1
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Silva V, Silva A, Barbero R, Romero M, del Campo R, Caniça M, Cordeiro R, Igrejas G, Poeta P. Resistome, Virulome, and Clonal Variation in Methicillin-Resistant Staphylococcus aureus (MRSA) in Healthy Swine Populations: A Cross-Sectional Study. Genes (Basel) 2024; 15:532. [PMID: 38790161 PMCID: PMC11121583 DOI: 10.3390/genes15050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar plates and confirmed via molecular methods. Antimicrobial susceptibility testing and whole genome sequencing (WGS) were performed to characterize resistance profiles and genetic determinants. Among the 107 MRSA-positive samples (83.1% prevalence), fattening pigs and breeding sows exhibited notably high carriage rates. The genome of 20 isolates revealed the predominance of the ST398 clonal complex, with diverse spa types identified. Antimicrobial susceptibility testing demonstrated resistance to multiple antimicrobial agents, including penicillin, cefoxitin, and tetracycline. WGS analysis identified a diverse array of resistance genes, highlighting the genetic basis of antimicrobial resistance. Moreover, virulence gene profiling revealed the presence of genes associated with pathogenicity. These findings underscore the significant prevalence of MRSA in swine populations and emphasize the need for enhanced surveillance and control measures to mitigate zoonotic transmission risks. Implementation of prudent antimicrobial use practices and targeted intervention strategies is essential to reducing MRSA prevalence and safeguarding public health. Continued research efforts are warranted to elucidate transmission dynamics and virulence potential, ultimately ensuring food safety and public health protection.
Collapse
Affiliation(s)
- Vanessa Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adriana Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Raquel Barbero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Mario Romero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rui Cordeiro
- Intergados, SA, Av. de Olivença, S/N, 2870-108 Montijo, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Lin C, Feng Y, Xie X, Zhang H, Wu J, Zhu Y, Yu J, Feng J, Su W, Lai S, Zhang A. Antimicrobial resistance characteristics and phylogenetic relationships of pleuromutilin-resistant Enterococcus isolates from different environmental samples along a laying hen production chain. J Environ Sci (China) 2024; 137:195-205. [PMID: 37980008 DOI: 10.1016/j.jes.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 11/20/2023]
Abstract
Antimicrobial resistance in the laying hen production industry has become a serious public health problem. The antimicrobial resistance and phylogenetic relationships of the common conditional pathogen Enterococcus along the laying hen production chain have not been systematically clarified. 105 Enterococcus isolates were obtained from 115 environmental samples (air, dust, feces, flies, sewage, and soil) collected along the laying hen production chain (breeding chicken, chick, young chicken, and commercial laying hen). These Enterococcus isolates exhibited resistance to some clinically relevant antibiotics, such as tetracycline (92.4%), streptomycin (92.4%), and erythromycin (91.4%), and all strains had multidrug resistance phenotypes. Whole genome sequencing characterized 29 acquired antibiotic resistance genes (ARGs) that conferred resistance to 11 classes of antibiotics in 51 pleuromutilin-resistant Enterococcus isolates, and lsa(E), which mediates resistance to pleuromutilins, always co-occurred with lnu(B). Alignments with the Mobile Genetic Elements database identified four transposons (Tn554, Tn558, Tn6261, and Tn6674) with several ARGs (erm(A), ant(9)-la, fex(A), and optrA) that mediated resistance to many clinically important antibiotics. Moreover, we identified two new transposons that carried ARGs in the Tn554 family designated as Tn7508 and Tn7492. A complementary approach based on conventional multi-locus sequence typing and whole genome single nucleotide polymorphism analysis showed that phylogenetically related pleuromutilin-resistant Enterococcus isolates were widely distributed in various environments on different production farms. Our results indicate that environmental contamination by antimicrobial-resistant Enterococcus requires greater attention, and they highlight the risk of pleuromutilin-resistant Enterococcus and ARGs disseminating along the laying hen production chain, thereby warranting effective disinfection.
