1
|
Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. THE NEW PHYTOLOGIST 2024; 244:1183-1198. [PMID: 39286853 DOI: 10.1111/nph.20134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Sessile plants harness mitochondria and chloroplasts to sense and adapt to diverse environmental stimuli. These complex processes involve the generation of pivotal signaling molecules, including reactive oxygen species (ROS), phytohormones, volatiles, and diverse metabolites. Furthermore, the specific modulation of chloroplast proteins, through activation or deactivation, significantly enhances the plant's capacity to engage with its dynamic surroundings. While existing reviews have extensively covered the role of plastidial retrograde modules in developmental and light signaling, our focus lies in investigating how chloroplasts leverage photosynthetic ROS to navigate environmental fluctuations and counteract oxidative stress, thereby sustaining primary metabolism. Unraveling the nuanced interplay between photosynthetic ROS and plant stress responses holds promise for uncovering new insights that could reinforce stress resistance and optimize net photosynthesis rates. This exploration aspires to pave the way for innovative strategies to enhance plant resilience and agricultural productivity amidst changing environmental conditions.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Mol Z, Walgraeve C, De Pril R, Van Langenhove H, Demeestere K. Trace analysis of taste and odour compounds in drinking water by stir bar sorptive extraction followed by thermal desorption - gas chromatography - mass spectrometry (SBSE-TD-GC-MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176878. [PMID: 39423895 DOI: 10.1016/j.scitotenv.2024.176878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Because of negative tap water quality perception, people often prefer bottled water over tap water despite the higher energy consumption and production of plastic waste. Taste and odour (T&O) deviations in tap water are an important aspect of this issue and should be avoided. However, T&O compounds typically occur at low concentrations (≤ ng.L-1) and are numerous, originating from various sources, ranging from source water to kitchen taps. Consequently, unravelling T&O events is challenging and causing compounds may remain unknown. Therefore, a multi-compound method (SBSE-TD-GC-MS) was developed, optimised and validated for the simultaneous trace analysis of 45 T&O compounds in drinking water. It covers key compounds of different odour categories with a wide range of physical-chemical properties and originating from the different steps of production and distribution. The intra- and interday precision of the method was shown by relative standard deviations (RSD) lower than 15 % and 23 %, respectively, for 75 % of the measured concentrations. For most of the compounds (>75 %), the detection capability (CCβ) was below 1/3rd of their lowest reported odour threshold concentration (OTC), while for the other 6 compounds, the CCβ was within the reported OTC range. Additionally, the CCβs were comparable to or lower than those in literature. As a proof of concept, the method was used to investigate the occurrence and concentrations of T&O compounds before (surface water) and after drinking water production. The results show a clear removal of compounds related to microbial activity (e.g. geosmin, 2-methylisoborneol, 2,4,6-tribromoanisole) after treatment and an increase of compounds related to disinfection. Although rarely investigated, 3-methylbutanal showed concentrations similar to its OTC in treated drinking water, emphasizing the necessity of a broad ultra-trace analysis to ultimately prevent the occurrence of T&O compounds and guarantee tap water quality.
Collapse
Affiliation(s)
- Zoë Mol
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052 Ghent, Belgium
| | - Christophe Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052 Ghent, Belgium
| | - Rik De Pril
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Herman Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052 Ghent, Belgium.
| |
Collapse
|
3
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Pancheri T, Baur T, Roach T. Singlet-Oxygen-Mediated Regulation of Photosynthesis-Specific Genes: A Role for Reactive Electrophiles in Signal Transduction. Int J Mol Sci 2024; 25:8458. [PMID: 39126029 PMCID: PMC11313482 DOI: 10.3390/ijms25158458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), β-cyclocitral, a β-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0-4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or β-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES.
Collapse
Affiliation(s)
| | | | - Thomas Roach
- Department of Botany, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Lin Y, Cheng C, Dai Y, Li W, Chen J, Chen M, Xie P, Gao Q, Fan X, Deng X. The origins of odor (β-cyclocitral) under different water nutrient conditions: Algae or submerged plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173024. [PMID: 38719048 DOI: 10.1016/j.scitotenv.2024.173024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. β-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on β-cyclocitral levels in water. Here, we conducted a study on the β-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), β-cyclocitral in the water (Wcyc), β-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, β-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of β-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit β-cyclocitral, the release of β-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of β-cyclocitral.
Collapse
Affiliation(s)
- Yu Lin
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyue Cheng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yutai Dai
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Weijie Li
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiping Chen
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Ecology and Environment, Tibet University, Lhasa 850012, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Mo Chen
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xiaoyue Fan
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
6
|
Shan J, Mo J, An C, Xiang L, Qi J. β-Cyclocitral from Lavandula angustifolia Mill. Exerts Anti-Aging Effects on Yeasts and Mammalian Cells via Telomere Protection, Antioxidative Stress, and Autophagy Activation. Antioxidants (Basel) 2024; 13:715. [PMID: 38929154 PMCID: PMC11200722 DOI: 10.3390/antiox13060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
We used a replicative lifespan (RLS) experiment of K6001 yeast to screen for anti-aging compounds within lavender extract (Lavandula angustifolia Mill.), leading to the discovery of β-cyclocitral (CYC) as a potential anti-aging compound. Concurrently, the chronological lifespan (CLS) of YOM36 yeast and mammalian cells confirmed the anti-aging effect of CYC. This molecule extended the yeast lifespan and inhibited etoposide (ETO)-induced cell senescence. To understand the mechanism of CYC, we analyzed its effects on telomeres, oxidative stress, and autophagy. CYC administration resulted in notable increases in the telomerase content, telomere length, and the expression of the telomeric shelterin protein components telomeric-repeat binding factor 2 (TRF2) and repressor activator protein 1 (RAP1). More interestingly, CYC reversed H2O2-induced telomere damage and exhibited strong antioxidant capacity. Moreover, CYC improved the survival rate of BY4741 yeast under oxidative stress induced by 6.2 mM H2O2, increasing the antioxidant enzyme activity while reducing the reactive oxygen species (ROS), reactive nitrogen species (RNS), and malondialdehyde (MDA) levels. Additionally, CYC enhanced autophagic flux and free green fluorescent protein (GFP) expression in the YOM38-GFP-ATG8 yeast strain. However, CYC did not extend the RLS of K6001 yeast mutants, such as Δsod1, Δsod2, Δcat, Δgpx, Δatg2, and Δatg32, which lack antioxidant enzymes or autophagy-related genes. These findings reveal that CYC acts as an anti-aging agent by modifying telomeres, oxidative stress, and autophagy. It is a promising compound with potential anti-aging effects and warrants further study.
