1
|
Wang HW, Shi XZ, Zhong XY, Ai G, Wang YH, Zhou ZZ, Lu D, Liu XL, Chen ZJ. Identification, characterization, and expression of Oryza sativa tryptophan decarboxylase genes associated with fluroxypyr-meptyl metabolism. THE PLANT GENOME 2025; 18:e20547. [PMID: 39757135 DOI: 10.1002/tpg2.20547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
Tryptophan decarboxylase (TDC) belongs to a family of aromatic amino acid decarboxylases and catalyzes the conversion of tryptophan to tryptamine. It is the enzyme involved in the first step of melatonin (MT) biosynthesis and mediates several key functions in abiotic stress tolerance. In Oryza sativa under pesticide-induced stress, TDC function is unclear. Three TDC differentially expressed genes (DEGs) and six TDC-coding genes were found to be expressed in fluroxypyr-meptyl (FLUME)-treated rice transcriptome datasets, which allowed researchers to explore the properties and roles of rice TDC family genes under pesticide-induced stress. By applying sequence alignment and phylogenetic analysis, two subfamilies of the TDC gene family-DUF674 and AAT_I-were found in rice, Glycine max, Zea mays, Hordeum vulgare, and Solanum lycopersicum. According to chromosomal location studies, segmental duplication aided in the expansion of the OsTDC gene family, and the three TDC DEGs in rice were irregularly distributed on two of its 12 chromosomes. In addition, nine rice TDC genes displayed a collinear relationship with those of soybean, maize, barley, and tomato. Rice TDC genes can encode a variety of biotic and abiotic stress responses because of their diverse gene architectures, cis-elements, motif compositions, and conserved domains. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis confirmed that a proportion of TDC genes (Os08g0140300, Os08g0140500, and Os10g0380800) were preferably expressed under 0.08 mg L-1 FLUME stress, with a 5.2-, 3.2-, and 3.9-fold increase in roots and a 2.1-, 2.4-, and 2.6-fold increase in shoots, respectively. MT treatment further increased the expression of these genes, with a 2.1-fold, 3.1-fold, and fivefold increase in roots and a 1.5-, 1.1-, and 1.1-fold increase in shoots than that treated with 0.08 mg L-1 FLUME only, respectively. When rice seedling roots and shoots were subjected to 0.08 mg L-1 FLUME stress, TDC activity was increased by 2.7 and 1.6 times higher than in the control, respectively. MT application also further promoted TDC activity in rice tissues; TDC activity in rice roots and shoots was twofold and 1.4-fold higher, respectively, than that under 0.08 mg L-1 FLUME alone. These findings indicate that TDC genes respond effectively to FLUME stress, and the application of MT could enhance the expression of these TDC genes, which comprise a set of candidate genes that regulate pesticide metabolism and degradation with the application of MT.
Collapse
Affiliation(s)
- Hao Wen Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xu Zhen Shi
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao Yu Zhong
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Hui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhi Zhong Zhou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Dan Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao Liang Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zhao Jie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Xu L, Zhu Y, Wang Y, Zhang L, Li L, Looi LJ, Zhang Z. The potential of melatonin and its crosstalk with other hormones in the fight against stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1492036. [PMID: 39703548 PMCID: PMC11655240 DOI: 10.3389/fpls.2024.1492036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Climate change not only leads to high temperatures, droughts, floods, storms and declining soil quality, but it also affects the spread and mutation of pests and diseases, which directly influences plant growth and constitutes a new challenge to food security. Numerous hormones like auxin, ethylene and melatonin, regulate plant growth and development as well as their resistance to environmental stresses. To mitigate the impact of diverse biotic and abiotic stressors on crops, single or multiple phytohormones in combination have been applied. Melatonin is a multifunctional signaling molecule engaged in the development and stress response of plants. In the current review, we discuss the synthesis and action of melatonin, as well as its utilization for plant resistance to different stresses from the perspective of practical application. Simultaneously, we elucidate the regulatory effects and complex mechanisms of melatonin and other plant hormones on the growth of plants, explore the practical applications of melatonin in combination with other phytohormones in crops. This will aid in the planning of management strategies to protect plants from damage caused by environmental stress.