Collapse
Affiliation(s)
- Cong Lin
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuxuan Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xianjun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jie Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yixiao Zhu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingyi Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wen Su
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shanming Lai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Uruén C, Gimeno J, Sanz M, Fraile L, Marín CM, Arenas J. Invasive Streptococcus suis isolated in Spain contain a highly promiscuous and dynamic resistome. Front Cell Infect Microbiol 2024; 13:1329632. [PMID: 38317790 PMCID: PMC10839070 DOI: 10.3389/fcimb.2023.1329632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Streptococcus suis is a major pathogen for swine and human. Here we aimed to know the rates of antimicrobial resistance (AMR) in invasive S. suis isolates recovered along Spain between 2016 - 2021 and elucidate their genetic origin. Methods Antibiotic susceptibility testing was performed for 116 isolates of different genetic backgrounds and geographic origins against 18 antibiotics of 9 families. The association between AMR and genotypes and the origin of the isolates were statistically analyzed using Pearson´s chi-square test and the likelihood ratio. The antimicrobial resistant genes were identified by whole genome sequencing analysis and PCR screenings. Results High AMR rates (>80%) were detected for tetracyclines, spectinomycin, lincosamides, and marbofloxacin, medium (20-40%) for sulphonamides/trimethoprim, tiamulin, penicillin G, and enrofloxacin, and low (< 20%) for florfenicol, and four additional β-lactams. The occurrence of multidrug resistance was observed in 90% of isolates. For certain antibiotics (penicillin G, enrofloxacin, marbofloxacin, tilmicosin, and erythromycin), AMR was significantly associated with particular sequence types (STs), geographic regions, age of pigs, and time course. Whole genome sequencing comparisons and PCR screenings identified 23 AMR genes, of which 19 were previously reported in S. suis (aph(3')-IIIa, sat4, aadE, spw, aac(6')-Ie-aph(2'')-Ia, fexA, optrA, erm(B), mef(A/E), mrs(D), mph(C), lnu(B), lsa(E), vga(F), tet(M), tet(O), tet(O/W/32/O), tet(W)), and 4 were novel (aph(2'')-IIIa, apmA, erm(47), tet(T)). These AMR genes explained the AMR to spectinomycin, macrolides, lincosamides, tiamulin, and tetracyclines. Several genes were located on mobile genetic elements which showed a variable organization and composition. As AMR gene homologs were identified in many human and animal pathogens, the resistome of S. suis has a different phylogenetic origin. Moreover, AMR to penicillin G, fluoroquinolones, and trimethoprim related to mutations in genes coding for target enzymes (pbp1a, pbp2b, pbp2x, mraY, gyrA, parC, and dhfr). Bioinformatic analysis estimated traits of recombination on target genes, also indicative of gene transfer events. Conclusions Our work evidences that S. suis is a major contributor to AMR dissemination across veterinary and human pathogens. Therefore, control of AMR in S. suis should be considered from a One Health approach in regions with high pig production to properly tackle the issue of antimicrobial drug resistance.
Collapse
Affiliation(s)
- Cristina Uruén
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Institute Agrofood of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
| | - Jorge Gimeno
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Institute Agrofood of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
| | - Marina Sanz
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Institute Agrofood of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
| | - Lorenzo Fraile
- Department of Animal Science, ETSEA, University of Lleida-Agrotecno, Lleida, Spain
| | - Clara M. Marín
- Institute Agrofood of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
- Department of Animal Production and Health, CITA, Zaragoza, Spain
| | - Jesús Arenas
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Institute Agrofood of Aragón-IA2, University of Zaragoza-CITA, Zaragoza, Spain
| |
Collapse
|
5
|
Narongpun P, Chanchaithong P, Yamagishi J, Thapa J, Nakajima C, Suzuki Y. Whole-Genome Investigation of Zoonotic Transmission of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 Isolated from Pigs and Humans in Thailand. Antibiotics (Basel) 2023; 12:1745. [PMID: 38136779 PMCID: PMC10741195 DOI: 10.3390/antibiotics12121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been widespread globally in pigs and humans for decades. Nasal colonization of LA-MRSA is regarded as an occupational hazard to people who are regularly involved in livestock production. Our previous study suggested pig-to-human transmission caused by LA-MRSA clonal complex (CC) 398, using traditional molecular typing methods. Instead, this study aimed to investigate the zoonotic transmission of LA-MRSA CC398 using whole genome sequencing (WGS) technologies. A total of 63 LA-MRSA isolates were identified and characterized in Thailand. Further, the 16 representatives of LA-MRSA CC9 and CC398, including porcine and worker isolates, were subjected to WGS on the Illumina Miseq platform. Core-genome single nucleotide polymorphism (SNP)-based analyses verify the zoonotic transmission caused by LA-MRSA CC398 in two farms. WGS-based characterization suggests the emergence of a novel staphylococcal cassette chromosome (SCC) mec type, consisting of multiple cassette chromosome recombinase (ccr) gene complexes via genetic recombination. Additionally, the WGS analyses revealed putative multi-resistant plasmids and several cross-resistance genes, conferring resistance against drugs of last resort used in humans such as quinupristin/dalfopristin and linezolid. Significantly, LA-MRSA isolates, in this study, harbored multiple virulence genes that may become a serious threat to an immunosuppressive population, particularly for persons who are in close contact with LA-MRSA carriers.
Collapse
Affiliation(s)
- Pawarut Narongpun
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan;
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
6
|
Gangar T, Patra S. Antibiotic persistence and its impact on the environment. 3 Biotech 2023; 13:401. [PMID: 37982084 PMCID: PMC10654327 DOI: 10.1007/s13205-023-03806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
From boon molecules to molecules contributing to rising concern has been the sojourn of antibiotics. The problem of antibiotic contamination has gotten worse due to antibiotics' pervasive use in every aspect of the environment. One such consequence of pollution is the increase in infections with antibiotic resistance. All known antimicrobials being used for human benefit lead to their repetitive and routine release into the environment. The misuse of antibiotics has aggravated the situation to a level that we are short of antibiotics to treat infections as organisms have developed resistance against them. Overconsumption is not just limited to human health care, but also occurs in other areas such as aquaculture, livestock, and veterinary applications for the purpose of improving feed and meat products. Due to their harmful effects on non-target species, the trace level of antibiotics in the aquatic ecosystem presents a significant problem. Since the introduction of antibiotics into the environment is more than their removal, they have been given the status of persistent pollutants. The buildup of antibiotics in the environment threatens aquatic life and may lead to bacterial strains developing resistance. As newer organisms are becoming resistant, there exists a shortage of antibiotics to treat infections. This has presented a very critical problem for the health-care community. Another rising concern is that the development of newer drug molecules as antibiotics is minimal. This review article critically explains the cause and nature of the pollution and the effects of this emerging trend. Also, in the latter sections, why we need newer antibiotics is questioned and discussed.
