1
|
Zhang H, Yao T, Wang J, Ji G, Cui C, Song J, Sun N, Qi S, Xu N, Zhang H. Genome-wide identification of R2R3-MYB transcription factors in Betula platyphylla and functional analysis of BpMYB95 in salt tolerance. Int J Biol Macromol 2024; 279:135193. [PMID: 39216584 DOI: 10.1016/j.ijbiomac.2024.135193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The Myeloblastosis (MYB) transcription factor (TF) family is one of the largest transcription factor families in plants and plays an important role in various physiological processes. At present, there are few reports on birch (Betula platyphylla Suk.) of R2R3-MYB-TFs, and most BpMYBs still need to be characterized. In this study, 111 R2R3-MYB-TFs with conserved R2 and R3 MYB domains were identified. Phylogenetic tree analysis showed that the MYB family members of Arabidopsis thaliana and birch were divided into 23 and 21 subgroups, respectively. The latter exhibited an uneven distribution across 14 chromosomes. There were five tandem duplication events and 17 segmental duplication events between BpMYBs, and repeat events play an important role in the expansion of the family. In addition, the promoter region of MYBs was rich in various cis-acting elements, and MYB-TFs were involved in plant growth and development, light responses, biotic stress, and abiotic stress. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results revealed that most R2R3-MYB-TFs in birch responded to salt stress. In particular, the expression of BpMYBs in the S20 subfamily was significantly induced by salt, drought, abscisic acid, and methyl jasmonate stresses. Based on the weighted co-expression network analysis of physiological and RNA-seq data of birch under salt stress, a key MYB-TF BpMYB95 (BPChr12G24087), was identified in response to salt stress, and its expression level was induced by salt stress. BpMYB95 is a nuclear localization protein with transcriptional activation activity in yeast and overexpression of this gene significantly enhanced salt tolerance in Saccharomyces cerevisiae. The qRT-PCR and histochemical staining results showed that BpMYB95 exhibited the highest expression in the roots, young leaves, and petioles of birch plants. Overexpression of BpMYB95 significantly improved salt-induced browning and wilting symptoms in birch leaves and alleviated the degree of PSII photoinhibition caused by salt stress in birch seedlings. In conclusion, most R2R3-MYB-TFs found in birch were involved in the salt stress response mechanisms. Among these, BpMYB95 was a key regulatory factor that significantly enhanced salt tolerance in birch. The findings of this study provide valuable genetic resources for the development of salt-tolerant birch varieties.
Collapse
Affiliation(s)
- Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Tongtong Yao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyue Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Xu
- Harbin Univ, Sch Geog & Tourism, Key Lab Heilongjiang Prov Cold Reg Wetlands Ecol &, Harbin, China.
| | - Huiui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
3
|
Xu Y, Li Y, Zhou Z, Jiao J, Zhang H, Li H, Hu F, Xu L. Arabidopsis thaliana YUC1 reduced fluoranthene accumulation by modulating IAA content and antioxidant enzyme activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116992. [PMID: 39244882 DOI: 10.1016/j.ecoenv.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Indole-3-acetic acid (IAA) can regulate plant growth and thus modulate the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the effect of endogenous IAA on PAHs accumulation and its influencing factors remains unclear. To unravel this, two different IAA expression genotypes of Arabidopsis thaliana, i.e., IAA-underproducing yucca1D [YUC1] mutant and wild type [WT]) were selected and treated with different fluoranthene (Flu) concentrations (0 mg/L [CK], 5 mg/L [Flu5], and 20 mg/L [Flu20]) to reveal the impact mechanism of endogenous IAA on Flu uptake by plants. The results indicated that under Flu5 treatment, the bioconcentration factors (BCF) and translocation factors (TF) of Flu in WT were 41.4 % and 14.3 % higher than those in YUC1. Similarly, under Flu20 treatment, the BCF and TF of Flu in WT were also 42.2 % and 8.2 % higher than those in YUC1. In addition, the BCF and TF were 72.5 % and 35.8 % higher under Flu5 treatment compared to Flu20 treatment for WT, and 73.4 % and 28.6 % higher respectively for YUC1. Moreover, WT exhibited higher plant growth (biomass, root morphology indicators [root length, root area and number of tips]) and IAA content compared to YUC1 under identical Flu treatments. Plant growth and IAA content declined with the increase of Flu concentration in both YUC1 and WT leaves compared with CK treatment. Conversely, in WT roots, root biomass and morphology indicators promoted followed by a decrease as the concentration of Flu increased. Additionally, the antioxidant enzyme activities (SOD, POD, and CAT) of WT were 11.1 %, 16.7 %, and 28.9 % higher than those of YUC1 under Flu5 treatment, and 13.6 %, 12.9 %, and 26.5 % higher under Flu20 treatment. Compared with CK treatment, SOD and POD activities promoted with increasing Flu concentration, whereas CAT activities decreased. Variability separation analysis revealed that level of IAA primarily influenced Flu accumulation in WT or under Flu5 treatments, whereas antioxidant enzyme activity primarily affected Flu accumulation in YUC1 or under Flu20 treatments. Exploring the relationship between the IAA synthesis gene YUCCA and IAA levels, alongside Flu accumulation, could yield novel insights into the regulation of PAH accumulation in plants.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yunyun Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhiguo Zhou
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huijuan Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China; Sanya Institute of Nanjing Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
4
|
Jin Q, Yang K, Zhang Y, Zhang S, Liu Z, Guan Y, Zhang L, Zhang Y, Wang Q. Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108975. [PMID: 39084170 DOI: 10.1016/j.plaphy.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Kexin Yang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China.
