1
|
Ghatak A, Pierides I, Singh RK, Srivastava RK, Varshney RK, Prasad M, Chaturvedi P, Weckwerth W. Millets for a sustainable future. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1534-1545. [PMID: 39724286 PMCID: PMC11981904 DOI: 10.1093/jxb/erae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Our current agricultural system faces a perfect storm-climate change, a burgeoning population, and unpredictable outbreaks such as COVID-19 which disrupt food production, particularly for vulnerable populations in developing countries. A paradigm shift in agriculture practices is needed to tackle these issues. One solution is the diversification of crop production. While ~56% of the plant-based protein stems from three major cereal crops (rice, wheat, and maize), underutilized crops such as millets, legumes, and other cereals are highly neglected by farmers and the research community. Millets are one of the most ancient and versatile orphan crops with attributes such as fast growing, high yielding, withstanding harsh environments, and rich in micronutrients such as iron and zinc, making them appealing to achieve agronomic sustainability. Here, we highlight the contribution of millet to agriculture and focus on the genetic diversity of millet, genomic resources, and next-generation omics and their applications under various stress conditions. Additionally, integrative omics technologies could identify and develop millets with desirable phenotypes having high agronomic value and mitigating climate change. We emphasize that biotechnological interventions, such as genome-wide association, genomic selection, genome editing, and artificial intelligence/machine learning, can improve and breed millets more effectively.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Iro Pierides
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal 721628, India
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi 110021, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
2
|
Zhang J, He B, Wang J, Wang Y, Zhang S, Li Y, Zhu S, Su W, Chen R, Anwar A, Song S. BcAMT1;2 interacts with BcLBD41 and BcMAMYB transcription factors during nitrogen metabolism in flowering Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109419. [PMID: 39765126 DOI: 10.1016/j.plaphy.2024.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025]
Abstract
Chinese cabbage is an important vegetable in southern China. Excessive nitrogen fertilizer application can lead to the accumulation of nitrate in edible organs, which affects food value. Hence, the cultivation of varieties with high nitrogen utilization efficiency (NUE) and low nitrate accumulation is essential for molecular breeding. In flowering Chinese cabbage, Ammonium transporter 1;2 (AMT1;2,XM_009113156.2) significantly promotes plant growth, while reducing the nitrate content and ultimately improving the nutritional value of the crop; however, the exact underlying regulatory mechanisms remain unclear. Here, we aimed to investigate the response pattern of BcAMT1;2 to nitrogen (N) deficiency and mixed ammonium-nitrate nutrition and the potential roles played by its interacting proteins, Lateral organ boundaries domain 41 (LBD41,XM_009120072.3) and Membrane-anchored MYB (MAMYB,XM_009103351.3), in N metabolism. We found that transient silencing and overexpression of BcAMT1;2 regulated the absorption and accumulation of ammonium (NH4+) and nitrate (NO3-) in flowering Chinese cabbage. BcLBD41 may directly induce BcAMT1;2 expression, thereby regulating NH4+ accumulation in flowering Chinese cabbages. The expression of BcLBD41 and BcAMT1;2 were downregulated during N-deficiency and upregulated after NH4+ supply restoration. Overexpression of BcLBD41 in Arabidopsis improved root and shoot growth under both LA (low-ammonium; 0.25 mM NH4+) and A/Ni (ammonium [NH4+]: nitrate [NO3-]; 0.25 mM:0.75 mM) conditions by facilitating the expression of AtAMT1;2 in transgenic plants, leading to enhanced NH4+ uptake and accumulation. The BcMAMYB protein serves as a transmembrane protein and has a strong interaction with the BcAMT1;2 protein, as well as inducing the expression of the BcAMT1;2 promoter. In the OE-BcMAMYB strain, the expression of both BcMAMYB and BcAMT1;2 were repressed under N-deficiency conditions, whereas after silencing BcMAMYB, the expression of BcAMT1;2 was not induced by ammonium. Our findings contribute to a more profound understanding of the regulatory mechanisms responsible for nitrogen absorption and accumulation in relation to BcAMT1;2.
Collapse
Affiliation(s)
- Jiewen Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bin He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jinmiao Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yamin Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijun Zhu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Bhatt PA, Gurav TP, Kondhare KR, Giri AP. MYB proteins: Versatile regulators of plant development, stress responses, and secondary metabolite biosynthetic pathways. Int J Biol Macromol 2025; 288:138588. [PMID: 39672414 DOI: 10.1016/j.ijbiomac.2024.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
MYB proteins are ubiquitous in nature, regulating key aspects of plant growth and development. Although MYB proteins are known for regulating genes involved in secondary metabolite biosynthesis, particularly phenylpropanoids, their roles in terpenoid, glucosinolate, and alkaloid biosynthesis remain less understood. This review explores the structural and functional differences between activator and repressor MYB proteins along with their roles in plant growth, development, stress responses, and secondary metabolite production. MYB proteins serve as central hubs in protein-protein interaction networks that regulate expression of numerous genes involved in the adaptation of plants to varying environmental conditions. Thus, we also highlight key interacting partners of MYB proteins and their roles in these adaptation mechanisms. We further discuss the mechanisms regulating MYB proteins, including autoregulation, epigenetics, and post-transcriptional and post-translational modifications. Overall, we propose MYB proteins as versatile regulators for improving plant traits, stress responses, and secondary metabolite production.