Collapse
Affiliation(s)
| | | | | | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.S.); (J.M.); (C.A.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.S.); (J.M.); (C.A.)
| |
Collapse
|
7
|
Goggin FL, Fischer HD. Singlet oxygen signalling and its potential roles in plant biotic interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1957-1970. [PMID: 38372069 DOI: 10.1111/pce.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (SO) is among the most potent reactive oxygen species, and readily oxidizes proteins, lipids and DNA. It can be generated at the plant surface by phototoxins in the epidermis, acting as a direct defense against pathogens and herbivores (including humans). SO can also accumulate within mitochondria, peroxisomes, cytosol and the nucleus through multiple enzymatic and nonenzymatic processes. However, the majority of research on intracellular SO generation in plants has focused on transfer of light energy to triplet oxygen by photopigments from the chloroplast. SO accumulates in response to diverse stresses that perturb chloroplast metabolism, and while its high reactivity limits diffusion distances, it participates in retrograde signalling through the EXECUTER1 sensor, generation of carotenoid metabolites and possibly other unknown pathways. SO thereby reprogrammes nuclear gene expression and modulates hormone signalling and programmed cell death. While SO signalling has long been known to regulate plant responses to high-light stress, recent literature also suggests a role in plant interactions with insects, bacteria and fungi. The goals of this review are to provide a brief overview of SO, summarize evidence for its involvement in biotic stress responses and discuss future directions for the study of SO in defense signalling.
Collapse
Affiliation(s)
- Fiona L Goggin
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Hillary D Fischer
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
8
|
Wang X, Cao H, Zhu Y, Zhou T, Teng F, Tao Y. β-cyclocitral induced rapid cell death of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123824. [PMID: 38513945 DOI: 10.1016/j.envpol.2024.123824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
β-cyclocitral (BCC) is an odorous compound that can be produced by bloom-forming cyanobacteria, for example, Microcystis aeruginosa. BCC has been proposed to explain the rapid decline of cyanobacterial blooms in natural water bodies due to its lytic effects on cyanobacteria cells. However, few insights have been gained regarding the mechanisms of its lethality on cyanobacteria. In this study, M. aeruginosa was exposed to 0-300 mg/L BCC, and the physiological responses were comprehensively studied at the cellular, molecular, and transcriptomic levels. The result indicated that the lethal effect was concentration-dependent; 100 mg/L BCC only caused recoverable stress, while 150-300 mg/L BCC caused rapid rupture of cyanobacterial cells. Scanning electron microscope images suggested two typical morphological changes exposed to above 150 mg/LBCC: wrinkled/shrank with limited holes on the surface at 150 and 200 mg/L BCC exposure; no apparent shrinkage at the surface but with cell perforation at 250 and 300 mg/L BCC exposure. BCC can rapidly inhibit the photosynthetic activity of M. aeruginosa cells (40%∼100% decreases for 100-300 mg/L BCC) and significantly down-regulate photosynthetic system Ⅰ-related genes. Also, chlorophyll a (by 30%∼90%) and ATP (by ∼80%) contents severely decreased, suggesting overwhelming pressure on the energy metabolism in cells. Glutathione levels increased significantly, and stress response-related genes were upregulated, indicating the perturbation of intracellular redox homeostasis. Two cell death pathways were proposed to explain the lethal effect: apoptosis-like death as revealed by the upregulation of SOS response genes when exposed to 200 mg/L BCC and mazEF-mediated death as revealed by the upregulation of mazEF system genes when exposed to 300 mg/L BCC. Results of the current work not only provide insights into the potential role of BCC in inducing programmed cell death during bloom demise but also indicate the potential of using BCC for harmful algal control.
Collapse
Affiliation(s)
- Xuejian Wang
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China
| | - Yinjie Zhu
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Tingru Zhou
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Fei Teng
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yi Tao
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Cuervo L, Méndez C, Olano C, Malmierca MG. Volatilome: Smells like microbial spirit. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:1-43. [PMID: 38763526 DOI: 10.1016/bs.aambs.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain.
| |
Collapse
|
10
|
Chen W, Dou J, Xu X, Ma X, Chen J, Liu X. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133248. [PMID: 38147752 DOI: 10.1016/j.jhazmat.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
β-cyclocitral is one of the major compounds in cyanobacterial volatile organic compound (VOCs) and can poison other aquatic organisms. To investigate the effect of β-cyclocitral on cyanobacterial-grazer interactions, Daphnia sinensis was fed Microcystis aeruginosa and exposed to β-cyclocitral. Our present study demonstrated that M. aeruginosa could significantly inhibit D. sinensis grazing. And the grazing inhibition by Microcystis aeruginosa results from the suppression of feeding rate, heart rate, thoracic limb activity and swimming speed of D. sinensis. In addition, M. aeruginosa could also induce intestinal peristalsis and emptying in D. sinensis. Interestingly, our present study found that the exposure to β-cyclocitral could mimic a range of phenotypes induced by M. aeruginosa in D. sinensis. These results suggested that M. aeruginosa could release β-cyclocitral to inhibit Daphnia grazing. To further examine the toxic mechanism of β-cyclocitral in Daphnia, several in vivo and in vitro experiments displayed that β-cyclocitral was a novel inhibitor of acetylcholinesterase (AChE). It could induce the accumulation of acetylcholine (ACh) by inhibiting AchE activity in D. sinensis. High level of endogenous Ach could inhibit feeding rate and induce intestinal peristalsis and emptying in D. sinensis.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ximeng Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Wang D, Liu Z, Lan X, Wang C, Chen W, Zhan S, Sun Y, Su W, Lin CC, Liu W, Liu Y, Ni L. Unveiling the aromatic intricacies of Wuyi Rock Tea: A comparative study on sensory attributes and odor-active compounds of Rougui and Shuixian varieties. Food Chem 2024; 435:137470. [PMID: 37774626 DOI: 10.1016/j.foodchem.2023.137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The distinctive fragrance of Wuyi Rock Tea (WRT) has garnered high attention in recent years. Herein, we conducted a comprehensive comparison of the sensory attributes and odor-active compounds (OACs) between two quintessential WRTs, namely Rougui (RGT) and Shuixian (SXT). Sensory analysis revealed that RGT exhibited a more pronounced fruity aroma, while SXT had a more complex and intricate sensory profile. By using gas chromatography-olfactory mass spectrometry (GC-O-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) analyses, 26 OACs were identified. Among them, 12 compounds with odor activity values > 1 were recognized as key OACs. Noteworthily, eight compounds, including 6-methyl-5-hepten-2-one, 2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, linalool, methyl salicylate, geraniol, (E)-β-ionone, and (E)-nerolidol, were shared by both teas. The unique compounds for RGT were (E)-linalool oxide and (Z)-jasmone, while those for SXT were β-cyclocitral and α-ionone. These findings offer valuable insights for better understanding the flavor differences between the two most important types of WRT.
