1
|
Han D, Lin C, Xia S, Zheng X, Zhu C, Shen Y, Chen Y, Peng C, Wang C, He J, Lai J, Yang C. The Role of Carnosic Acid in the UV-B Stress Resistance Signalling Pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1232-1241. [PMID: 39440524 DOI: 10.1111/pce.15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Carnosic acid (CA) is recognized as an antioxidant that confers protection to plants against various forms of oxidative stress, including UV-B stress. However, limited research has been conducted to elucidate the molecular mechanisms underlying its defence against UV-B stress. In this study, we demonstrated that CA exhibits more efficacy compared to other antioxidants in UV-B resistance. Moreover, CA was found to enhance the accumulation of secondary metabolites in Arabidopsis leaves. Through the analysis of differentially expressed genes in response to UV-B stress with or without CA treatment, we uncovered that the exogenous application of CA effectively activates the flavonoid biosynthesis pathway in Arabidopsis to improve resistance of Arabidopsis to UV-B stress.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Chufang Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Simin Xia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengluo Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Changlian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Caijuan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
4
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
5
|
Jezek M, Allan AC, Jones JJ, Geilfus CM. Why do plants blush when they are hungry? THE NEW PHYTOLOGIST 2023; 239:494-505. [PMID: 36810736 DOI: 10.1111/nph.18833] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/13/2023] [Indexed: 06/15/2023]
Abstract
Foliar anthocyanins, as well as other secondary metabolites, accumulate transiently under nutritional stress. A misconception that only nitrogen or phosphorus deficiency induces leaf purpling/reddening has led to overuse of fertilizers that burden the environment. Here, we emphasize that several other nutritional imbalances induce anthocyanin accumulation, and nutrient-specific differences in this response have been reported for some deficiencies. A range of ecophysiological functions have been attributed to anthocyanins. We discuss the proposed functions and signalling pathways that elicit anthocyanin synthesis in nutrient-stressed leaves. Knowledge from the fields of genetics, molecular biology, ecophysiology and plant nutrition is combined to deduce how and why anthocyanins accumulate under nutritional stress. Future research to fully understand the mechanisms and nuances of foliar anthocyanin accumulation in nutrient-stressed crops could be utilized to allow these leaf pigments to act as bioindicators for demand-oriented application of fertilizers. This would benefit the environment, being timely due to the increasing impact of the climate crisis on crop performance.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jeffrey J Jones
- Department of Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| |
Collapse
|
6
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Zhao S, Blum JA, Ma F, Wang Y, Borejsza-Wysocka E, Ma F, Cheng L, Li P. Anthocyanin Accumulation Provides Protection against High Light Stress While Reducing Photosynthesis in Apple Leaves. Int J Mol Sci 2022; 23:ijms232012616. [PMID: 36293472 PMCID: PMC9604341 DOI: 10.3390/ijms232012616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
The photoprotective role of anthocyanin remains controversial. In this study, we explored the effects of anthocyanin on photosynthesis and photoprotection using transgenic ‘Galaxy Gala’ apple plants overexpressing MdMYB10 under high light stress. The overexpression of MdMYB10 dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed, particularly in the green region. However, through post-transcriptional regulation, anthocyanin accumulation lowered leaf photosynthesis in both photochemical reaction and CO2 fixation capacities. Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin, as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory conditions when detached leaves lost carbon fixation capacity due to the limitation of CO2 supply, the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or blue light, but it became more severe in response to strong red light compared with that of the wild type. In field conditions when photosynthesis was performed normally in both green and transgenic red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild type leaves, but it was less severe in transgenic young shoot bark compared with the wild type. Taken together, these data show that anthocyanin protects plants from high light stress by absorbing excessive visible light despite reducing photosynthesis.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Jeremie A. Blum
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center and Agricultural Research Service, US Department of Agriculture, St. Louis, MO 63132, USA
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yuzhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Ewa Borejsza-Wysocka
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (L.C.); (P.L.)
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (L.C.); (P.L.)
| |
Collapse
|
8
|
Niu B, Li Q, Fan L, Shi X, Liu Y, Zhuang Q, Qin X. De Novo Assembly of a Sarcocarp Transcriptome Set Identifies AaMYB1 as a Regulator of Anthocyanin Biosynthesis in Actinidia arguta var. purpurea. Int J Mol Sci 2022; 23:ijms232012120. [PMID: 36292977 PMCID: PMC9603036 DOI: 10.3390/ijms232012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
The kiwifruit (Actinidia arguta var. purpurea) produces oval shaped fruits containing a slightly green or mauve outer exocarp and a purple-flesh endocarp with rows of tiny black seeds. The flesh color of the fruit results from a range of anthocyanin compounds, and is an important trait for kiwifruit consumers. To elucidate the molecular mechanisms involved in anthocyanin biosynthesis of the sarcocarp during A. arguta fruit development, de novo assembly and transcriptomic profile analyses were performed. Based on significant Gene Ontology (GO) biological terms, differentially expressed genes were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and amino acid metabolic processes. The genes closely related to anthocyanin biosynthesis, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and anthocyanidin synthase (ANS), displayed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed by qRT-PCR. Meanwhile, a series of transcription factor genes were identified among the DEGs. Through a correlation analysis. AaMYB1 was found to be significantly correlated with key genes of anthocyanin biosynthesis, especially with CHS. Through a transient expression assay, AaMYB1 induced anthocyanin accumulation in tobacco leaves. These data provide an important basis for exploring the related mechanisms of sarcocarp anthocyanin biosynthesis in A. arguta. This study will provide a strong foundation for functional studies on A. arguta and will facilitate improved breeding of A. arguta fruit.