Collapse
Affiliation(s)
- Preshita A Bhatt
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Tanuja P Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Wang Y, Chu J, Zhang H, Ju H, Xie Q, Jiang X. Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency. FRONTIERS IN PLANT SCIENCE 2025; 15:1488281. [PMID: 39877744 PMCID: PMC11772423 DOI: 10.3389/fpls.2024.1488281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025]
Abstract
Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties. This research undertook a comprehensive analysis of cassava seedlings' physiological, gene expression, and metabolite responses under low nitrogen stress. Findings revealed that nitrogen deficiency drastically suppressed seedling growth, significantly reduced nitrate and ammonium transport to aerial parts, and led to a marked increase in carbohydrate, reactive oxygen species, and ammonium ion levels in the leaves. Transcriptomic and metabolomic analyses further demonstrated notable alterations in genes and metabolites linked to carbon and nitrogen metabolism, flavonoid biosynthesis, and the purine metabolic pathway. Additionally, several transcription factors associated with cassava flavonoid biosynthesis under nitrogen-deficient conditions were identified. Overall, this study offers fresh insights and valuable genetic resources for unraveling cassava's adaptive mechanisms to nitrogen deprivation.
Collapse
Affiliation(s)
- Yu Wang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, China
| | - Jing Chu
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, China
| | - Haoyang Zhang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Hao Ju
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Qing Xie
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingyu Jiang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
5
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024; 282:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
6
|
Wang Y, Zhang Y, Qiao H, Zheng Y, Hou X, Shi L. An integrated transcriptome and physiological analysis of nitrogen use efficiency in rice ( Oryza sativa L. ssp. indica) under drought stress. Front Genet 2024; 15:1483113. [PMID: 39553474 PMCID: PMC11564168 DOI: 10.3389/fgene.2024.1483113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Nitrogen is a critical nutrient vital for crop growth. However, our current understanding of nitrogen use efficiency (NUE) under drought remains inadequate. To delve into the molecular mechanisms underlying NUE under drought, a transcriptome and physiological co-expression analysis was performed in rice, which is particularly sensitive to drought. We conducted a pot experiment using rice grown under normal irrigation, mild drought stress, and severe drought stress. Compared to the normal treatment, drought stress led to a significant reduction in NUE across growth stages, with decreases ranging from 2.18% to 31.67%. Totals of 4,424 and 2,452 genes were identified as NUE-related DEGs that showed differential expressions (DEGs) and significantly correlated with NUE (NUE-related) under drought in the vegetative and reproductive stages, respectively. Interestingly, five genes involved in nitrogen metabolism were found in the overlapped genes of these two sets. Furthermore, the two sets of NUE-related DEGs were enriched in glyoxylate and dicarboxylate metabolism, as well as carbon fixation in photosynthetic organisms. Several genes in these two pathways were identified as hub genes in the two sets of NUE-related DEGs. This study offers new insights into the molecular mechanism of rice NUE under drought in agricultural practices and provides potential genes for breeding drought-resistant crops with high NUE.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu, China
| | - Yufan Zhang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Han Qiao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Yutong Zheng
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liangsheng Shi
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Si CC, Li YB, Hai X, Bao CC, Zhao JY, Ahmad R, Li J, Wang SC, Li Y, Yang YD. Genome-Wide Identification and Expression Analysis of MYB Transcription Factor Family in Response to Various Abiotic Stresses in Coconut ( Cocos nucifera L.). Int J Mol Sci 2024; 25:10048. [PMID: 39337532 PMCID: PMC11432468 DOI: 10.3390/ijms251810048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut's response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses to various abiotic stresses, but their genome-wide characterization and functional roles in coconut have not been comprehensively explored. This study identified 214 CnMYB genes (39 1R-MYB, 171 R2R3-MYB, 2 3R-MYB, and 2 4R-MYB) in the coconut genome. Phylogenetic analysis revealed that these genes are unevenly distributed across the 16 chromosomes, with conserved consensus sequences, motifs, and gene structures within the same subgroups. Synteny analysis indicated that segmental duplication primarily drove CnMYB evolution in coconut, with low nonsynonymous/synonymous ratios suggesting strong purifying selection. The gene ontology (GO) annotation of protein sequences provided insights into the biological functions of the CnMYB gene family. CnMYB47/70/83/119/186 and CnMYB2/45/85/158/195 were identified as homologous genes linked to nitrogen deficiency, drought, and salinity stress through BLAST, highlighting the key role of CnMYB genes in abiotic stress tolerance. Quantitative analysis of PCR showed 10 CnMYB genes in leaves and petioles and found that the expression of CnMYB45/47/70/83/85/119/186 was higher in 3-month-old than one-year-old coconut, whereas CnMYB2/158/195 was higher in one-year-old coconut. Moreover, the expression of CnMYB70, CnMYB2, and CnMYB2/158 was high under nitrogen deficiency, drought, and salinity stress, respectively. The predicted secondary and tertiary structures of three key CnMYB proteins involved in abiotic stress revealed distinct inter-proteomic features. The predicted interaction between CnMYB2/158 and Hsp70 supports its role in coconut's drought and salinity stress responses. These results expand our understanding of the relationships between the evolution and function of MYB genes, and provide valuable insights into the MYB gene family's role in abiotic stress in coconut.