Collapse
Affiliation(s)
- Daoliang Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Xiaoye Lan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cainan Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Institute of Food Science and Technology, Fuzhou, Fujian 350108, China
| | - Wensong Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Sijia Zhan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yaqian Sun
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiying Su
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, Province of China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ni
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
12
|
Zheng Y, Chen P, Zheng P, Chen J, Sun B, Liu S. Transcriptomic Insights into the Enhanced Aroma of Guangdong Oolong Dry Tea ( Camellia sinensis cv. Yashixiang Dancong) in Winter. Foods 2024; 13:160. [PMID: 38201188 PMCID: PMC10778534 DOI: 10.3390/foods13010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Winter dry tea (WDT) exhibits a more intense and lasting aroma compared to dry tea from other seasons; however, this conclusion is solely based on sensory outcomes and lacks corroborative theoretical evidence. Our study aimed to analyze the aroma compounds in WDT and investigate the causes behind the formation of WDT's aroma by analyzing the volatile organic compounds (VOCs) in WDT, spring dry tea (SDT), winter fresh leaves (WFLs) and spring fresh leaves (SFLs) by gas chromatography-mass spectrometry (GC-MS), complemented by an analysis of gene expression pertinent to WFLs and SFLs by using transcriptomic analysis. The results revealed a significant increase in total VOCs in WDT compared to SDT, with WDT exhibiting distinct woody aromas as indicated by a higher α-muurolene content. In WFL, the contents of aldehydes and ketones were richer than those in SFL. Notably, the study found that UDP-glycosyltransferase genes in WFLs were significantly up-regulated, potentially promoting the synthesis of terpene glycosides. These terpene glycosides can release terpene aroma compounds during processing, contributing significantly to the intense and lasting aroma of WDT. Overall, this research provides valuable insights into the mechanism behind aroma formation in Guangdong oolong tea harvested during winter.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (P.C.); (P.Z.); (J.C.); (B.S.)
| |
Collapse
|
13
|
Hananya N, Green O, Gutiérrez-Fernández I, Shabat D, Arellano JB. Singlet Oxygen Detection by Chemiluminescence Probes in Living Cells. Methods Mol Biol 2024; 2798:27-43. [PMID: 38587734 DOI: 10.1007/978-1-0716-3826-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.
Collapse
Affiliation(s)
- Nir Hananya
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ori Green
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ismael Gutiérrez-Fernández
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan B Arellano
- Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
14
|
Zhu K, Feng Y, Huang Y, Zhang D, Ateeq M, Zheng X, Al-Babili S, Li G, Liu J. β-Cyclocitric acid enhances drought tolerance in peach (Prunus persica) seedlings. TREE PHYSIOLOGY 2023; 43:1933-1949. [PMID: 37561416 DOI: 10.1093/treephys/tpad093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
The β-cyclocitric acid (β-CCA) is a bioactive apocarotenoid previously shown to improve drought tolerance in annual plants. However, the underlying molecular mechanism of this process remains largely elusive. Moreover, the question about the activity of β-CCA in perennial fruit crops is still open. Here, we found that treatment of β-CCA enhances drought tolerance in peach seedlings. The application of β-CCA significantly increased the relative water content and root activity and reduced the electrolyte leakage of peach seedlings under drought stress. Moreover, treatment with β-CCA under drought stress increased chlorophyll fluorescence, indicating a positive effect on photosynthesis, while also enhancing superoxide dismutase and peroxidase activity and reducing reactive oxygen species (ROS) levels. Consistent with these alterations, transcriptome analysis revealed an up-regulation of photosynthesis and antioxidant-related genes upon the application of β-CCA under drought stress. We also detected an induction in genes related to detoxification, environmental adaptation, primary metabolism, phytohormone, phenylpropanoid and the biosynthesis of cutin, suberine and wax, which might contribute to the induction of drought resistance. Altogether, our study reveals that β-CCA positively modulates peach drought tolerance, which is mainly mediated by enhancing photosynthesis and reducing ROS, indicating the potential of utilizing β-CCA for drought control in peach and perhaps other fruit crops.
Collapse
Affiliation(s)
- Kaijie Zhu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yimei Feng
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yufeng Huang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Dongmei Zhang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Muhammad Ateeq
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Xiongjie Zheng
- Center for Desert Agriculture, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Center for Desert Agriculture, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Guohuai Li
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| |
Collapse
|
15
|
Braat J, Jaonina M, David P, Leschevin M, Légeret B, D’Alessandro S, Beisson F, Havaux M. The response of Arabidopsis to the apocarotenoid β-cyclocitric acid reveals a role for SIAMESE-RELATED 5 in root development and drought tolerance. PNAS NEXUS 2023; 2:pgad353. [PMID: 37954155 PMCID: PMC10638494 DOI: 10.1093/pnasnexus/pgad353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
New regulatory functions in plant development and environmental stress responses have recently emerged for a number of apocarotenoids produced by enzymatic or nonenzymatic oxidation of carotenoids. β-Cyclocitric acid (β-CCA) is one such compound derived from β-carotene, which triggers defense mechanisms leading to a marked enhancement of plant tolerance to drought stress. We show here that this response is associated with an inhibition of root growth affecting both root cell elongation and division. Remarkably, β-CCA selectively induced cell cycle inhibitors of the SIAMESE-RELATED (SMR) family, especially SMR5, in root tip cells. Overexpression of the SMR5 gene in Arabidopsis induced molecular and physiological changes that mimicked in large part the effects of β-CCA. In particular, the SMR5 overexpressors exhibited an inhibition of root development and a marked increase in drought tolerance which is not related to stomatal closure. SMR5 up-regulation induced changes in gene expression that strongly overlapped with the β-CCA-induced transcriptomic changes. Both β-CCA and SMR5 led to a down-regulation of many cell cycle activators (cyclins, cyclin-dependent kinases) and a concomitant up-regulation of genes related to water deprivation, cellular detoxification, and biosynthesis of lipid biopolymers such as suberin and lignin. This was correlated with an accumulation of suberin lipid polyesters in the roots and a decrease in nonstomatal leaf transpiration. Taken together, our results identify the β-CCA-inducible and drought-inducible SMR5 gene as a key component of a stress-signaling pathway that reorients root metabolism from growth to multiple defense mechanisms leading to drought tolerance.
Collapse
Affiliation(s)
- Jeanne Braat
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Meryl Jaonina
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Pascale David
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Maïté Leschevin
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Bertrand Légeret
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Stefano D’Alessandro
- Universita di Torino, Scienze Della Vita e Biologia dei Sistemi, Torino 10123, Italy
| | - Frédéric Beisson
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Michel Havaux
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
16
|
Zhou X, Sun T, Owens L, Yang Y, Fish T, Wrightstone E, Lui A, Yuan H, Chayut N, Burger J, Tadmor Y, Thannhauser T, Guo W, Cheng L, Li L. Carotenoid sequestration protein FIBRILLIN participates in CmOR-regulated β-carotene accumulation in melon. PLANT PHYSIOLOGY 2023; 193:643-660. [PMID: 37233026 DOI: 10.1093/plphys/kiad312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, β-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high β-carotene melon variety and its isogenic line low-β mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.
Collapse
Affiliation(s)
- Xuesong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Ren R, Xuwei D, Wenze L, Xiao R, Ping X, Jun C. Sediments are important in regulating the algae-derived off-flavor (β-cyclocitral) in eutrophic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162536. [PMID: 36870503 DOI: 10.1016/j.scitotenv.2023.162536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In recent years, due to global warming and water eutrophication, cyanobacterial blooms have occurred frequently worldwide, resulting in a series of water quality problems, among which the odor problem in lakes is one of the focuses of attention. In the late stage of the bloom, a large amount of algae accumulated on the surface sediment, which will be a great hidden danger to cause odor pollution in lakes. β-Cyclocitral is one of the typical algae-derived odor compounds that cause odor in lakes. In this study, an annual survey of 13 eutrophic lakes in the Taihu Lake basin was investigated to assess the effects of abiotic and biotic factors on β-cyclocitral in water. Our results showed that high concentrations of β-cyclocitral in the pore water (pore-β-cyclocitral) were detected in the sediment and far exceeded that in the water column, with an average of about 100.37 times. Structural equation modeling indicated that algal biomass and pore-β-cyclocitral can directly regulate the concentrations of β-cyclocitral in the water column, and total phosphorus (TP) and temperature (Temp) promoted the algal biomass which further enhanced the production of β-cyclocitral both in the water column and pore water. It was worth noting that when Chla ≥30 μg/L, the effects of algae on pore-β-cyclocitral were significantly enhanced, and pore-β-cyclocitral played a major role in the regulation of β-cyclocitral concentrations in water column. Overall, our study facilitated a comprehensive and systematic understanding of the effects of algae on odorants and the dynamic regulatory processes in complex aquatic ecosystems, and revealed a long-neglected process, that was, the important contribution of sediments to β-cyclocitral in the water column in eutrophic lakes, which would conduce to a more accurate understanding of the evolution of off flavors in lakes and also useful for the management of odors in lakes in the future.