| |
Collapse
|
5
|
Zhu Y, Wang H, Xiang X, Hayat K, Wu R, Tian J, Zheng H, Xie M, Li B, Du S. A dose-dependent effect of UV-328 on photosynthesis: Exploring light harvesting and UV-B sensing mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134670. [PMID: 38781858 DOI: 10.1016/j.jhazmat.2024.134670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Benzotriazole ultraviolet (UV) stabilizers (BUVs) have emerged as significant environmental contaminants, frequently detected in various ecosystems. While the toxicity of BUVs to aquatic organisms is well-documented, studies on their impact on plant life are scarce. Plants are crucial as they provide the primary source of energy and organic matter in ecosystems through photosynthesis. This study investigated the effects of UV-328 (2-(2-hydroxy-4',6'-di-tert-amylphenyl) benzotriazole) on plant growth indices and photosynthesis processes, employing conventional physiological experiments, RNA sequencing (RNA-seq) analysis, and computational methods. Results demonstrated a biphasic response in plant biomass and the maximum quantum yield of PS II (Fv/Fm), showing improvement at a 50 μM UV-328 treatment but reduction under 150 μM UV-328 exposure. Additionally, disruption in thylakoid morphology was observed at the higher concentration. RNA-seq and qRT-PCR analysis identified key differentially expressed genes (light-harvesting chlorophyll-protein complex Ⅰ subunit A4, light-harvesting chlorophyll b-binding protein 3, UVR8, and curvature thylakoid 1 A) related to photosynthetic light harvesting, UV-B sensing, and chloroplast structure pathways, suggesting they may contribute to the observed alterations in photosynthesis activity induced by UV-328 exposure. Molecular docking analyses further supported the binding affinity between these proteins and UV-328. Overall, this study provided comprehensive physiological and molecular insights, contributing valuable information to the evaluation of the potential risks posed by UV-328 to critical plant physiological processes.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaobo Xiang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Beier Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
6
|
Xu J, Wang T, Wang X, Yan H, Liu P, Hou X, Gao Y, Yang L, Zhang L. Exogenous Eugenol Alleviates Salt Stress in Tobacco Seedlings by Regulating the Antioxidant System and Hormone Signaling. Int J Mol Sci 2024; 25:6771. [PMID: 38928476 PMCID: PMC11203479 DOI: 10.3390/ijms25126771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Salt stress seriously affects crop growth, leading to a decline in crop quality and yield. Application of exogenous substances to improve the salt tolerance of crops and promote their growth under salt stress has become a widespread and effective means. Eugenol is a small molecule of plant origin with medicinal properties such as antibacterial, antiviral, and antioxidant properties. In this study, tobacco seedlings were placed in Hoagland's solution containing NaCl in the presence or absence of eugenol, and physiological indices related to stress tolerance were measured along with transcriptome sequencing. The results showed that eugenol improved the growth of tobacco seedlings under salt stress. It promoted carbon and nitrogen metabolism, increased the activities of nitrate reductase (NR), sucrose synthase (SS), and glutamine synthetase (GS) by 31.03, 5.80, and 51.06%. It also activated the enzymatic and non-enzymatic antioxidant systems, reduced the accumulation of reactive oxygen species in the tobacco seedlings, and increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) by 24.38%, 18.22%, 21.60%, and 28.8%, respectively. The content of glutathione (GSH) was increased by 29.49%, and the content of superoxide anion (O2-) and malondialdehyde (MDA) were reduced by 29.83 and 33.86%, respectively. Promoted osmoregulation, the content of Na+ decreased by 34.34, K+ increased by 41.25%, and starch and soluble sugar increased by 7.72% and 25.42%, respectively. It coordinated hormone signaling in seedlings; the content of abscisic acid (ABA) and gibberellic acid 3 (GA3) increased by 51.93% and 266.28%, respectively. The transcriptome data indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, the MAPK signaling pathway, and phytohormone signal transduction pathways. The results of this study revealed the novel role of eugenol in regulating plant resistance and provided a reference for the use of exogenous substances to alleviate salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China; (J.X.); (T.W.); (X.W.); (H.Y.); (P.L.); (X.H.); (Y.G.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China; (J.X.); (T.W.); (X.W.); (H.Y.); (P.L.); (X.H.); (Y.G.)
