study could expand the applications of MSNs loaded with AMPs as a biological control and provide new tools for the management of phytopathogenic microorganisms.
Collapse
Affiliation(s)
- Gabriel Marcelino-Pérez
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico;
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico;
| | - Salvador Gallardo-Hernández
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico
- Correspondence: (S.G.-H.); (B.X.-C.)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico;
- Correspondence: (S.G.-H.); (B.X.-C.)
| |
Collapse
|