Collapse
Affiliation(s)
- Tarun Gangar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| |
Collapse
|
7
|
Xu CW, Zhou X, Zhang XL, Zhou Q, Qi HX, Li YX, Liu SC, Zhang AY. Whole genome sequence of Streptococcus pluranimalium SP21-2, a porcine strain harbouring optrA and lsa(E) with chromosomal location. J Glob Antimicrob Resist 2023; 35:101-103. [PMID: 37709136 DOI: 10.1016/j.jgar.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterise the whole genome sequence of multidrug-resistant Streptococcus pluranimalium strain SP21-2 of swine origin in China. METHODS Illumina Miseq (200X coverage) and Nanopore PromethION platform (100X coverage) were used for genome sequencing. Rapid Annotation using Subsystem Technology (RAST) was used to annotate the genome of SP21-2. The antimicrobial resistance genes (ARGs) were identified using ResFinder-4.1. RESULTS The assembled circular genome of S. pluranimalium SP21-2 was 1,987,058 bp in length with a GC content of 39.54%, and no plasmid sequence was detected. A total of 2086 coding sequences were predicted by RAST. Oxazolidinone-phenicol resistance gene, optrA, and pleuromutilin-lincosamide-streptogramin A resistance gene, lsa(E), are both located on chromosomes, associated with IS1216 and ISS1S, respectively. In addition, SP21-2 harbours lnu(B) (lincosamide), ant (6)-Ia and aac(6')-aph(2") (aminoglycoside), erm(B) (macrolide), and tet(O) (tetracycline). CONCLUSION We firstly report the oxazolidinone-phenicol gene, optrA, and pleuromutilin-lincosamide-streptogramin A resistance gene, lsa(E), in S. pluranimalium. In this strain, we firstly identified ISS1S and IS1216 carrying ARGs in S. pluranimalium, which will provide a valuable reference to understanding potential transfer mechanisms of ARGs in S. pluranimalium.
Collapse
Affiliation(s)
- Chang-Wen Xu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Xue Zhou
- Chongqing Academy of Annimal Sciences, Chongqing, China
| | - Xia-Lan Zhang
- Central Agricultural Broadcasting and Television School (Banan, Chongqing), Chongqing, China
| | - Quan Zhou
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hao-Xuan Qi
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yun-Xia Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Shi-Chun Liu
- Guanghan Orthopedic Hospital, Guanghan, Sichuan, China
| | - An-Yun Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Nicolosi D, Petronio Petronio G, Russo S, Di Naro M, Cutuli MA, Russo C, Di Marco R. Innovative Phospholipid Carriers: A Viable Strategy to Counteract Antimicrobial Resistance. Int J Mol Sci 2023; 24:15934. [PMID: 37958915 PMCID: PMC10648799 DOI: 10.3390/ijms242115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The overuse and misuse of antibiotics have led to the emergence and spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria strains, usually associated with poorer patient outcomes and higher costs. In order to preserve the usefulness of these life-saving drugs, it is crucial to use them appropriately, as also recommended by the WHO. Moreover, innovative, safe, and more effective approaches are being investigated, aiming to revise drug treatments to improve their pharmacokinetics and distribution and to reduce the onset of drug resistance. Globally, to reduce the burden of antimicrobial resistance (AMR), guidelines and indications have been developed over time, aimed at narrowing the use and diminishing the environmental spread of these life-saving molecules by optimizing prescriptions, dosage, and times of use, as well as investing resources into obtaining innovative formulations with better pharmacokinetics, pharmacodynamics, and therapeutic results. This has led to the development of new nano-formulations as drug delivery vehicles, characterized by unique structural properties, biocompatible natures, and targeted activities such as state-of-the-art phospholipid particles generally grouped as liposomes, virosomes, and functionalized exosomes, which represent an attractive and innovative delivery approach. Liposomes and virosomes are chemically synthesized carriers that utilize phospholipids whose nature is predetermined based on their use, with a long track record as drug delivery systems. Exosomes are vesicles naturally released by cells, which utilize the lipids present in their cellular membranes only, and therefore, are highly biocompatible, with investigations as a delivery system having a more recent origin. This review will summarize the state of the art on microvesicle research, liposomes, virosomes, and exosomes, as useful and effective tools to tackle the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Stefano Russo
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University (HBIGS), 68167 Mannheim, Germany
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Marco Alfio Cutuli
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
- Consorzio Interuniversitario in Ingegneria e Medicina (COIIM), Azienda Sanitaria Regionale del Molise ASReM, UOC Governance del Farmaco, 86100 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| |
Collapse
|
9
|
Shoaib M, Xu J, Meng X, Wu Z, Hou X, He Z, Shang R, Zhang H, Pu W. Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China. Front Cell Infect Microbiol 2023; 13:1183390. [PMID: 37265496 PMCID: PMC10230075 DOI: 10.3389/fcimb.2023.1183390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Non-aureus Staphylococcus (NAS) species are currently the most commonly identified microbial agents causing sub-clinical infections of the udder and are also deemed as opportunistic pathogens of clinical mastitis in dairy cattle. More than 10 NAS species have been identified and studied but little is known about S. haemolyticus in accordance with dairy mastitis. The present study focused on the molecular epidemiology and genotypic characterization of S. haemolyticus isolated from dairy cattle milk in Northwest, China. Methods In this study, a total of 356 milk samples were collected from large dairy farms in three provinces in Northwest, China. The bacterial isolation and presumptive identification were done by microbiological and biochemical methods following the molecular confirmation by 16S rRNA gene sequencing. The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR. The phylogenetic grouping and sequence typing was done by Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively. Results In