| |
Collapse
|
7
|
Feng C, Li J, Yang W, Chen Z. Study on the inactivation effect and mechanism of EGCG disinfectant on Bacillus subtilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124364. [PMID: 38878811 DOI: 10.1016/j.envpol.2024.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The widespread use of chlorine-based disinfectants in drinking water treatment has led to the proliferation of chlorine-resistant bacteria and the risk of disinfection byproducts (DBPs), posing a serious threat to public health. This study aims to explore the effectiveness and potential applications of epigallocatechin gallate (EGCG) against chlorine-resistant Bacillus and its spores in water, providing new insights for the control of chlorine-resistant bacteria and improving the biological stability of distribution systems. The inactivation effects of EGCG on Bacillus subtilis (B. subtilis) and its spores were investigated using transmission electron microscopy, ATP measurement, and transcriptome sequencing analysis to determine changes in surface structure, energy metabolism, and gene expression levels, thereby elucidating the inactivation mechanism. The results demonstrate the potential application of EGCG in continuously inhibiting chlorine-resistant B. subtilis in water, effectively improving the biological stability of the distribution system. However, EGCG is not suitable for treating raw water with high spore content and is more suitable as a supplementary disinfectant for processes with strong spore removal capabilities, such as ozone, ultraviolet, or ultrafiltration. EGCG exhibits a disruptive effect on the morphological structure and energy metabolism of B. subtilis and suppresses the synthesis of substances, energy metabolism, and normal operation of the antioxidant system by inhibiting the expression of multiple genes, thereby achieving the inactivation of B. subtilis.
Collapse
Affiliation(s)
- Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Jing Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Weiqi Yang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zexin Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
8
|
Guo Z, Zuo Y, Wang S, Zhang X, Wang Z, Liu Y, Shen Y. Early signaling enhance heat tolerance in Arabidopsis through modulating jasmonic acid synthesis mediated by HSFA2. Int J Biol Macromol 2024; 267:131256. [PMID: 38556243 DOI: 10.1016/j.ijbiomac.2024.131256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Given the detrimental impact of global warming on crop production, it is particularly important to understand how plants respond and adapt to higher temperatures. Using the non-invasive micro-test technique and laser confocal microscopy, we found that the cascade process of early signals (K+, H2O2, H+, and Ca2+) ultimately resulted in an increase in the cytoplasmic Ca2+ concentration when Arabidopsis was exposed to heat stress. Quantitative real-time PCR demonstrated that heat stress significantly up-regulated the expression of CAM1, CAM3 and HSFA2; however, after CAM1 and CAM3 mutation, the upregulation of HSFA2 was reduced. In addition, heat stress affected the expression of LOX3 and OPR3, which was not observed when HSFA2 was mutated. Luciferase reporter gene expression assay and electrophoretic mobility shift assay showed that HSFA2 regulated the expression of both genes. Determination of jasmonic acid (JA) content showed that JA synthesis was promoted by heat stress, but was damaged when HSFA2 and OPR3 were mutated. Finally, physiological experiments showed that JA reduced the relative electrical conductivity of leaves, enhanced chlorophyll content and relative water content, and improved the survival rate of Arabidopsis under heat stress. Together, our results reveal a new pathway for Arabidopsis to sense and transmit heat signals; HSFA2 is involved in the JA synthesis, which can act as a defensive compound improving Arabidopsis heat tolerance.
Collapse
Affiliation(s)
- Zhujuan Guo
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yixin Zuo
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
9
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|
10
|
Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J, Wei Z, Liu F. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166978. [PMID: 37704141 DOI: 10.1016/j.scitotenv.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.