Collapse
Affiliation(s)
- Ren Ren
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Deng Xuwei
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Lu Wenze
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Rao Xiao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xie Ping
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Chen Jun
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
18
|
Manganelli M, Testai E, Tazart Z, Scardala S, Codd GA. Co-Occurrence of Taste and Odor Compounds and Cyanotoxins in Cyanobacterial Blooms: Emerging Risks to Human Health? Microorganisms 2023; 11:microorganisms11040872. [PMID: 37110295 PMCID: PMC10146173 DOI: 10.3390/microorganisms11040872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, β-ionone and β-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes. T&O and cyanotoxins production can be due to the same or common to different cyanobacterial species/strains, with the additional possibility of T&O production by non-cyanobacterial species. The few environmental studies on the co-occurrence of these two groups of metabolites are not sufficient to understand if and how they can co-vary, or influence each other, perhaps stimulating cyanotoxin production. Therefore, T&Os cannot reliably serve as early warning surrogates for cyanotoxins. The scarce data on T&O toxicity seem to indicate a low health risk (but the inhalation of β-cyclocitral deserves more study). However, no data are available on the effects of combined exposure to mixtures of cyanotoxins and T&O compounds and to combinations of T&O compounds; therefore, whether the co-occurrence of cyanotoxins and T&O compounds is a health issue remains an open question.
Collapse
Affiliation(s)
- Maura Manganelli
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
- Correspondence:
| | - Emanuela Testai
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Zakaria Tazart
- Department of Food Sciences and Nutrition, University of Malta, 2080 Msida, Malta;
| | - Simona Scardala
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Geoffrey A. Codd
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
19
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
20
|
Han H, Alsayed AMM, Wang Y, Yan Q, Shen A, Zhang J, Ye Y, Liu Z, Wang K, Zheng X. Discovery of β-cyclocitral-derived mono-carbonyl curcumin analogs as anti-hepatocellular carcinoma agents via suppression of MAPK signaling pathway. Bioorg Chem 2023; 132:106358. [PMID: 36642021 DOI: 10.1016/j.bioorg.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a high recurrence and mortality rate. In this study, a series of β-cyclocitral-derived mono-carbonyl curcumin analogs were synthesized and their anticancer properties were evaluated. Among the series, A19 exhibited the strongest cytotoxic activity by inhibiting cell viability and colony formation, inducing cell cycle G2/M phase arrest and cell apoptosis of HCC HepG2 and Huh-7 cells, while having almost no cytotoxicity on normal liver MIHA cells. Mechanistically, our results demonstrated that A19 triggered intense DNA damage via suppression of the ERK/JNK/p38 MAPK signaling pathway. Additionally, a combination of A19 with sorafenib significantly induced synergistic cytotoxicity in HCC cells. Overall, our results indicate the potential of A19 as a novel chemotherapeutic drug administered either separately or in combined therapy for HCC treatment.
Collapse
Affiliation(s)
- Haoyi Han
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ali Mohammed Mohammed Alsayed
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Qi Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ancheng Shen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jianxia Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yanfei Ye
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
21
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|
22
|
Morelli L, García Romañach L, Glauser G, Shanmugabalaji V, Kessler F, Rodriguez-Concepcion M. Nutritional Enrichment of Plant Leaves by Combining Genes Promoting Tocopherol Biosynthesis and Storage. Metabolites 2023; 13:metabo13020193. [PMID: 36837812 PMCID: PMC9965820 DOI: 10.3390/metabo13020193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The enrichment of plant tissues in tocochromanols (tocopherols and tocotrienols) is an important biotechnological goal due to their vitamin E and antioxidant properties. Improvements based on stimulating tocochromanol biosynthesis have repeatedly been achieved, however, enhancing sequestering and storage in plant plastids remains virtually unexplored. We previously showed that leaf chloroplasts can be converted into artificial chromoplasts with a proliferation of plastoglobules by overexpression of the bacterial crtB gene. Here we combined coexpression of crtB with genes involved in tocopherol biosynthesis to investigate the potential of artificial leaf chromoplasts for vitamin E accumulation in Nicotiana benthamiana leaves. We show that this combination improves tocopherol levels compared to controls without crtB and confirm that VTE1, VTE5, VTE6 and tyrA genes are useful to increase the total tocopherol levels, while VTE4 further leads to enrichment in α-tocopherol (the tocochromanol showing highest vitamin E activity). Additionally, we show that treatments that further promote plastoglobule formation (e.g., exposure to intense light or dark-induced senescence) result in even higher improvements in the tocopherol content of the leaves. An added advantage of our strategy is that it also results in increased levels of other related plastidial isoprenoids such as carotenoids (provitamin A) and phylloquinones (vitamin K1).
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Correspondence: (L.M.); (M.R.-C.)
| | - Laura García Romañach
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | | | - Felix Kessler
- Laboratory of Plant Physiology, Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence: (L.M.); (M.R.-C.)
| |
Collapse
|
23
|
Jasmonic Acid-Induced β-Cyclocitral Confers Resistance to Bacterial Blight and Negatively Affects Abscisic Acid Biosynthesis in Rice. Int J Mol Sci 2023; 24:ijms24021704. [PMID: 36675223 PMCID: PMC9866013 DOI: 10.3390/ijms24021704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Jasmonic acid (JA) regulates the production of several plant volatiles that are involved in plant defense mechanisms. In this study, we report that the JA-responsive volatile apocarotenoid, β-cyclocitral (β-cyc), negatively affects abscisic acid (ABA) biosynthesis and induces a defense response against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice (Oryza sativa L.). JA-induced accumulation of β-cyc was regulated by OsJAZ8, a repressor of JA signaling in rice. Treatment with β-cyc induced resistance against Xoo and upregulated the expression of defense-related genes in rice. Conversely, the expression of ABA-responsive genes, including ABA-biosynthesis genes, was downregulated by JA and β-cyc treatment, resulting in a decrease in ABA levels in rice. β-cyc did not inhibit the ABA-dependent interactions between OsPYL/RCAR5 and OsPP2C49 in yeast cells. Furthermore, we revealed that JA-responsive rice carotenoid cleavage dioxygenase 4b (OsCCD4b) was localized in the chloroplast and produced β-cyc both in vitro and in planta. These results suggest that β-cyc plays an important role in the JA-mediated resistance against Xoo in rice.