total, 39/356 (11.0%) were identified as positive for S. haemolyticus. The overall prevalence of other Staphylococcus species was noted to be 39.6% (141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri 10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S. epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were susceptible to tetracycline, vancomycin, and linezolid. The overall percentage of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15% (18/39). Among ARGs, mphC was identified as predominant (82.05%), followed by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%), aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H phylogenetic groups while the MLST categorized strains into eight STs with ST8 being the most predominant while other STs identified were ST3, ST11, ST22, ST32, ST19, ST16, and ST7. Conclusion These findings provided new insights into our understanding of the epidemiology and genetic characteristics of S. haemolyticus in dairy farms to inform interventions limiting the spread of AMR in dairy production.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Jie Xu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiaoqin Meng
- Lanzhou Center for Animal Disease Control and Prevention, Lanzhou, China
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiao Hou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhuolin He
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| |
Collapse
|
10
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 285] [Impact Index Per Article: 285.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Shrestha GS, Vijay AK, Stapleton F, White A, Pickford R, Carnt N. Human tear metabolites associated with nucleoside-signalling pathways in bacterial keratitis. Exp Eye Res 2023; 228:109409. [PMID: 36775205 DOI: 10.1016/j.exer.2023.109409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE The study aimed to profile and quantify tear metabolites associated with bacterial keratitis using both untargeted and targeted metabolomic platforms. METHODS Untargeted metabolomic analysis using liquid-chromatography-Q Exactive-HF mass-spectrometry explored tear metabolites significantly associated with bacterial keratitis (n = 6) compared to healthy participants (n = 6). Differential statistics and principal component analysis determined meaningful metabolite differences between cases and controls. Purines and nucleosides were further quantified and compared between 15 cases and 15 controls in the targeted metabolomic platform using TSQ quantum access triple quadrupole mass spectrometry. Compound quantification was done by plotting the calibration curves and the difference in the compound levels was evaluated using the Wilcoxon rank-sum test. RESULTS In the untargeted analysis, 49 tear metabolites (27 upregulated and 22 downregulated) were differentially expressed between cases and controls. The untargeted analysis indicated that the purine metabolism pathway was the most affected by bacterial keratitis. Metabolite quantification in the targeted analysis further confirmed the upregulation of xanthine (P = 0.02) and downregulation of adenine (P < 0.0001), adenosine (P < 0.0001) and cytidine (P < 0.0001) in the tears of participants with bacterial keratitis compared to that of healthy participants. CONCLUSIONS Bacterial keratitis significantly changes the tear metabolite profile, including five major compound classes such as indoles, amino acids, nucleosides, carbohydrates, and steroids. This study also indicates that tear fluids can be used to map the metabolic pathways and uncover metabolic markers associated with bacterial keratitis. Conceivably, the inhibition of nucleoside synthesis may contribute to the pathophysiology of bacterial keratitis because nucleosides are required for maintaining cellular energy homeostasis and immune adaptability.
Collapse
Affiliation(s)
| | | | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Australia
| | - Andrew White
- Department of Ophthalmology, Westmead Hospital, University of Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, UNSW Sydney, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, UNSW Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Australia; Institute of Ophthalmology, University College London, United Kingdom
| |
Collapse
|
12
|
Kowalewicz C, Timmermans M, Fretin D, Wattiau P, Boland C. An in-house 45-plex array for the detection of antimicrobial resistance genes in Gram-positive bacteria. Microbiologyopen 2023; 12:e1341. [PMID: 36825880 PMCID: PMC9791161 DOI: 10.1002/mbo3.1341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022] Open
Abstract
Identifying antimicrobial resistance (AMR) genes and determining their occurrence in Gram-positive bacteria provide useful data to understand how resistance can be acquired and maintained in these bacteria. We describe an in-house bead array targeting AMR genes of Gram-positive bacteria and allowing their rapid detection all at once at a reduced cost. A total of 41 AMR probes were designed to target genes frequently associated with resistance to tetracycline, macrolides, lincosamides, streptogramins, pleuromutilins, phenicols, glycopeptides, aminoglycosides, diaminopyrimidines, oxazolidinones and particularly shared among Enterococcus and Staphylococcus spp. A collection of 124 enterococci and 62 staphylococci isolated from healthy livestock animals through the official Belgian AMR monitoring (2018-2020) was studied with this array from which a subsample was further investigated by whole-genome sequencing. The array detected AMR genes associated with phenotypic resistance for 93.0% and 89.2% of the individual resistant phenotypes in enterococci and staphylococci, respectively. Although linezolid is not used in veterinary medicine, linezolid-resistant isolates were detected. These were characterized by the presence of optrA and poxtA, providing cross-resistance to other antibiotics. Rarer, vancomycin resistance was conferred by the vanA or by the vanL cluster. Numerous resistance genes circulating among Enterococcus and Staphylococcus spp. were detected by this array allowing rapid screening of a large strain collection at an affordable cost. Our data stress the importance of interpreting AMR with caution and the complementarity of both phenotyping and genotyping methods. This array is now available to assess other One-Health AMR reservoirs.