Collapse
Affiliation(s)
- Bei Niu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Qiaohong Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Lijuan Fan
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuan Liu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Qiguo Zhuang
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Xiaobo Qin
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence:
| |
Collapse
|
9
|
Kulshrestha S, Jibran R, van Klink JW, Zhou Y, Brummell DA, Albert NW, Schwinn KE, Chagné D, Landi M, Bowman JL, Davies KM. Stress, senescence, and specialized metabolites in bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4396-4411. [PMID: 35259256 PMCID: PMC9291361 DOI: 10.1093/jxb/erac085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
Life on land exposes plants to varied abiotic and biotic environmental stresses. These environmental drivers contributed to a large expansion of metabolic capabilities during land plant evolution and species diversification. In this review we summarize knowledge on how the specialized metabolite pathways of bryophytes may contribute to stress tolerance capabilities. Bryophytes are the non-tracheophyte land plant group (comprising the hornworts, liverworts, and mosses) and rapidly diversified following the colonization of land. Mosses and liverworts have as wide a distribution as flowering plants with regard to available environments, able to grow in polar regions through to hot desert landscapes. Yet in contrast to flowering plants, for which the biosynthetic pathways, transcriptional regulation, and compound function of stress tolerance-related metabolite pathways have been extensively characterized, it is only recently that similar data have become available for bryophytes. The bryophyte data are compared with those available for angiosperms, including examining how the differing plant forms of bryophytes and angiosperms may influence specialized metabolite diversity and function. The involvement of stress-induced specialized metabolites in senescence and nutrient response pathways is also discussed.
Collapse
Affiliation(s)
- Samarth Kulshrestha
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
10
|
Luo Y, Teng S, Yin H, Zhang S, Tuo X, Tran LSP. Transcriptome Analysis Reveals Roles of Anthocyanin- and Jasmonic Acid-Biosynthetic Pathways in Rapeseed in Response to High Light Stress. Int J Mol Sci 2021; 22:ijms222313027. [PMID: 34884828 PMCID: PMC8657659 DOI: 10.3390/ijms222313027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Rapeseed (Brassica napus) is one of the major important oil crops worldwide and is largely cultivated in the Qinghai-Tibetan plateau (QTP), where long and strong solar-radiation is well-known. However, the molecular mechanisms underlying rapeseed's response to light stress are largely unknown. In the present study, the color of rapeseed seedlings changed from green to purple under high light (HL) stress conditions. Therefore, changes in anthocyanin metabolism and the transcriptome of rapeseed seedlings cultured under normal light (NL) and HL conditions were analyzed to dissect how rapeseed responds to HL at the molecular level. Results indicated that the contents of anthocyanins, especially glucosides of cyanidin, delphinidin, and petunidin, which were determined by liquid chromatography-mass spectrometry (LC-MS), increased by 9.6-, 4.2-, and 59.7-fold in rapeseed seedlings exposed to HL conditions, respectively. Next, RNA-sequencing analysis identified 7390 differentially expressed genes (DEGs), which included 4393 up-regulated and 2997 down-regulated genes. Among the up-regulated genes, many genes related to the anthocyanin-biosynthetic pathway were enriched. For example, genes encoding dihydroflavonol reductase (BnDFR) and anthocyanin synthase (BnANS) were especially induced by HL conditions, which was also confirmed by RT-qPCR analysis. In addition, two PRODUCTION OF ANTHOCYANIN PIGMENTATION 2 (BnPAP2) and GLABRA3 (BnGL3) genes encoding MYB-type and bHLH-type transcription factors, respectively, whose expression was also up-regulated by HL stress, were found to be associated with the changes in anthocyanin biosynthesis. Many genes involved in the jasmonic acid (JA)-biosynthetic pathway were also up-regulated under HL conditions. This finding, which is in agreement with the well-known positive regulatory role of JA in anthocyanin biosynthesis, suggests that the JA may also play a key role in the responses of rapeseed seedlings to HL. Collectively, these data indicate that anthocyanin biosynthesis-related and JA biosynthesis-related pathways mediate HL responses in rapeseed. These findings collectively provide mechanistic insights into the mechanisms involved in the response of rapeseed to HL stress, and the identified key genes may potentially be used to improve HL tolerance of rapeseed cultivars through genetic engineering or breeding strategies.
Collapse
Affiliation(s)
- Yuxiu Luo
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Shoulian Teng
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (H.Y.); or (L.-S.P.T.); Tel.: +86-971-531-0086 (H.Y.)
| | - Shengping Zhang
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining 810016, China;
| | - Xiaoyun Tuo
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: (H.Y.); or (L.-S.P.T.); Tel.: +86-971-531-0086 (H.Y.)
| |
Collapse
|