Collapse
|
24
|
Zuo Z. Emission of cyanobacterial volatile organic compounds and their roles in blooms. Front Microbiol 2023; 14:1097712. [PMID: 36891397 PMCID: PMC9987517 DOI: 10.3389/fmicb.2023.1097712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes and one of dominant species in eutrophicated waters, which easily burst blooms in summer with high irradiance and temperature conditions. In response to high irradiance, high temperature, and nutrient conditions, cyanobacteria release abundant of volatile organic compounds (VOCs) by up-regulating related gene expression and oxidatively degrading β-carotene. These VOCs not only increase offensive odor in waters, but also transfer allelopathic signals to algae and aquatic plants, resulting in cyanobacteria dominating eutrophicated waters. Among these VOCs, β-cyclocitral, α-ionone, β-ionone, limonene, longifolene, and eucalyptol have been identified as the main allelopathic agents, which even directly kill algae by inducing programmed cell death (PCD). The VOCs released from cyanobacteria, especially the ruptured cells, exhibit repelling effects on the herbivores, which is beneficial to survival of the population. Cyanobacterial VOCs might transfer aggregating information among homogeneous species, so the acceptors initiate aggregation to resist the coming stresses. It can be speculated that the adverse conditions can promote VOC emission from cyanobacteria, which play important roles in cyanobacteria dominating eutrophicated waters and even bursting blooms.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
25
|
Sierra J, McQuinn RP, Leon P. The role of carotenoids as a source of retrograde signals: impact on plant development and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7139-7154. [PMID: 35776102 DOI: 10.1093/jxb/erac292] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Communication from plastids to the nucleus via retrograde signal cascades is essential to modulate nuclear gene expression, impacting plant development and environmental responses. Recently, a new class of plastid retrograde signals has emerged, consisting of acyclic and cyclic carotenoids and/or their degradation products, apocarotenoids. Although the biochemical identity of many of the apocarotenoid signals is still under current investigation, the examples described herein demonstrate the central roles that these carotenoid-derived signals play in ensuring plant development and survival. We present recent advances in the discovery of apocarotenoid signals and their role in various plant developmental transitions and environmental stress responses. Moreover, we highlight the emerging data exposing the highly complex signal transduction pathways underlying plastid to nucleus apocarotenoid retrograde signaling cascades. Altogether, this review summarizes the central role of the carotenoid pathway as a major source of retrograde signals in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| | - Ryan P McQuinn
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| |
Collapse
|
26
|
Ke D, Guo J, Li K, Wang Y, Han X, Fu W, Miao Y, Jia KP. Carotenoid-derived bioactive metabolites shape plant root architecture to adapt to the rhizospheric environments. FRONTIERS IN PLANT SCIENCE 2022; 13:986414. [PMID: 36388571 PMCID: PMC9643742 DOI: 10.3389/fpls.2022.986414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Roots are important plant organs for the uptake of water and nutrient elements. Plant root development is finely regulated by endogenous signals and environmental cues, which shapes the root system architecture to optimize the plant growth and adapt to the rhizospheric environments. Carotenoids are precursors of plant hormones strigolactones (SLs) and ABA, as well as multiple bioactive molecules. Numerous studies have demonstrated SLs and ABA as essential regulators of plant root growth and development. In addition, a lot carotenoid-derived bioactive metabolites are recently identified as plant root growth regulators, such as anchorene, β-cyclocitral, retinal and zaxinone. However, our knowledge on how these metabolites affect the root architecture to cope with various stressors and how they interact with each other during these processes is still quite limited. In the present review, we will briefly introduce the biosynthesis of carotenoid-derived root regulators and elaborate their biological functions on root development and architecture, focusing on their contribution to the rhizospheric environmental adaption of plants.
Collapse
Affiliation(s)
- Danping Ke
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yujie Wang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaomeng Han
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Weiwei Fu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Kun-Peng Jia
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Faizan M, Tonny SH, Afzal S, Farooqui Z, Alam P, Ahmed SM, Yu F, Hayat S. β-Cyclocitral: Emerging Bioactive Compound in Plants. Molecules 2022; 27:molecules27206845. [PMID: 36296438 PMCID: PMC9608612 DOI: 10.3390/molecules27206845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of βCC. We emphasize the βCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - S Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Fangyuan Yu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
28
|
Du S, Xu H, Yang M, Pan N, Zheng T, Xu C, Li Y, Zuo Z. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119711. [PMID: 35809713 DOI: 10.1016/j.envpol.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) promote cyanobacteria dominating eutrophicated waters, with aquatic plant decrease and even disappearance. To uncover the toxic mechanism of cyanobacterial VOCs on aquatic plants, we investigated the growth, photosynthetic pigment levels, photosynthetic abilities and related gene expression in duckweed treated with β-cyclocitral and β-ionone, 2 main components in the VOCs. The levels of chlorophylls and carotenoids gradually declined with raising the concentration of the 2 compounds and prolonging the treatment time. Their decline should result from the down-regulation of 8 genes associated with photosynthetic pigment biosynthesis and up-regulation of 2 genes involved in carotenoid degradation. The reduction was also found in the photosystem II (PSII) efficiency and O2 evolution rate, which should result from the lowered photosynthetic pigment levels and down-regulation of 38 genes related with photosynthetic process. The frond numbers, total frond area and fresh weight gradually decreased with raising the 2 compound concentration, which may result from the lowered photosynthetic abilities as well as down-regulated expression of 7 genes associated with growth-promoting hormone biosynthesis and signal transduction. It can be speculated that cyanobacterial VOCs may poison aquatic plants by lowering the photosynthesis and growth through altering related gene expression.
Collapse
Affiliation(s)
- Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mengdan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
29
|
Koksharova OA, Safronov NA. The effects of secondary bacterial metabolites on photosynthesis in microalgae cells. Biophys Rev 2022; 14:843-856. [PMID: 36124259 PMCID: PMC9481811 DOI: 10.1007/s12551-022-00981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites of bacteria are regulatory molecules that act as "info-chemicals" that control some metabolic processes in the cells of microorganisms. These molecules provide the function of bacteria communication in microbial communities. As primary producers of organic matter in the biosphere, microalgae play a central ecological role in various ecosystems. Photosynthesis is a central process in microalgae cells, and it is exposed to various biotic and abiotic factors. Various secondary metabolites of bacteria confer a noticeable regulatory effect on photosynthesis in microalgae cells. The main purpose of this review is to highlight recent experimental results that demonstrate the impact of several types of common bacterial metabolites (volatile organic compounds, non-protein amino acids, and peptides) on photosynthetic activity in cells of microalgae. The use of these molecules as herbicides can be of great importance both for practical applications and for basic research.
Collapse
Affiliation(s)
- O. A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - N. A. Safronov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
| |
Collapse
|
30
|
New molecules in plant defence against pathogens. Essays Biochem 2022; 66:683-693. [PMID: 35642866 DOI: 10.1042/ebc20210076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Plants host a multipart immune signalling network to ward off pathogens. Pathogen attack upon plant tissues can often lead to an amplified state of (induced) defence against subsequent infections in distal tissues; this is known as systemic acquired resistance (SAR). The interaction of plants with beneficial microbes of the rhizosphere microbiome can also lead to an induced resistance in above-ground plant tissues, known as induced systemic resistance. Second messengers such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO) are necessary for cell-to-cell signal propagation during SAR and show emergent roles in the mediation of other SAR metabolites. These include the lysine-derived signals pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP), which are key signalling metabolites in SAR. Emerging evidence additionally pinpoints plant volatiles as modulators of defence signalling within and between plants. Plant volatile organic compounds (VOCs) such as monoterpenes can promote SAR by functioning through ROS. Furthermore, plant-derived and additionally also microbial VOCs can target both salicylic acid and jasmonic acid signalling pathways in plants and modulate defence against pathogens. In this review, an overview of recent findings in induced defence signalling, with a particular focus on newer signalling molecules and how they integrate into these networks is discussed.