Collapse
Affiliation(s)
| | | | - David Fretin
- Veterinary Bacteriology, SciensanoIxellesBelgium
| | | | | |
Collapse
|
13
|
An lnu(A)-Carrying Multi-Resistance Plasmid Derived from Sequence Type 3 Methicillin-Resistant Staphylococcus lugdunensis May Contribute to Antimicrobial Resistance in Staphylococci. Antimicrob Agents Chemother 2022; 66:e0019722. [PMID: 35876576 PMCID: PMC9380557 DOI: 10.1128/aac.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus lugdunensis (MRSL) strains showing resistance to several common antibiotics have been reported recently. Sequence type (ST) 3 MRSL carrying SCCmec types IV, V, or Vt is the major lineage associated with health care-associated infections. We aimed to investigate the distribution and dissemination of antimicrobial resistance determinants in this lineage. Two representative ST3-MRSL strains, CGMH-SL131 (SCCmec V) and CGMH-SL138 (SCCmec IV), were subjected to whole-genome sequencing. Detection of antibiotic resistance genes and screening of susceptibility patterns were performed for 30 ST3-MRSL and 16 ST6-MRSL strains via PCR and standard methods. Except for mecA and blaZ, antimicrobial resistance genes were located within two plasmids: a 28.6 kb lnu(A)-carrying plasmid (pCGMH_SL138) in CGMH-SL138 and a 26 kb plasmid carrying non-lnu(A) resistance genes (pCGMH_SL131) in CGMH-SL131. Both plasmids shared common genetic features with multiple copies of IS257 flanked by genes conferring resistance to aminoglycoside (aacA-aphD and aadD), TET (tetk), and cadmium (cadDX) and tolerance to chlorhexidine (qacA/R); however, only pCGMH_SL138 harbored lnu(A) that conferred resistance to lincomycin and rep13 that encodes a replication initiation protein. Unlike ST6-MRSL, none of the ST3-MRSL isolates contained the ermA gene. Instead, most isolates harbored lnu(A) (20/30, 66.7%), and several other resistance genes found on pCGMH_SL138. These isolates and transformants containing pCGMH_SL138 exhibited susceptibility to ERY and higher MICs for lincomycin and aforementioned antibiotics. A novel lnu(A)-carrying plasmid, pCGMH_SL138, that harbored a multiresistance gene cluster, was identified in ST3-MRSL strains and may contribute to the dissemination of antibiotic resistance in staphylococci.
Collapse
|
14
|
Wu S, Huang J, Zhang F, Zhang J, Yang R, Pang R, Dai J, Rong D, Zhao M, Wang J, Ding Y, Chen M, Wu Q. Emergence of extensive multidrug resistant Staphylococcus aureus carrying novel Sa-MRR lsa(E) in retail food. J Glob Antimicrob Resist 2022; 30:205-213. [PMID: 35732263 DOI: 10.1016/j.jgar.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the prevalence and genetic environment of the multidrug resistance gene lsa(E) in food-related S. aureus in China. METHODS 1463 S. aureus from retail food products in 39 Chinese cities were investigated to determined the prevalence of lsa(E). Furthermore, antimicrobial susceptibility testing, whole-genome sequencing (WGS) and complete genetic analysis were performed in lsa(E)-positive isolates. RESULTS As a result, thirty-five isolates (2.4%) were positive for the lsa(E) gene which had an extensive multidrug-resistance phenotype. ST9-t899 and ST1-t4792 were the common types in positive strains. The lsa(E) genes were located in two different types of novel multiresistance region (MRRlsa(E)) on the chromosome. The Sa-MRRlsa(E)-I were inserted into lctP gene. The Sa-MRRlsa(E)-II were inserted into crtP gene and they were comprised of 7 ARGs interspersed with varieties of ISs, transposons and DNA invertase genes, showing is a novel arrangement harboring lsa(E). Part of transposon Tn1546 was inserted into downstream of lnu(B) in the novel Sa-MRRlsa(E)-II. Both two types of Sa-MRRlsa(E) could be excised from chromosome, indicating the Sa-MRRlsa(E) may be transferable. CONCLUSION Our study is the first systematical investigation of lsa(E)-positive S. aureus in retail foods in China. It indicated that the origin of most food-related lsa(E)-positive S. aureus in China might be associated with livestock or poultry breeding farm and has been transmitted between animal and food. Moreover, the emergence of S. aureus carrying novel Sa-MRRlsa(E), especially serve as a reservoir of antibiotic resistance traits, should warrants further attention.
Collapse
Affiliation(s)
- Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Dongli Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Miao Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, state Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
| |
Collapse
|
15
|
Tn 560, a Novel Tn 554 Family Transposon from Porcine Methicillin-Resistant Staphylococcus aureus ST398, Carries a Multiresistance Gene Cluster Comprising a Novel spc Gene Variant and the Genes lsa(E) and lnu(B). Antimicrob Agents Chemother 2022; 66:e0194721. [PMID: 35315688 DOI: 10.1128/aac.01947-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 5: Lincosamides: lincomycin. EFSA J 2021; 19:e06856. [PMID: 34729085 PMCID: PMC8546522 DOI: 10.2903/j.efsa.2021.6856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The specific concentrations of lincomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of lincomycin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for lincomycin.