Collapse
Affiliation(s)
- Jingxiang Hou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Wan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
| | - Kehao Liang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Bingjing Cui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yiting Chen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Jie Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Wang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhua Wei
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark.
| |
Collapse
|
11
|
Zhou H, Liu M, Meng F, Zheng D, Feng N. Transcriptomics and physiology reveal the mechanism of potassium indole-3-butyrate (IBAK) mediating rice resistance to salt stress. BMC PLANT BIOLOGY 2023; 23:569. [PMID: 37968598 PMCID: PMC10652493 DOI: 10.1186/s12870-023-04531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND IBAK, as a plant growth regulator, has broad application prospects in improving crop resistance to abiotic stress. RESULTS In this study, the regulation mechanism of IBAK on rice was revealed by physiology and transcriptomics by spraying 80 mg·L-1 IBAK solution on rice leaves at the early jointing stage under salt stress. The results showed that spraying IBAK solution on leaves under salt stress could significantly increase K+ content, decrease Na+ content, increase net photosynthetic rate (Pn), and increase the activity of catalase (CAT) and the contents of glutathione (GSH) and soluble protein in rice leaves. Using IBAK under salt stress increased the expression of plant hormone signal transduction pathway-related genes LOC4332548 and LOC4330957, which may help rice to more effectively sense and respond to plant hormone signals and enhance resistance to salt stress. In addition, the photosynthesis pathway-related genes LOC4339270, LOC4327150, and LOC4346326 were upregulated after using IBAK under salt stress, and the upregulation of these genes may be beneficial to improve the efficiency of photosynthesis and increase the photosynthetic capacity of rice. Regarding starch and sucrose metabolism pathway, spraying IBAK on leaves could promote the expression of sucrose synthesis-related gene LOC4347800 and increase the expression of starch synthesis-related genes LOC4330709 and LOC4343010 under salt stress. Finally, IBAK spraying resulted in the upregulation of multiple 50 S and 30 S ribosomal protein genes in the ribosome pathway, which may increase protein synthesis, help maintain cell function, and promote rice growth and development. CONCLUSION The results of this study revealed the mechanism of IBAK mediating resistance to salt stress in rice.
Collapse
Affiliation(s)
- Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meiling Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fengyan Meng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
12
|
Zhang Z, Zhong Z, Xiong Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go? MOLECULAR PLANT 2023; 16:1635-1660. [PMID: 37740490 DOI: 10.1016/j.molp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
To ensure survival and promote growth, sessile plants have developed intricate internal signaling networks tailored in diverse cells and organs with both shared and specialized functions that respond to various internal and external cues. A fascinating question arises: how can a plant cell or organ diagnose the spatial and temporal information it is experiencing to know "where I am," and then is able to make the accurate specific responses to decide "where to go" and "how to go," despite the absence of neuronal systems found in mammals. Drawing inspiration from recent comprehensive investigations into diverse nutrient signaling pathways in plants, this review focuses on the interactive nutrient signaling networks mediated by various nutrient sensors and transducers. We assess and illustrate examples of how cells and organs exhibit specific responses to changing spatial and temporal information within these interactive plant nutrient networks. In addition, we elucidate the underlying mechanisms by which plants employ posttranslational modification codes to integrate different upstream nutrient signals, thereby conferring response specificities to the signaling hub proteins. Furthermore, we discuss recent breakthrough studies that demonstrate the potential of modulating nutrient sensing and signaling as promising strategies to enhance crop yield, even with reduced fertilizer application.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Qi J, Luo Y, Huang H, Lu S, Zhao F, Deng Z, Qiu Y. Molecular Mechanism of Response and Adaptation of Antioxidant Enzyme System to Salt Stress in Leaves of Gymnocarpos przewalskii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3370. [PMID: 37836109 PMCID: PMC10574792 DOI: 10.3390/plants12193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
The antioxidant enzyme system is the main defense system responsible for maintaining cellular reactive oxygen species (ROS) homeostasis and normal plant growth and development after saline stress. In this study, we identified and characterized the members of the SOD, APX and CAT gene families of the antioxidant enzyme system in Gymnocarpos przewalskii, using plant physiology and molecular biology methods, and analyzed the pattern of enzyme activity in response to NaCl stress. It was found that seven, six and two genes of SOD, APX and CAT gene families, respectively, were expressed in the leaf tissue of G. przewalskii, in which most of the genes were significantly upregulated under NaCl stress, and the enzymatic activities were in accordance with the gene expression. Three positive selection sites in the GpCAT1 gene can increase the hydrophilicity of the GpCAT1 protein, increase the volume of the active site and increase the affinity for H2O2, thus improving the catalytic efficiency of GpCAT1. The results of the present study provide new insights for further investigations of the evolution and function of the SOD, APX and CAT gene families in G. przewalskii and their essential roles under salt stress, and the findings will be useful for revealing the molecular mechanism of salt tolerance and breeding of salt-tolerant plants.