Collapse
|
31
|
Zbyradowski M, Duda M, Wisniewska-Becker A, Heriyanto, Rajwa W, Fiedor J, Cvetkovic D, Pilch M, Fiedor L. Triplet-driven chemical reactivity of β-carotene and its biological implications. Nat Commun 2022; 13:2474. [PMID: 35513374 PMCID: PMC9072317 DOI: 10.1038/s41467-022-30095-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
The endoperoxides of β-carotene (βCar-EPOs) are regarded as main products of the chemical deactivation of 1O2 by β-carotene, one of the most important antioxidants, following a concerted singlet-singlet reaction. Here we challenge this view by showing that βCar-EPOs are formed in the absence of 1O2 in a non-concerted triplet-triplet reaction: 3O2 + 3β-carotene → βCar-EPOs, in which 3β-carotene manifests a strong biradical character. Thus, the reactivity of β-carotene towards oxygen is governed by its excited triplet state. βCar-EPOs, while being stable in the dark, are photochemically labile, and are a rare example of nonaromatic endoperoxides that release 1O2, again not in a concerted reaction. Their light-induced breakdown triggers an avalanche of free radicals, which accounts for the pro-oxidant activity of β-carotene and the puzzling swap from its anti- to pro-oxidant features. Furthermore, we show that βCar-EPOs, and carotenoids in general, weakly sensitize 1O2. These findings underlie the key role of the triplet state in determining the chemical and photophysical features of β-carotene. They shake up the prevailing models of carotenoid photophysics, the anti-oxidant functioning of β-carotene, and the role of 1O2 in chemical signaling in biological photosynthetic systems. βCar-EPOs and their degradation products are not markers of 1O2 and oxidative stress but of the overproduction of extremely hazardous chlorophyll triplets in photosystems. Hence, the chemical signaling of overexcitation of the photosynthetic apparatus is based on a 3chlorophyll-3β-carotene relay, rather than on extremely short-lived 1O2.
Collapse
Affiliation(s)
- Mateusz Zbyradowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Heriyanto
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.,Ma Chung Research Center for Photosynthetic Pigments, Ma Chung University, Villa Puncak Tidar N-01, Malang, 65151, Indonesia
| | - Weronika Rajwa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Joanna Fiedor
- Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
| | - Dragan Cvetkovic
- Faculty of Technology, University of Niš, 16000, Leskovac, Serbia
| | - Mariusz Pilch
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.,Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| |
Collapse
|
32
|
Woodson JD. Control of chloroplast degradation and cell death in response to stress. Trends Biochem Sci 2022; 47:851-864. [DOI: 10.1016/j.tibs.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
|
33
|
Moretto JAS, de Freitas PNN, de Almeida ÉC, Altarugio LM, da Silva SV, de Fátima Fiore M, Pinto E. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. BMC Microbiol 2022; 22:78. [PMID: 35321650 PMCID: PMC8944028 DOI: 10.1186/s12866-022-02473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds β-cyclocitral and β-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01—non-producing and LTPNA 08—toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of β-ionone in both cultures. Results The results showed that β-cyclocitral and β-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of β-cyclocitral and β-ionone in normal culture conditions. It was observed that the β-cyclocitral concentration was higher than β-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more β-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more β-ionone, mainly at the initial times. In addition, the experiment results with the external addition of β-ionone in the cultures showed that the strain LTPNA 01 produced more β-cyclocitral in control conditions than in treatment. Nonetheless, β-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of β-ionone may favor the production of these compounds and inhibit the production of β-cyclocitral. Conclusion Our results showed that some abiotic factors, such as different light intensities and external application of β-ionone, can be triggers that lead to the production of VOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02473-6.
Collapse
Affiliation(s)
| | - Paloma Nathane Nunes de Freitas
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | | | - Marli de Fátima Fiore
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil. .,Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil. .,Food Research Center (FoRC - CEPID), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
34
|
Cai C, Zhang M, Chen H, Chen W, Chen W, Zhong Q. Enhancement of norisoprenoid and acetoin production for improving the aroma of fermented mango juice by Bacillus subtilis-HNU-B3. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
36
|
Harada KI. [Elucidation of Phenomena Involving Cyanobacteria in Freshwater Ecosystem by Chemically Ecological Approach]. YAKUGAKU ZASSHI 2022; 142:39-64. [PMID: 34980750 DOI: 10.1248/yakushi.21-00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lakes Sagami and Tsukui are reservoirs constructed by connecting to the Sagami River. Because of eutrophication of the lakes, cyanobacteria have appeared every year. This review deals with phenomena related to occurrence of cyanobacteria that have been observed for 40 years since 1974 at the lakes. These 40 years of observations raised three interesting issues including the retention of cyanobacteria on their surfaces. These phenomena have been attributed to the usual factors, such as illuminance, nutrition and water temperature, but our research results suggested that they cannot be resolved without the introduction of another factor. We have attempted to elucidate various phenomena involving cyanobacteria in lake ecosystems by chemical ecological methods using volatile organic compounds (VOCs) produced by the cyanobacteria as indicators. One of the VOCs, β-cyclocitral, was significantly involved in the above phenomena, which was considered to be produced by the carotenoid cleavage dioxygenase (CCD) of the cyanobacteria. β-Cyclocitral was not produced in the two known CCDs, but two additional CCDs to Microcystis aeruginosa participated to produce the β-cyclocitral. These CCDs did not directly produce β-cyclocitral, but it was accumulated in cells as their precursors. The released β-cyclocitral underwent a Baeyer-Villiger-like oxidation. It was speculated that Microcystis activated the CCD genes through density stress and produced β-cyclocitral, which acted as an allelopathic substance. As a result, the number of cells of cyanobacteria decreased, and the resulting nitrogen and phosphorus were fed to the living cyanobacteria. It is postulated that this "quorum sensing" was functioning in the above-mentioned issues.
Collapse
|
37
|
Zheng X, Yang Y, Al-Babili S. Exploring the Diversity and Regulation of Apocarotenoid Metabolic Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787049. [PMID: 34956282 PMCID: PMC8702529 DOI: 10.3389/fpls.2021.787049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
In plants, carotenoids are subjected to enzyme-catalyzed oxidative cleavage reactions as well as to non-enzymatic degradation processes, which produce various carbonyl products called apocarotenoids. These conversions control carotenoid content in different tissues and give rise to apocarotenoid hormones and signaling molecules, which play important roles in plant growth and development, response to environmental stimuli, and in interactions with surrounding organisms. In addition, carotenoid cleavage gives rise to apocarotenoid pigments and volatiles that contribute to the color and flavor of many flowers and several fruits. Some apocarotenoid pigments, such as crocins and bixin, are widely utilized as colorants and additives in food and cosmetic industry and also have health-promoting properties. Considering the importance of this class of metabolites, investigation of apocarotenoid diversity and regulation has increasingly attracted the attention of plant biologists. Here, we provide an update on the plant apocarotenoid biosynthetic pathway, especially highlighting the diversity of the enzyme carotenoid cleavage dioxygenase 4 (CCD4) from different plant species with respect to substrate specificity and regioselectivity, which contribute to the formation of diverse apocarotenoid volatiles and pigments. In addition, we summarize the regulation of apocarotenoid metabolic pathway at transcriptional, post-translational, and epigenetic levels. Finally, we describe inter- and intraspecies variation in apocarotenoid production observed in many important horticulture crops and depict recent progress in elucidating the genetic basis of the natural variation in the composition and amount of apocarotenoids. We propose that the illustration of biochemical, genetic, and evolutionary background of apocarotenoid diversity would not only accelerate the discovery of unknown biosynthetic and regulatory genes of bioactive apocarotenoids but also enable the identification of genetic variation of causal genes for marker-assisted improvement of aroma and color of fruits and vegetables and CRISPR-based next-generation metabolic engineering of high-value apocarotenoids.