Collapse
|
17
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA J 2021; 19:e06860. [PMID: 34729088 PMCID: PMC8546795 DOI: 10.2903/j.efsa.2021.6860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.
Collapse
|
18
|
Paterson GK. Genomic epidemiology of the opportunistic pathogen Staphylococcus coagulans from companion dogs. J Med Microbiol 2021; 70. [PMID: 34431760 PMCID: PMC8513628 DOI: 10.1099/jmm.0.001407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Introduction Staphylococcus coagulans (formerly Staphylococcus schleiferi subsp. coagulans) is a common commensal and opportunistic pathogen of companion dogs. It carries a range of antimicrobial resistance genes and is an occasional zoonotic pathogen. Hypothesis/Gap Statement Despite the potential insight offered by genome sequencing into the biology of S. coagulans, few genomes are currently available for study. Aim To sequence and analyse S. coagulans genomes to improve understanding of this organism’s molecular epidemiology, antimicrobial resistance and bacterium–host interactions. Methodology Twenty-five genomes of clinical isolates collected at a veterinary referral hospital in Scotland, UK, were sequenced with Illumina technology. These genomes were analysed by a series of bioinformatics tools along with 16 previously sequenced genomes. Results Phylogenetic comparison of the 41 genomes shows that the current S. coagulans phylogeny is dominated by clades of closely related isolates, at least one of which has spread internationally. Ten of the 11 methicillin-resistant S. coagulans genomes in this collection of 41 encoded the mecA promoter and gene mutations that are predicted to render the isolates susceptible to penicillins in the presence of clavulanic acid, a feature only described to date in methicillin-resistant Staphylococcus aureus. Seven such isolates were from the current study and, in line with the genome-based prediction, all were susceptible to amoxicillin/clavulanic acid in vitro. S. coagulans shared very few highly conserved virulence-associated genes with Staphylococcus pseudintermedius, another common commensal and opportunistic canine pathogen. Conclusion The availability of a further 25 genome sequences from clinical S. coagulans isolates will aid in better understanding the epidemiology, bacterial–host interactions and antimicrobial resistance of this opportunistic pathogen.
Collapse
Affiliation(s)
- Gavin K Paterson
- Royal Dick School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
19
|
Skiba-Kurek I, Nowak P, Empel J, Tomczak M, Klepacka J, Sowa-Sierant I, Żak I, Pomierny B, Karczewska E. Evaluation of Biofilm Formation and Prevalence of Multidrug-Resistant Strains of Staphylococcus epidermidis Isolated from Neonates with Sepsis in Southern Poland. Pathogens 2021; 10:pathogens10070877. [PMID: 34358027 PMCID: PMC8308537 DOI: 10.3390/pathogens10070877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus epidermidis strains play an important role in nosocomial infections, especially in the ones associated with biofilm formation on medical devices. The paper was aimed at analyzing the mechanisms of antibiotic resistance and confirming the biofilm-forming ability among S. epidermidis strains isolated from the blood of hospitalized newborns. Genetic analysis of resistance mechanism determinants included multiplex PCR detection of mecA, ermA, ermB, ermC, msrA, and mef genes. Biofilm analysis comprised phenotypic and genotypic methods including Christensen and Freeman methods and PCR detection of the icaADB gene complex. Among the tested S. epidermidis strains, 89% of the isolates were resistant to methicillin, 67%—to erythromycin, 53%—to clindamycin, 63%—to gentamicin, and 23%—to teicoplanin, while all the strains were susceptible to vancomycin and linezolid. The mecA gene was detected in 89% of the isolates, the ermC gene was the most common and present among 56% of the strains, while the msrA gene was observed in 11% isolates. Eighty-five percent of the strains were described as biofilm-positive by phenotypic methods and carried the icaADB gene cluster. Multidrug resistance and the biofilm-forming ability in most of the strains tested may contribute to antimicrobial therapy failure (p < 0.05).
Collapse
Affiliation(s)
- Iwona Skiba-Kurek
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Krakow, Poland; (I.S.-K.); (P.N.)
| | - Paweł Nowak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Krakow, Poland; (I.S.-K.); (P.N.)
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34 Street, 00-725 Warsaw, Poland; (J.E.); (M.T.)
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34 Street, 00-725 Warsaw, Poland; (J.E.); (M.T.)
| | - Joanna Klepacka
- Department of Clinical Microbiology, University Children’s Hospital of Krakow, Wielicka 256 Street, 30-663 Krakow, Poland; (J.K.); (I.S.-S.); (I.Ż.)
| | - Iwona Sowa-Sierant
- Department of Clinical Microbiology, University Children’s Hospital of Krakow, Wielicka 256 Street, 30-663 Krakow, Poland; (J.K.); (I.S.-S.); (I.Ż.)
| | - Iwona Żak
- Department of Clinical Microbiology, University Children’s Hospital of Krakow, Wielicka 256 Street, 30-663 Krakow, Poland; (J.K.); (I.S.-S.); (I.Ż.)
| | - Bartosz Pomierny
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland;
| | - Elżbieta Karczewska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Krakow, Poland; (I.S.-K.); (P.N.)