Collapse
Affiliation(s)
| | - Yongzhong Luo
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (J.Q.); (H.H.); (S.L.); (F.Z.); (Z.D.); (Y.Q.)
| | | | | | | | | | | |
Collapse
|
14
|
Peng Y, Cao H, Cui L, Wang Y, Wei L, Geng S, Yang L, Huang Y, Bie Z. CmoNAC1 in pumpkin rootstocks improves salt tolerance of grafted cucumbers by binding to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2 and CmoHKT1;1 to regulate H 2O 2, ABA signaling and K +/Na + homeostasis. HORTICULTURE RESEARCH 2023; 10:uhad157. [PMID: 37719275 PMCID: PMC10500151 DOI: 10.1093/hr/uhad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Indexed: 09/19/2023]
Abstract
The NAC transcription factor is a type of plant-specific transcription factor that can regulate plant salt tolerance, but the underlying mechanism is unclear in grafted vegetables. H2O2 and ABA in pumpkin rootstocks can be transported to cucumber scion leaves, promoting stomatal closure to improve salt tolerance of grafted cucumbers. Despite these observations, the regulatory mechanism is unknown. Here, our research revealed that CmoNAC1 is a key transcription factor that regulates H2O2 and ABA signaling in pumpkin roots under salt stress. The function of CmoNAC1 was analyzed using root transformation and RNA-seq, and we found that pumpkin CmoNAC1 promoted the production of H2O2 and ABA via CmoRBOHD1 and CmoNCED6, respectively, and regulated K+/Na+ homeostasis via CmoAKT1;2, CmoHKT1;1, and CmoSOS1 to improve salt tolerance of grafted cucumbers. Root knockout of CmoNAC1 resulted in a significant decrease in H2O2 (52.9% and 32.1%) and ABA (21.8% and 42.7%) content and K+/Na+ ratio (81.5% and 56.3%) in leaf and roots of grafted cucumber, respectively, while overexpression showed the opposite effect. The root transformation experiment showed that CmoNCED6 could improve salt tolerance of grafted cucumbers by regulating ABA production and K+/Na+ homeostasis under salt stress. Finally, we found that CmoNAC1 bound to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1 using yeast one-hybrid, luciferase, and electrophoretic mobility shift assays. In conclusion, pumpkin CmoNAC1 not only binds to the promoters of CmoRBOHD1 and CmoNCED6 to regulate the production of H2O2 and ABA signals in roots, but also binds to the promoters of CmoAKT1;2 and CmoHKT1;1 to increase the K+/Na+ ratio, thus improving salt tolerance of grafted cucumbers.
Collapse
Affiliation(s)
- Yuquan Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Haishun Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Lvjun Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lanxing Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Hubei Hongshan Laboratory, 430070 Wuhan, China
| |
Collapse
|
15
|
Afzali SF, Sadeghi H, Taban A. A comprehensive model for predicting the development of defense system of Capparis spinosa L.: a novel approach to assess the physiological indices. Sci Rep 2023; 13:12413. [PMID: 37524793 PMCID: PMC10390471 DOI: 10.1038/s41598-023-39683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Capparis spinosa L. (caper) is a halophytic plant that grows in semi-arid or arid environments. The current study used an integrated experimental and computational approach to investigate the network of inter-correlated effective variables on the activity of antioxidant enzymes, proline, and photosynthetic pigments in stressed caper. To investigate the possible relationships among intercorrelated variables and understand the possible mechanisms, predictive regression modelling, principal component analysis (PCA), Pearson's correlation, and path analysis were implemented. PCA successfully discerned different salt ratio- and drought-specific effects in data in the current study, and treatments with higher growth indices are easily recognizable. Different salt ratios did not have a significant effect on the activity of four antioxidant enzymes, proline and photosynthesis pigments content of caper. While at the mean level, the activity of four antioxidant enzymes of SOD, POD, CAT, and APX significantly increased under drought stress by 54.0%, 71.2%, 79.4%, and 117.6%, respectively, compared to 100% FC. The drought stress also significantly increased the content of carotemoid (29.3%) and proline (by 117.7%). Predictive equation models with highly significant R2 were developed for the estimation of antioxidant enzyme activity and proline content (> 0.94) as well as pigments (> 0.58) were developed. Path analysis studies revealed that proline is the most important regressor in four antioxidant enzyme activities, while leaf tissue density was the most effective variable in the case of chlorophylls. Furthermore, the network of intercorrelated variables demonstrated a close relationship between caper's antioxidant defence system, pigments, and morphological parameters under stress conditions. The findings of this study will be a useful guide to caper producers as well as plant ecophysiological researchers.