Collapse
Affiliation(s)
- Lina Xu
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang, Henan, China
| | - Yafei Zhu
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang, Henan, China
| | - Yakun Wang
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang, Henan, China
| | - Luyan Zhang
- Kaifeng Meteorological Service, Agricultural Meteorological Observation Station, Kaifeng, Henan, China
| | - Lijie Li
- Henan Institute of Science and Technology, School of Life Sciences, Xinxiang, Henan, China
| | - Ley Juen Looi
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zhiyong Zhang
- Henan Institute of Science and Technology, School of Life Sciences, Xinxiang, Henan, China
| |
Collapse
|
3
|
Moradialvand M, Asri N, Jahdkaran M, Beladi M, Houri H. Advancements in Nanoparticle-Based Strategies for Enhanced Antibacterial Interventions. Cell Biochem Biophys 2024; 82:3071-3090. [PMID: 39023679 DOI: 10.1007/s12013-024-01428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The escalating global threat of antibiotic resistance underscores the urgent need for innovative antimicrobial strategies. This review explores the cutting-edge applications of nanotechnology in combating bacterial infections, addressing a critical healthcare challenge. We critically assess the antimicrobial properties and mechanisms of diverse nanoparticle systems, including liposomes, polymeric micelles, solid lipid nanoparticles, dendrimers, zinc oxide, silver, and gold nanoparticles, as well as nanoencapsulated essential oils. These nanomaterials offer distinct advantages, such as enhanced drug delivery, improved bioavailability, and efficacy against antibiotic-resistant strains. Recent advancements in nanoparticle synthesis, functionalization, and their synergistic interactions with conventional antibiotics are highlighted. The review emphasizes biocompatibility considerations, stressing the need for rigorous safety assessments in nanomaterial applications. By synthesizing current knowledge and identifying emerging trends, this review provides crucial insights for researchers and clinicians aiming to leverage nanotechnology for next-generation antimicrobial therapies. The integration of nanotechnology represents a promising frontier in combating infectious diseases, underscoring the timeliness and imperative of this comprehensive analysis.
Collapse
Affiliation(s)
- Madineh Moradialvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Center for Theoretical Physics, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Beladi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wan X, Zhang Y, Wang G, Liao R, Pan H, Chen C, Han B, Deng H, Song C. Melatonin Affects Peucedanum praeruptorum Vegetative Growth and Coumarin Synthesis by Modulating the Antioxidant System, Photosynthesis, and Endogenous Hormones. J Pineal Res 2024; 76:e70018. [PMID: 39711422 DOI: 10.1111/jpi.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
The dried root of Peucedanum praeruptorum is often used medicinally and has high pyran- and furanocoumarin content. Although exogenous melatonin (MT) impacts the regulation of plant growth, stress responses, secondary metabolism, etc., it remains unclear whether MT regulates the vegetative growth and development of P. praeruptorum. Thus, the aim of the current study is to characterize the effects of different exogenous MT concentrations on the physiological functions, photosynthesis, antioxidant systems, hormone induction, and coumarin synthesis of P. praeruptorum. Different MT concentrations exert distinct regulatory effects on P. praeruptorum growth and the expression of genes related to coumarin synthesis. Treatment of P. praeruptorum with low concentrations of MT increases photosynthesis and leaf growth compared to the control, while high concentrations reduce root vitality and elongation and decrease the expression of photosynthetic system genes. Low concentrations of MT also significantly increase antioxidant enzyme activity and photosynthetic pigment content and modulate the levels of IAA, gibberellic acid, salicylic acid, jasmonic acid, abscisic acid, and endogenous MT. Moreover, MT increases the activity of the MT synthesis enzymes tryptophan decarboxylase, tryptophan hydroxylase, tryptamine-5-hydroxylase, serotonin N-acetyltransferase, acetylserotonin O-methyltransferase, and caffeic acid O-methyltransferase, and promotes the accumulation of isoscopoletin, scopoletin, peucedanocoumarin II, praeruptorin A, praeruptorin B, and praeruptorin E. MT also upregulates most genes associated with coumarin synthesis, including PAL1, C4H, 4CL-3, C3H-1, F6H-1, CCoAMT, OMT-1, CYP71AJ1, CYP84A1-1, S8H-1, PT-1, and COSY-1. These findings demonstrate that MT may improve P. praeruptorum growth and development while promoting the synthesis of coumarin components.