- Correspondence: ; Tel.: +481-2620-5750; Fax: +481-2620-5758
| |
Collapse
|
20
|
Yan H, Yu R, Li D, Shi L, Schwarz S, Yao H, Li XS, Du XD. A novel multiresistance gene cluster located on a plasmid-borne transposon in Listeria monocytogenes. J Antimicrob Chemother 2021; 75:868-872. [PMID: 31971232 DOI: 10.1093/jac/dkz545] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/07/2019] [Accepted: 12/08/2019] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To identify the genetic context and the transferability of the multiresistance gene lsa(E) in Listeria monocytogenes. METHODS MICs were determined by broth microdilution. Transferability of lsa(E) was investigated by conjugation, electrotransformation and natural transformation. The lsa(E)-carrying plasmid was sequenced using the Illumina MiSeq and PacBio RSII platforms. The presence of translocatable units (TUs) was examined by PCR. RESULTS The 85 555 bp non-conjugative multiresistance plasmid pNH1 from L. monocytogenes harboured nine antimicrobial resistance genes including a multiresistance gene cluster, consisting of the genes aphA3, erm(B), aadE, spw, lsa(E) and lnu(B), and in addition the genes dfrG, tet(S) and catA8 were also located on plasmid pNH1 The multiresistance gene cluster, and each of the genes tet(S), catA8 and cadA were flanked by IS1216 elements. PCR identified four types of TUs, consisting of either the multiresistance gene cluster and one copy of IS1216, the catA8 gene and one copy of IS1216, or both, but also the tet(S) gene and one copy of IS1216, respectively. Natural transformation into Streptococcus mutans UA159 yielded transformants that harboured a novel 13 208 bp transposon, designated Tn6659. This transposon consisted of the multiresistance gene cluster bounded by IS1216 copies. All transformants displayed elevated MICs of the respective antimicrobial agents. At the integration site in the transformants, 8 bp direct target duplications (5'-ATTCAAAC-3') were found immediately up- and downstream of Tn6659. CONCLUSIONS To the best of our knowledge, this is the first report of this novel multiresistance gene cluster and the gene catA8, flanked by IS1216 elements located on a plasmid of L. monocytogenes. Moreover, a novel functionally active multiresistance transposon was identified.
Collapse
Affiliation(s)
- He Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Runhao Yu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hong Yao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| |
Collapse
|
21
|
Fergestad ME, De Visscher A, L'Abee-Lund T, Tchamba CN, Mainil JG, Thiry D, De Vliegher S, Wasteson Y. Antimicrobial resistance and virulence characteristics in 3 collections of staphylococci from bovine milk samples. J Dairy Sci 2021; 104:10250-10267. [PMID: 33934873 DOI: 10.3168/jds.2020-19988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/27/2021] [Indexed: 11/19/2022]
Abstract
Mastitis is a prevalent disease in dairy cattle, and staphylococci are among the most common causative pathogens. Staphylococci can express resistance to a range of antimicrobials, of which methicillin resistance is of particular public health concern. Additionally, Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of non-aureus staphylococci (NAS). The aim of our study was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding antimicrobial resistance, with emphasis on methicillin resistance, and their carriage of virulence genes typically displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016 were included, distributed as follows: group 1, Norway, 100 isolates; group 2, Flanders, Belgium, 64 isolates; group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass spectrometry. Phenotypic resistance was determined via disk diffusion, and PCR was used for detection of methicillin resistance genes, mecA and mecC, and virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus haemolyticus from all different groups, with resistance to trimethoprim-sulfonamide frequently occurring in Staph. epidermidis and Staph. haemolyticus as well as in Staph. aureus. Resistance to penicillin was most frequently observed in group 1. Ten Belgian isolates (1 from group 2, 9 from group 3) carried the methicillin resistance determinant mecA: 5 Staph. aureus from 2 different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least 3 of the screened virulence genes, whereas, in total, only 8 NAS isolates harbored any of the same genes. Our study contributes to the continuous need for knowledge regarding staphylococci from food-producing animals as a basis for better understanding of occurrence of resistance and virulence traits in these bacteria.
Collapse
Affiliation(s)
- M E Fergestad
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - A De Visscher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University (UGent), 9820 Merelbeke, Belgium
| | - T L'Abee-Lund
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - C Ngassam Tchamba
- Bacteriology, Department of Infection Diseases, Faculty of Veterinary Medicine, Fundamental and Applied Research in Animal and Health (FARAH) Centre, University of Liège (ULiège), 4000 Liège, Belgium
| | - J G Mainil
- Bacteriology, Department of Infection Diseases, Faculty of Veterinary Medicine, Fundamental and Applied Research in Animal and Health (FARAH) Centre, University of Liège (ULiège), 4000 Liège, Belgium
| | - D Thiry
- Bacteriology, Department of Infection Diseases, Faculty of Veterinary Medicine, Fundamental and Applied Research in Animal and Health (FARAH) Centre, University of Liège (ULiège), 4000 Liège, Belgium
| | - S De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University (UGent), 9820 Merelbeke, Belgium
| | - Y Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
22
|
Deshpande L, Cantrell L, Romero JR, Carvalhaes C, Sader HS, Mendes RE. Characterization of a vga gene variant recovered from a Staphylococcus saprophyticus causing a community-acquired urinary tract infection: report from the SENTRY Antimicrobial Surveillance Program 2017. Diagn Microbiol Infect Dis 2021; 100:115398. [PMID: 34030104 DOI: 10.1016/j.diagmicrobio.2021.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/20/2022]
Abstract
A patient with a history of UTI acquired an isolate of Staphylococcus saprophyticus that was resistant to clindamycin, streptogramin A, pleuromutilins (LSPs), and oxacillin. A plasmid-located vga variant was identified in this pathogen, and the encoded protein showed a 39% to 67% identity to other previously characterized vga.