Collapse
Affiliation(s)
- Sayed Fakhreddin Afzali
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Hossein Sadeghi
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Azin Taban
- Department of Horticultural Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
16
|
Che Y, Fan D, Teng Z, Yao T, Wang Z, Zhang H, Sun G, Zhang H, Chow WS. Potassium alleviates over-reduction of the photosynthetic electron transport chain and helps to maintain photosynthetic function under salt-stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13981. [PMID: 37616008 DOI: 10.1111/ppl.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/11/2023] [Accepted: 07/15/2023] [Indexed: 08/25/2023]
Abstract
Potassium ions enhance photosynthetic tolerance to salt stress. We hypothesized that potassium ions, by minimizing the trans-thylakoid proton diffusion potential difference, can alleviate over-reduction of the photosynthetic electron transport chain and maintain the functionality of the photosynthetic apparatus. This study investigated the effects of exogenous potassium on the transcription level and activity of proteins related to the photosynthetic electron-transport chain of tobacco seedlings under salt stress. Salt stress retarded the growth of seedlings and caused an outflow of potassium ions from the chloroplast. It also lowered qP (indicator of the oxidation state of QA , the primary quinone electron acceptor in Photosystem II (PSII) and YPSII (average photochemical yield of PSII in the light-adapted state) while increasing YNO+NF (nonregulatory energy dissipation in functional and nonfunctional PSII), accompanied by decreased expression of most light-harvesting, energy-transduction, and electron-transport genes. However, exogenous potassium prevented these effects due to NaCl. Interestingly, lincomycin (an inhibitor of the synthesis of chloroplast-encoded proteins in PSII) significantly diminished the alleviation effect of exogenous potassium on salt stress. We attribute the comprehensive NaCl-induced downregulation of transcription and photosynthetic activities to retrograde signaling induced by reactive oxygen species. There probably exist at least two types of retrograde signaling induced by reactive oxygen species, distinguished by their sensitivity to lincomycin. Exogenous potassium appears to exert its primary effect by ameliorating the trans-thylakoid proton diffusion potential difference via a potassium channel, thereby accelerating ATP synthesis and carbon assimilation, alleviating over-reduction of the photosynthetic electron transport chain, and maintaining the functionality of photosynthetic proteins.
Collapse
Affiliation(s)
- Yanhui Che
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Dayong Fan
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Zhiyuan Teng
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tongtong Yao
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zihan Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangyu Sun
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
17
|
Abeed AA, Saleem MH, Asghar MA, Mumtaz S, Ameer A, Ali B, Alwahibi MS, Elshikh MS, Ercisli S, Elsharkawy MM, Ali S, Soudy FA. Ameliorative Effects of Exogenous Potassium Nitrate on Antioxidant Defense System and Mineral Nutrient Uptake in Radish ( Raphanus sativus L.) under Salinity Stress. ACS OMEGA 2023; 8:22575-22588. [PMID: 37396242 PMCID: PMC10308581 DOI: 10.1021/acsomega.3c01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023]
Abstract
Soil salinization has become a major issue around the world in recent years, as it is one of the consequences of climate change as sea levels rise. It is crucial to lessen the severe consequences of soil salinization on plants. A pot experiment was conducted to regulate the physiological and biochemical mechanisms in order to evaluate the ameliorative effects of potassium nitrate (KNO3) on Raphanus sativus L. genotypes under salt stress. The results from the present study illustrated that the salinity stress induced a significant decrease in shoot length, root length, shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, number of leaves per plant, leaf area chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, net photosynthesis, stomatal conductance, and transpiration rate by 43, 67, 41, 21, 34, 28, 74, 91, 50, 41, 24, 34, 14, 26, and 67%, respectively, in a 40 day radish while decreased by 34, 61, 49, 19, 31, 27, 70, 81, 41, 16, 31, 11, 21, and 62%, respectively, in Mino radish. Furthermore, MDA, H2O2 initiation, and EL (%) of two varieties (40 day radish and Mino radish) of R. sativus increased significantly (P < 0.05) by 86, 26, and 72%, respectively, in the roots and also increased by 76, 106, and 38% in the leaves in a 40 day radish, compared to the untreated plants. The results also elucidated that the contents of phenolic, flavonoids, ascorbic acid, and anthocyanin in the two varieties (40 day radish and Mino radish) of R. sativus increased with the exogenous application of KNO3 by 41, 43, 24, and 37%, respectively, in the 40 day radish grown under the controlled treatments. Results indicated that implementing KNO3 exogenously in the soil increased the activities of antioxidants like SOD, CAT, POD, and APX by 64, 24, 36, and 84% in the roots and also increased by 21, 12, 23, and 60% in the leaves of 40 day radish while also increased by 42, 13, 18, and 60% in the roots and also increased by 13, 14, 16, and 41% in the leaves in Mino radish, respectively, in comparison to those plants grown without KNO3. We found that KNO3 substantially improved plant growth by lowering the levels of oxidative stress biomarkers, thereby further stimulating the antioxidant potential system, which led to an improved nutritional profile of both R. sativus L. genotypes under normal and stressed conditions. The current study would offer a deep theoretical foundation for clarifying the physiological and biochemical mechanisms by which the KNO3 improves salt tolerance in R. sativus L. genotypes.