Collapse
Affiliation(s)
- Xiaoting Wan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Guoyu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Ranran Liao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Haoyu Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Cunwu Chen
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Bangxing Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Hui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Cheng Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| |
Collapse
|
5
|
Singh VP, Tripathi DK, Palma JM, Corpas FJ. Editorial: ROS and phytohormones: Two ancient chemical players in new roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109149. [PMID: 39406665 DOI: 10.1016/j.plaphy.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad Prayagraj-211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India.
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008, Granada, Spain.
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008, Granada, Spain.
| |
Collapse
|
6
|
Li H, Sun C, Zhang M, Wang H, Chen Y, Song J. Environmentally degradable carbon dots for inhibiting P. globosa growth and reducing hemolytic toxin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124366. [PMID: 38871172 DOI: 10.1016/j.envpol.2024.124366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Red tides not only destroy marine ecosystems but also pose a great threat to human health. The traditional anti-red tide materials are difficult to degrade effectively in the natural environment and there may be risks of environmental leakage and secondary pollution. Furthermore, they cannot reduce the toxicity of toxins released by algae. It is very important to prepare degradable materials that can effectively control red tide and reduce their toxins in the future. Herein, degradable CDs (De-CDs) with biocompatibility and non-toxicity is successfully prepared using the one-step electrolytic method. De-CDs can effectively inhibit P. globosa (algae associated with red tide) growth. More importantly, the De-CDs not only can attenuate the toxicity of toxins released by P. globosa, but also can be degraded under visible-light irradiation in the seawater and avoids environmental leakage. The successful preparation of De-CDs provides a new idea for degradable materials with anti-red tide algae in the future.
Collapse
Affiliation(s)
- Hao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology (Agricultural College of Yangzhou University), Research Institute of Smart Agriculture (Agricultural College of Yangzhou University), Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Chengming Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology (Agricultural College of Yangzhou University), Research Institute of Smart Agriculture (Agricultural College of Yangzhou University), Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Huibo Wang
- Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Chen
- Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
7
|
Sati H, Chinchkar AV, Kataria P, Pareek S. The role of phytomelatonin in plant homeostasis, signaling, and crosstalk in abiotic stress mitigation. PHYSIOLOGIA PLANTARUM 2024; 176:e14413. [PMID: 38924553 DOI: 10.1111/ppl.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
In recent years, there has been an increase in the study of phytomelatonin. Having numerous functions in animals, melatonin produced by plants (phytomelatonin) is also a multi-regulatory molecule with great potential in plant physiology and in mitigating abiotic stresses, such as drought, salinity, chilling, heat, chemical contamination, and UV-radiation stress. This review highlights the primary functions of phytomelatonin as an anti-stress molecule against abiotic stress. We discuss the role of phytomelatonin as a master regulator, oxidative stress manager, reactive oxygen species and reactive nitrogen species regulator, and defense compounds inducer. Although there exist a handful of reviews on the crosstalk of phytomelatonin with other signaling molecules like auxin, cytokinin, gibberellin, abscisic acid, ethylene, nitric oxide, jasmonic acid, and salicylic acid, this review looks at studies that have reported a few aspects of phytomelatonin with newly discovered signaling molecules along with classical signaling molecules with relation to abiotic stress tolerance. The research and applications of phytomelatonin with hydrogen sulfide, strigolactones, brassinosteroids, and polyamines are still in their nascent stage but hold a promising scope for the future. Additionally, this review states the recent developments in the signaling of phytomelatonin with nitrogen metabolism and nitrosative stress in plants.