Collapse
|
38
|
Arii S, Yamashita R, Tsuji K, Tomita K, Hasegawa M, Bober B, Harada KI. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. CHEMOSPHERE 2021; 284:131378. [PMID: 34217930 DOI: 10.1016/j.chemosphere.2021.131378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria produce numerous volatile organic compounds (VOCs) that show a lytic activity against other cyanobacteria. We found the lytic phenomenon under natural conditions and during densification experiments, and also observed the species change of the cyanobacteria during the lysis processes, in which Microcystis finally became dominant. The species change of the cyanobacteria was strongly suggested to depend on the susceptibility of the cyanobacteria toward the VOCs. To verify this suggestion, the susceptibility of the species was evaluated by the minimal inhibitory concentration (MIC) using axenic cyanobacterial strains against β-cyclocitral, its oxidation products and β-ionone with the aid of log D. It was found that the difference depended on the susceptibility of the cyanobacteria toward the VOCs, in which β-cyclocitral played a crucial role and Microcystis had a significantly protective ability compared to the other cyanobacteria. In addition, the species change of cyanobacteria was consistent with the cyanobacterial seasonal succession in Lakes Sagami and Tsukui, based on data that had been accumulated for 10 years. Conventionally, although this phenomenon could be explained by nutrient availability or the physical structure of the environment, the results of this study revealed that it was controlled by the VOCs, particularly β-cyclocitral produced by the cyanobacteria.
Collapse
Affiliation(s)
- Suzue Arii
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan.
| | - Ryuji Yamashita
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Kiyomi Tsuji
- Kanagawa Prefectural Institute of Public Health, Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan
| | - Koji Tomita
- Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan
| | - Masateru Hasegawa
- Aichi Prefectural Institute of Public Health, Tsujimachi, Kita, Nagoya, 462-8576, Japan
| | - Beata Bober
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan; Department of Plant Physiology and Development, Jagiellonian University, Krakow, Poland
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| |
Collapse
|
39
|
Deshpande S, Purkar V, Mitra S. β-Cyclocitral, a Master Regulator of Multiple Stress-Responsive Genes in Solanum lycopersicum L. Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112465. [PMID: 34834828 PMCID: PMC8618229 DOI: 10.3390/plants10112465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/06/2023]
Abstract
β-cyclocitral (βCC), a major apocarotenoid of β-carotene, enhances plants' defense against environmental stresses. However, the knowledge of βCC's involvement in the complex stress-signaling network is limited. Here we demonstrate how βCC reprograms the transcriptional responses that enable Solanum lycopersicum L. (tomato) plants to endure a plethora of environmental stresses. Comparative transcriptome analysis of control and βCC-treated tomato plants was done by generating RNA sequences in the BGISEQ-500 platform. The trimmed sequences were mapped on the tomato reference genome that identifies 211 protein-coding differentially expressed genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis and their enrichment uncovered that only upregulated genes are attributed to the stress response. Moreover, 80% of the upregulated genes are functionally related to abiotic and biotic stresses. Co-functional analysis of stress-responsive genes revealed a network of 18 genes that code for heat shock proteins, transcription factors (TFs), and calcium-binding proteins. The upregulation of jasmonic acid (JA)-dependent TFs (MYC2, MYB44, ERFs) but not the JA biosynthetic genes is surprising. However, the upregulation of DREB3, an abscisic acid (ABA)-independent TF, validates the unaltered expression of ABA biosynthetic genes. We conclude that βCC treatment upregulates multiple stress-responsive genes without eliciting JA and ABA biosynthesis.
Collapse
|
40
|
Luo S, Kim C. Current Understanding of Temperature Stress-Responsive Chloroplast FtsH Metalloproteases. Int J Mol Sci 2021; 22:ijms222212106. [PMID: 34829988 PMCID: PMC8622299 DOI: 10.3390/ijms222212106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.
Collapse
Affiliation(s)
- Shengji Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
- Correspondence:
| |
Collapse
|
41
|
Abiotic and Biotic Damage of Microalgae Generate Different Volatile Organic Compounds (VOCs) for Early Diagnosis of Algal Cultures for Biofuel Production. Metabolites 2021; 11:metabo11100707. [PMID: 34677422 PMCID: PMC8541270 DOI: 10.3390/metabo11100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Open microalgal ponds used in industrial biomass production are susceptible to a number of biotic and abiotic environmental stressors (e.g., grazers, pathogens, pH, temperature, etc.) resulting in pond crashes with high economic costs. Identification of signature chemicals to aid in rapid, non-invasive, and accurate identification of the stressors would facilitate targeted and effective treatment to save the algal crop from a catastrophic crash. Specifically, we were interested in identifying volatile organic compounds (VOCs) that can be used to as an early diagnostic for algal crop damage. Cultures of Microchloropsis gaditana were subjected to two forms of algal crop damage: (1) active grazing by the marine rotifer, Brachionus plicatilis, or (2) repeated freeze–thaw cycles. VOCs emitted above the headspace of these algal cultures were collected using fieldable solid phase microextraction (SPME) fibers. An untargeted analysis and identification of VOCs was conducted using gas chromatography-mass spectrometry (GC-MS). Diagnostic VOCs unique to each algal crop damage mechanism were identified. Active rotifer grazing of M. gaditana was characterized by the appearance of carotenoid degradation products, including β-cyclocitral and various alkenes. Freeze–thaw algae produced a different set of VOCs, including palmitoleic acid. Both rotifer grazing and freeze–thawed algae produced β-ionone as a VOC, possibly suggesting a common stress-induced cellular mechanism. Importantly, these identified VOCs were all absent from healthy algal cultures of M. gaditana. Early detection of biotic or abiotic environmental stressors will facilitate early diagnosis and application of targeted treatments to prevent algal pond crashes. Thus, our work further supports the use of VOCs for monitoring the health of algal ponds to ultimately enhance algal crop yields for production of biofuel.