Collapse
Affiliation(s)
- Amany
H. A. Abeed
- Department
of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Muhammad Hamzah Saleem
- Office
of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Muhammad Ahsan Asghar
- Department
of Biological Resources, Agricultural Institute,
Centre for Agricultural Research, ELKH, Brunszvik U. 2, 2462 Martonvásár, Hungary
| | - Sahar Mumtaz
- Department
of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Amina Ameer
- Department
of Botany, University of Agriculture, Faisalabad 38000, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mona S. Alwahibi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department
of Horticulture Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
- HGF
Agro, Ata Teknokent, TR-25240 Erzurum, Türkiye
| | - Mohsen Mohamed Elsharkawy
- Department
of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr
el-Sheikh 33516, Egypt
| | - Shafaqat Ali
- Department
of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department
of Biological Sciences and Technology, China
Medical University, Taichung City 40402, Taiwan
| | - Fathia A. Soudy
- Genetics
and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
18
|
Wu J, Wei Z, Zhao W, Zhang Z, Chen D, Zhang H, Liu X. Transcriptome Analysis of the Salt-Treated Actinidia deliciosa (A. Chev.) C. F. Liang and A. R. Ferguson Plantlets. Curr Issues Mol Biol 2023; 45:3772-3786. [PMID: 37232712 DOI: 10.3390/cimb45050243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
The area of saline land in the world is quite large, and there is broad room for its development and usage. 'Xuxiang' is an Actinidia deliciosa variety that is tolerant to salt and can be planted in an area of light-saline land, and has good comprehensive characteristics and high economic value. However, the molecular mechanism of salt tolerance is unknown at present. To understand the molecular mechanism of salt tolerance, the leaves of A. deliciosa 'Xuxiang' were used as explants to establish a sterile tissue culture system, and plantlets were obtained using this system. One percent concentration (w/v) of sodium chloride (NaCl) was employed to treat the young plantlets cultured in Murashige and Skoog (MS) medium, then RNA-seq was used for transcriptome analysis. The results showed that the genes related to salt stress in the phenylpropanoid biosynthesis pathway and the anabolism of trehalose and maltose pathways were up-regulated; however, those genes in the plant hormone signal transduction and metabolic pathways of starch, sucrose, glucose, and fructose were down-regulated after salt treatment. The expression levels of ten genes that were up-regulated and down-regulated in these pathways were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. The salt tolerance of A. deliciosa might be related to the expression level changes in the genes in the pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and starch, sucrose, glucose, and fructose metabolism. The increased expression levels of the genes encoding alpha-trehalose-phosphate synthase, trehalose-phosphatase, alpha-amylase, beta-amylase, feruloyl-CoA 6-hydroxylase, ferulate 5-hydroxylase, and coniferyl-alcohol glucosyl transferase might be vital to the salt stress response of the young A. deliciosa plants.