Collapse
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
- Global Brand Resources Pvt. Ltd., Gandhidham (Kutch), Gujarat, India
| | - Priyanka Kataria
- Department of Food Science & Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| |
Collapse
|
8
|
Zhou C, Miao P, Dong Q, Li D, Pan C. Multiomics Explore the Detoxification Mechanism of Nanoselenium and Melatonin on Bensulfuron Methyl in Wheat Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3958-3972. [PMID: 38363203 DOI: 10.1021/acs.jafc.3c08429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Combining nanoselenium (nano-Se) and melatonin (MT) was more effective than treatment alone against abiotic stress. However, their combined application mitigated the toxic effects of bensulfuron methyl, and enhanced wheat growth and metabolism has not been studied. Metabolomics and proteomics revealed that combining nano-Se and MT markedly activated phenylpropanoid biosynthesis pathways, elevating the flavonoid (quercetin by 33.5 and 39.8%) and phenolic acid (vanillic acid by 38.8 and 48.7%) levels in leaves and roots of wheat plants. Interstingly, beneficial rhizosphere bacteria in their combination increased (Oxalobacteraceae, Nocardioidaceae, and Xanthomonadaceae), which positively correlated with the enhancement of soil urease and fluorescein diacetate enzyme activity (27.0 and 26.9%) and the allelopathic substance levels. To summarize, nano-Se and MT mitigate the adverse effects of bensulfuron methyl by facilitating interactions between the phenylpropane metabolism of the plant and the beneficial microbial community. The findings provide a theoretical basis for using nano-Se and MT to remediate herbicide-contaminated soil.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Yang C, Li H, Liang H, Huang B, Sun Y, Yang W, Wu Y, Cui Y, Hai J, Dong Z. Stereoselectivity of paclobutrazol enantiomers to oxidative stress in wheat. Chirality 2024; 36:e23638. [PMID: 38384151 DOI: 10.1002/chir.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Chiral pesticides have the special chiral structures, so enantioselective biological effects are usually observed in living organisms. Current study used paclobutrazol as a case study and explored the enantioselective degradation and oxidative stress effect on wheat. The results demonstrated that the degradation of R-paclobutrazol was faster than S-paclobutrazol significantly and improved the content of MDA and O2 - in wheat plants, which proved that the R-paclobutrazol induced oxidative damage in wheat, showing selective biological effects, and S-paclobutrazol was friendly to wheat. This study provided a theoretical basis for the selective activity of chiral pesticides and the development of chiral pesticide monomers.
Collapse
Affiliation(s)
- Chao Yang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Hao Li
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Huajun Liang
- Maanshan Agricultural and Rural Bureau, Xianyang, Shaanxi Province, People's Republic of China
| | - Bo Huang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Yitao Sun
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Wenlong Yang
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Yilun Wu
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Youhe Cui
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Xianyang, Shaanxi Province, People's Republic of China
| | - Zhoujia Dong
- Qinghai Tongren City Agriculture and Animal Husbandry Comprehensive Service Center, Xianyang, Shaanxi Province, People's Republic of China
| |
Collapse
|
10
|
Huang J, Liu Y, Xiao R, Yu T, Guo T, Wang H, Lv X, Li X, Zhu M, Li F. Exogenous melatonin alleviates nicosulfuron toxicity by regulating the growth, photosynthetic capacity, and antioxidative defense of sweet corn seedlings. PHOTOSYNTHETICA 2024; 62:58-70. [PMID: 39650638 PMCID: PMC11609774 DOI: 10.32615/ps.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 12/11/2024]
Abstract
Improper use of nicosulfuron (NSF) may induce harmful effects on plants during weed control. Melatonin (MT) regulates photosynthetic and physiological processes in plants. This study aimed to explore the effects of MT on alleviating NSF toxicity by measuring the growth parameters, photosynthetic capacity, and antioxidative responses in sweet corn seedlings. Compared to NSF alone, exogenous MT increased chlorophyll content, transpiration rate, net photosynthetic rate, stomatal conductance, and maximum efficiency of PSII photochemistry, while reduced malondialdehyde, hydrogen peroxide, superoxide anion radical, and proline contents. Moreover, MT also increased the activity of ascorbate peroxidase and the expression levels of ZmAPX1, ZmAPX2, ZmALS1, and ZmCYP81A9. The inhibition of p-chlorophenylalanine inhibited the positive effects of MT on photosynthetic and physiological indexes. The results indicated that pretreatment with MT might effectively mitigate NSF toxicity in sweet corn seedlings.