Collapse
|
42
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
43
|
Sun W, Zhan J, Zheng T, Wu G, Xu H, Chen Y, Yao M, Zeng J, Yan J, Chen H. Involvement of several putative transporters of different families in β-cyclocitral-induced alleviation of cadmium toxicity in quinoa (Chenopodium quinoa) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126474. [PMID: 34186425 DOI: 10.1016/j.jhazmat.2021.126474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has a serious negative impact on crop growth and human food security. This study investigated the alleviating effect of β-cyclocitral, a potential heavy metal barrier, on Cd stress in quinoa seedlings and the associated mechanisms. Our results showed that β-cyclocitral alleviated Cd stress-induced growth inhibition in quinoa seedlings and promoted quinoa seedling root development under Cd stress. Moreover, it maintained the antioxidant system of quinoa seedlings, including the enzymatic, i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and nonenzymatic, i.e., reduced glutathione (GSH) and ascorbic acid (ASA), antioxidants, which eliminate the damage from excessive reactive oxygen species (ROS). Our results showed that β-cyclocitral could reduce the amount of Cd absorbed by roots. Furthermore, we systematically identified five transporter families from the quinoa genome, and the RT-qPCR results showed that ZIP, Nramp and YSL gene families were downregulated by β-cyclocitral to reduce Cd uptake by roots. Thus, β-cyclocitral promoted the growth, photosynthetic capacity and antioxidant capacity of the aboveground parts of quinoa seedlings. Taken together, these results suggested that the β-cyclocitral-induced decrease in Cd uptake may be caused by the downregulation of several selected transporter genes.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Junyi Zhan
- College of Life Science, Nanjing Agricultural University, Nanjing 210032, China.
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Guoming Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Haishen Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Min Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jing Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
44
|
Calderon RH, Strand Å. How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102093. [PMID: 34390927 DOI: 10.1016/j.pbi.2021.102093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts and mitochondria evolved from free-living prokaryotic organisms that entered the eukaryotic cell through endosymbiosis. The gradual conversion from endosymbiont to organelle during the course of evolution was accompanied by the development of a communication system between the host and the endosymbiont, referred to as retrograde signaling or organelle-to-nucleus signaling. In higher plants, plastid-to-nucleus signaling involves multiple signaling pathways necessary to coordinate plastid function and cellular responses to developmental and environmental stimuli. Phylogenetic reconstructions using sequence information from evolutionarily diverse photosynthetic eukaryotes have begun to provide information about how retrograde signaling pathways were adopted and modified in different lineages over time. A tight communication system was likely a major facilitator of plants conquest of the land because it would have enabled the algal ancestors of land plants to better allocate their cellular resources in response to high light and desiccation, the major stressor for streptophyte algae in a terrestrial habitat. In this review, we aim to give an evolutionary perspective on plastid-to-nucleus signaling.
Collapse
Affiliation(s)
- Robert H Calderon
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
45
|
Mogg TJ, Burton GW. The β-carotene–oxygen copolymer: its relationship to apocarotenoids and β-carotene function. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
β-carotene spontaneously copolymerizes with molecular oxygen to form a β-carotene–oxygen copolymer compound (“copolymer”) as the main product, together with small amounts of many apocarotenoids. Both the addition and scission products are interpreted as being formed during progression through successive free radical β-carotene–oxygen adduct intermediates. The product mixture from full oxidation of β-carotene, lacking both vitamin A and β-carotene, has immunological activities, some of which are derived from the copolymer. However, the copolymer’s chemical makeup is unknown. A chemical breakdown study shows the compound to be moderately stable but nevertheless the latent source of many small apocarotenoids. GC–MS analysis with mass-spectral library matching identified a minimum of 45 structures, while more than 90 others remain unassigned. Newly identified products include various small keto carboxylic acids and dicarboxylic acids, several of which are central metabolic intermediates. Also present are glyoxal and methyl glyoxal dialdehydes, recently reported as β-carotene metabolites in plants. Although both compounds at higher concentrations are known to be toxic, at low concentration, methyl glyoxal has been reported to be potentially capable of activating an immune response against microbial infection. In plants, advantage is taken of the electrophilic reactivity of specific apocarotenoids derived from β-carotene oxidation to activate protective defenses. Given the copolymer occurs naturally and is a major product of non-enzymatic β-carotene oxidation in stored plants, by partially sequestering apocarotenoid metabolites, the copolymer may serve to limit potential toxicity and maintain low cellular apocarotenoid concentrations for signaling purposes. In animals, the copolymer may serve as a systemic source of apocarotenoids.
Collapse
Affiliation(s)
- Trevor J. Mogg
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Graham W. Burton
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
46
|
Burton GW, Mogg TJ, Riley WW, Nickerson JG. β-Carotene oxidation products - Function and safety. Food Chem Toxicol 2021; 152:112207. [PMID: 33891992 DOI: 10.1016/j.fct.2021.112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
β-Carotene oxidation products have newly discovered bioactivity in plants and animals. Synthetic fully oxidized β-carotene (OxBC) has application in supporting livestock health, with potential human applications. The safety of synthetic OxBC has been evaluated. An Ames test showed weak-to-moderate mutagenicity in only one cell line at high concentrations. A mouse micronucleus assay established a non-toxic dose of 1800 mg/kg body weight, and no bone marrow micronuclei were induced. Plant sources of β-carotene inevitably contain varying levels of natural OxBC. Vegetable powders and dried forages can be especially rich. Intakes of natural OxBC for humans and livestock alike have been estimated. The exposure range for humans (1-22 mg/serving) is comparable to the safe intake of β-carotene (<15 mg/d). In livestock, OxBC in alfalfa can contribute ~550-850 mg/head/d for dairy cattle but in forage-deficient poultry feed much less (~1 ppm). Livestock intake of supplemental synthetic OxBC is comparable to OxBC potentially available from traditional plant sources. Human intake of synthetic OxBC in meat from livestock fed OxBC is similar to a single serving of food made with carrot powder. It is concluded that consumption of synthetic OxBC at levels comparable to natural OxBC is safe for humans and animals.
Collapse
Affiliation(s)
- Graham W Burton
- Avivagen Inc., 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada.
| | - Trevor J Mogg
- Avivagen Inc., 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | | | | |
Collapse
|
47
|
Liang MH, He YJ, Liu DM, Jiang JG. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Crit Rev Biotechnol 2021; 41:513-534. [PMID: 33541157 DOI: 10.1080/07388551.2021.1873242] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are important precursors of a wide range of apocarotenoids with their functions including: hormones, pigments, retinoids, volatiles, and signals, which can be used in the food, flavors, fragrances, cosmetics, and pharmaceutical industries. This article focuses on the formation of these multifaceted apocarotenoids and their diverse biological roles in all living systems. Carotenoid degradation pathways include: enzymatic oxidation by specific carotenoid cleavage oxygenases (CCOs) or nonspecific enzymes such as lipoxygenases and peroxidases and non-enzymatic oxidation by reactive oxygen species. Recent advances in the regulation of carotenoid cleavage genes and the biotechnological production of multiple apocarotenoids are also covered. It is suggested that different developmental stages and environmental stresses can influence both the expression of carotenoid cleavage genes and the formation of apocarotenoids at multiple levels of regulation including: transcriptional, transcription factors, posttranscriptional, posttranslational, and epigenetic modification. Regarding the biotechnological production of apocarotenoids especially: crocins, retinoids, and ionones, enzymatic biocatalysis and metabolically engineered microorganisms have been a promising alternative route. New substrates, carotenoid cleavage enzymes, biosynthetic pathways for apocarotenoids, and new biological functions of apocarotenoids will be discussed with the improvement of our understanding of apocarotenoid biology, biochemistry, function, and formation from different organisms.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
48
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|