Collapse
Affiliation(s)
- Jiexin Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zhuo Wei
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Wenjuan Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zhiming Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Daming Chen
- Research Institute of Agriculture Ecological in Hot Areas, Yunnan Academy of Agricultural Science, Yuanmou 651300, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiaozhen Liu
- Research Institute of Agriculture Ecological in Hot Areas, Yunnan Academy of Agricultural Science, Yuanmou 651300, China
| |
Collapse
|
19
|
Yanhui C, Tongtong Y, Hongrui W, Xiaoqian L, Zhe Z, Zihan W, Hongbo Z, Ye Y, Guoqiang H, Guangyu S, Huihui Z. Abscisic acid plays a key role in the mechanism of photosynthetic and physiological response effect of Tetrabromobisphenol A on tobacco. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130792. [PMID: 36669407 DOI: 10.1016/j.jhazmat.2023.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The toxicity of bromide to animals and microorganisms has been widely studied, but the mechanism by which bromide toxicity affects plants is rarely studied. This study used the bromophenol compound Tetrabromobisphenol A (TBBPA) as a representative of bromide to explore the physiological and molecular response mechanism of tobacco leaves to TBBPA. In addition, physiological determination, transcriptomics, weighted gene co-expression network analysis (WGCNA) analysis, and random forest prediction model were conducted. The findings from this study indicated that TBBPA limited the photoreaction process by destroying the light-catching antenna protein of tobacco leaves, the activity of the photosystem reaction centers (PSII and PSI), and the linear electron transport efficiency. TBBPA also reduced the rate of the Calvin-Benson cycle by inhibiting the activities of gene such as Rubisco, PGK, and TPI, and finally destroyed the photosynthesis process. Although cyclic electron transport was enhanced under stress conditions, it could not reverse the damage caused by TBBPA on photosynthesis. TBBPA exposure resulted in the accumulation of reactive oxygen species (ROS) in tobacco leaves, and the activities of Superoxide dismutase (SOD), Ascorbate peroxidase (APX), and Glutathione peroxidase (GPX) and their coding genes were significantly down-regulated. Although POD activity and proline (Pro) content were increased, they were insufficient to remove excess O2·- free radicals to relieve ROS stress. WCGNA and random forest models predicted that the damage of TBBPA to the above processes in tobacco was closely related to the increase in abscisic acid (ABA) content. TBBPA affects the Calvin cycle by inducing ABA signal transduction and stomatal closure, which leads to a series of chain reactions, such as electron transport chain obstruction, excess of ROS, decrease in chlorophyll synthesis, and photosystem reaction center damage.
Collapse
Affiliation(s)
- Che Yanhui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yao Tongtong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wang Hongrui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Liu Xiaoqian
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhang Zhe
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wang Zihan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhang Hongbo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuan Ye
- Mudanjiang Tobacco Science Research Institute, Mudanjiang157000,China
| | - He Guoqiang
- Mudanjiang Tobacco Science Research Institute, Mudanjiang157000,China
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhang Huihui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
20
|
Zhang H, Yao T, Wang Y, Wang J, Song J, Cui C, Ji G, Cao J, Muhammad S, Ao H, Zhang H. Trx CDSP32-overexpressing tobacco plants improves cadmium tolerance by modulating antioxidant mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:524-532. [PMID: 36521289 DOI: 10.1016/j.plaphy.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The effects of overexpression of the thioredoxin-like protein CDSP32 (Trx CDSP32) on reactive oxygen species (ROS) metabolism in tobacco leaves exposed to cadmium (Cd) were studied by combining physiological measures and proteomics technology. Thus, the number of differentially expressed proteins (DEPs) in plants overexpressing the Trx CDSP32 gene in tobacco (OE) was observed to be evidently lower than that in wild-type (WT) tobacco under Cd exposure, especially the number of down-regulated DEPs. Cd exposure induced disordered ROS metabolism in tobacco leaves. Although Cd exposure inhibited the activities of superoxide dismutase (SOD), catalase (CAT), and l-ascorbate peroxidase (APX) and the expression of proteins related to the thioredoxin-peroxiredoxin (Trx-Prx) pathway, the increase in the activities of peroxidase (POD), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione S-transferase (GST) and their protein expression levels played an important role in the physiological response to Cd exposure. Notably, Trx CDSP32 was observed to alleviate the decrease in the expression and activities of SOD and CAT caused by Cd exposure and enhance the function of POD. Trx CDSP32 was observed to increase the H2O2 scavenging capacity of the ascorbic acid-glutathione (AsA-GSH) cycle and Trx-Prx pathway under Cd exposure, and it can especially regulate 2-Cys peroxiredoxin (2-Cys Prx) protein expression and thioredoxin peroxidase (TPX) activity. Thus, overexpression of the Trx CDSP32 gene can alleviate the oxidative damage that occurs in tobacco leaves under Cd exposure by modulating antioxidant defense systems.
Collapse
Affiliation(s)
- Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Tongtong Yao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jianing Cao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Salman Muhammad
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hong Ao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|