Collapse
Affiliation(s)
- J.X. Huang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - Y.B. Liu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - R. Xiao
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Yu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Guo
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - H.W. Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.L. Lv
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.N. Li
- Liaoyuan Farmer Science and Technology Education Center, 136200 Liaoyuan, Jilin Province, China
| | - M. Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - F.H. Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Li P, Zhang Y, Zhao C, Jiang M. Evolution of the Tóxicos en Levadura 63 (TL63) gene family in plants and functional characterization of Arabidopsis thaliana TL63 under oxidative stress. PLANTA 2023; 258:87. [PMID: 37750983 DOI: 10.1007/s00425-023-04243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
MAIN CONCLUSION TL63 orthologs were angiosperm specific and had undergone motifs loss and gain, and increased purifying selection. AtTL63 was involved in the response of yeast and Arabidopsis plants to oxidative stress. The Tóxicos en Levadura (TL) family, a class of E3 ubiquitin ligases with typical RING-H2 type zinc finger structure, plays a pivotal role in mediating physiological processes and responding to stress in plants. However, the evolution and function of TL63 remain unclear. In this study, TL63 homologs were dated roughly back to the origin of land plants and confirmed to have subjected to the gain and loss of motifs and increased purifying selection. Phylogenetic analysis displayed that 279 TL63s could be divided into four main clades (Clade A-D). Notably, the ancestral tandem TL40/41 cluster contributed to the expansion of modern Brassicaceae TL40/41. The substitution rate tests revealed that the TL63 lineage was evidently different from other lineages. The codon usage index exhibited that monocotyledons preferred to use not A3s and T3s, but C3s, G3s, CAI, CBI and Fop. Sequence analysis showed that the TL63 homologs had conserved TM and GLD motifs and RING-H2 domain whose key amino acid residues accounted for the high average abundance. Particularly, Arabidopsis thaliana TL63 (AtTL63) was located in the nuclei, cell membranes and peroxisomes and expressed universally and significantly throughout A. thaliana development. Under H2O2 treatment, low or moderate expression of the AtTL63 held beneficial effects on the growth and viability of yeast cells and the mutation or overexpression of the AtTL63 positively affected the growth of A. thaliana plants. In brief, this study could supply useful insight into the evolution of the plant TL63s and the AtTL63 functions under oxidative stress.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Changling Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
12
|
Mishra V, Sarkar AK. Serotonin: A frontline player in plant growth and stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13968. [PMID: 37402164 DOI: 10.1111/ppl.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.
Collapse
Affiliation(s)
- Vishnu Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ananda K Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
14
|
Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131862. [PMID: 37329597 DOI: 10.1016/j.jhazmat.2023.131862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jochen Bundschuh
- Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, ROC; School of Civil Engineering and Surveying, University of Southern Queensland, Australia
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, South Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Efimova MV, Danilova ED, Zlobin IE, Kolomeichuk LV, Murgan OK, Boyko EV, Kuznetsov VV. Priming Potato Plants with Melatonin Protects Stolon Formation under Delayed Salt Stress by Maintaining the Photochemical Function of Photosystem II, Ionic Homeostasis and Activating the Antioxidant System. Int J Mol Sci 2023; 24:ijms24076134. [PMID: 37047107 PMCID: PMC10094597 DOI: 10.3390/ijms24076134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Melatonin is among one of the promising agents able to protect agricultural plants from the adverse action of different stressors, including salinity. We aimed to investigate the effects of melatonin priming (0.1, 1.0 and 10 µM) on salt-stressed potato plants (125 mM NaCl), by studying the growth parameters, photochemical activity of photosystem II, water status, ion content and antioxidant system activity. Melatonin as a pleiotropic signaling molecule was found to decrease the negative effect of salt stress on stolon formation, tissue water content and ion status without a significant effect on the expression of Na+/H+-antiporter genes localized on the vacuolar (NHX1 to NHX3) and plasma membrane (SOS1). Melatonin effectively decreases the accumulation of lipid peroxidation products in potato leaves in the whole range of concentrations studied. A melatonin-induced dose-dependent increase in Fv/Fm together with a decrease in uncontrolled non-photochemical dissipation Y(NO) also indicates decreased oxidative damage. The observed protective ability of melatonin was unlikely due to its influence on antioxidant enzymes, since neither SOD nor peroxidase were activated by melatonin. Melatonin exerted positive effects on the accumulation of water-soluble low-molecular-weight antioxidants, proline and flavonoids, which could aid in decreasing oxidative stress. The most consistent positive effect was observed on the accumulation of carotenoids, which are well-known lipophilic antioxidants playing an important role in the protection of photosynthesis from oxidative damage. Finally, it is possible that melatonin accumulated during pretreatment could exert direct antioxidative effects due to the ROS scavenging activity of melatonin molecules.
Collapse
Affiliation(s)
- Marina V Efimova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Elena D Danilova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Ilya E Zlobin
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Lilia V Kolomeichuk
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Olga K Murgan
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Ekaterina V Boyko
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Vladimir V Kuznetsov
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| |
Collapse
|