Collapse
Affiliation(s)
- Cheng-Cheng Si
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yu-Bin Li
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Xue Hai
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Ci-Ci Bao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jin-Yang Zhao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Rafiq Ahmad
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
| | - Shou-Chuang Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yao-Dong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
| |
Collapse
|
8
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
9
|
Ye C, Guo J, Zhou XQ, Chen DG, Liu J, Peng X, Jaremko M, Jaremko Ł, Guo T, Liu CG, Chen K. The Dsup coordinates grain development and abiotic stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108184. [PMID: 37977025 DOI: 10.1016/j.plaphy.2023.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
DNA damage is a serious threat to all living organisms and may be induced by environmental stressors. Previous studies have revealed that the tardigrade (Ramazzotius varieornatus) DNA damage suppressor protein Dsup has protective effects in human cells and tobacco. However, whether Dsup provides radiation damage protection more widely in crops is unclear. To explore the effects of Dsup in other crops, stable Dsup overexpression lines through Agrobacterium-mediated transformation were generated and their agronomic traits were deeply investigated. In this study, the overexpression of Dsup not only enhanced the DNA damage resistance at the seeds and seedlings stages, they also exhibited grain size enlargement and starch granule structure and cell size alteration by the scanning electron microscopy observation. Notably, the RNA-seq revealed that the Dsup plants increased radiation-related and abiotic stress-related gene expression in comparison to wild types, suggesting that Dsup is capable to coordinate normal growth and abiotic stress resistance in rice. Immunoprecipitation enrichment with liquid chromatography-tandem mass spectrometry (IP-LC-MS) assays uncovered 21 proteins preferably interacting with Dsup in plants, suggesting that Dsup binds to transcription and translation related proteins to regulate the homeostasis between DNA protection and plant development. In conclusion, our data provide a detailed agronomic analysis of Dsup plants and potential mechanisms of Dsup function in crops. Our findings provide novel insights for the breeding of crop radiation resistance.
Collapse
Affiliation(s)
- Chanjuan Ye
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China
| | - Jie Guo
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China
| | - Xin-Qiao Zhou
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China
| | - Da-Gang Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China
| | - Juan Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China
| | - Xin Peng
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuan-Guang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China.
| | - Ke Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Xie N, Huang X, Zhou J, Song X, Lin J, Yan M, Zhu M, Li J, Wang K. The R2R3-MYB transcription factor CsMYB42 regulates theanine biosynthesis in albino tea leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111850. [PMID: 37648117 DOI: 10.1016/j.plantsci.2023.111850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Theanine is a unique secondary metabolite in tea plants and contributes to the umami taste and health benefits of tea. However, theanine biosynthesis in tea plants is not fully understood, and its mechanism of transcriptional regulation remains poorly reported. Theanine content was significantly correlated with the expression of theanine biosynthesis-related gene CsGS1c and transcription factor CsMYB42 in different leaf positions and picking times, but there was no significant correlation in different tissues of albino tea plant 'Anjibaicha'. This suggests that CsMYB42 may regulate CsGS1c to synthesize theanine in albino tea leaves, and the regulation is tissue specific. CsMYB42 is a nuclear-localized R2R3-MYB transcription factor gene with transcriptional activation activity. Yeast one-hybrid assay and electrophoretic mobility shift assay confirmed the direct binding of CsMYB42 to the promoter of CsGS1c. Luciferase assay showed that CsMYB42 activates the CsGS1c expression. Furthermore, the inhibition of CsMYB42 using an antisense oligonucleotide in tea leaves decreased CsGS1c expression and theanine content. These results indicate that CsMYB42 plays a crucial role in activating the expression of CsGS1c and may be involved in the biosynthesis of theanine in albino tea leaves. This study provides fresh insights into the tissue-specific regulation of theanine biosynthesis, which laid a foundation for breeding high-theanine tea plants.
Collapse
Affiliation(s)
- Nianci Xie
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jiaxin Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Xiaofeng Song
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Junming Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Meihong Yan
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|