Collapse
Affiliation(s)
| | | | - José R Romero
- Arkansas Children's Hospital, Little Rock, AR, USA; University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | |
Collapse
|
23
|
Aung MS, Urushibara N, Kawaguchiya M, Hirose M, Ike M, Ito M, Kobayashi N. Distribution of Virulence Factors and Resistance Determinants in Three Genotypes of Staphylococcus argenteus Clinical Isolates in Japan. Pathogens 2021; 10:pathogens10020163. [PMID: 33546443 PMCID: PMC7913748 DOI: 10.3390/pathogens10020163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus argenteus, a novel staphylococcal species independent of S. aureus, causes a wide spectrum of infectious diseases. As detection of this species from humans and animals has been increasingly reported worldwide, its growing virulence and drug resistance via external genetic determinants has become concerning. In this study, the prevalence and genetic characteristics of virulence factors and drug resistance determinants were investigated for 82 S. argenteus clinical isolates in Hokkaido, Japan, for a one-year period starting in August 2019. These S. argenteus isolates corresponded to 0.66% of the total number of S. aureus isolates collected in the same period. The most prevalent genotype was sequence type (ST) 2250 and staphylocoagulase (coa) genotype XId (45.1%, n = 37), followed by ST1223-coa XV (30.5%, n = 25) and ST2198-coa XIV (24.4%, n = 20). Panton-Valentine leukocidin genes (lukS-PV-lukF-PV) were identified in a single ST2250 isolate. Only ST1223 isolates had the enterotoxin gene cluster (egc-2), seb, and selw (detection rate; 100%, 60%, and 84%, respectively), while sec, sey, sel26-sel27, tst-1 were only detected in ST2250 isolates (detection rate; 10.8%, 100%, 67.6%, and 10.8%, respectively). ST2198 isolates harbored selx at a significantly higher rate (60%) than isolates of other STs. Although most of S. argenteus isolates were susceptible to antimicrobials examined, ST2198 showed higher resistance rates to penicillin, macrolides, and aminoglycosides than other STs, and it harbored various resistance genes such as blaZ, erm(C), msr(A), lnuA, and aac(6′)-Ie-aph(2″)-Ia. Only one ST2250 isolate possessed SCCmec-IVc, showing resistance to oxacillin. blaZ was the most prevalent determinant of resistance in the three STs and belonged to two plasmid groups and a chromosomal group, suggesting its diverse origin. lnu(A) in ST2198 isolates was assigned to a major cluster with various staphylococcal species. The present study indicates that the prevalence of virulence factors and drug resistance profile/determinants differ depending on the lineage (ST) of S. argenteus.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
- Correspondence: ; Tel.: +81-11-611-2111
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
| | - Mina Hirose
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan;
| | - Miyo Ike
- Sapporo Clinical Laboratory, Incorporated, Hokkaido, Sapporo 060-0005, Japan; (M.I.); (M.I.)
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Incorporated, Hokkaido, Sapporo 060-0005, Japan; (M.I.); (M.I.)
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
| |
Collapse
|
24
|
Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2020; 44:281-297. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to the antibiotics develops rapidly and is increasingly serious health concern in the world. It is an insoluble topic due to the multiple resistant mechanisms. The overexpression of relative activities of the efflux pump has proven to be a frequent and important source of bacterial resistance. Efflux transporters in the membrane from the resistant bacteria could play a key role to inhibit the intracellular drug intake and impede the drug activities. However, nanoparticles (NPs), one of the most frequently used encapsulation materials, could increase the intracellular accumulation of the drug and inhibit the transporter activity effectively. The rational and successful application of nanotechnology is a key factor in overcoming bacterial resistance. Furthermore, nanoparticles such as metallic, carbon nanotubes and so on, may prevent the development of drug resistance and be associated with antibiotic agents, inhibiting biofilm formation or increasing the access into the target cell and exterminating the bacteria eventually. In the current study, the mechanisms of bacterial resistance are discussed and summarized. Additionally, the opportunities and challenges in the use of nanoparticles against bacterial resistance are also illuminated. At the same time, the use of nanoparticles to combat multidrug-resistant bacteria is also investigated by coupling natural antimicrobials or other alternatives. In short, we have provided a new perspective for the application of nanoparticles against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhiqun Lei
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
25
|
Yang M, Li XS, Li D, Shang Y, Yu R, Schwarz S, Huang Z, Du XD. Two novel lsa(E)-carrying mobile genetic elements in Streptococcus suis. J Antimicrob Chemother 2020; 75:2689-2691. [PMID: 32464646 DOI: 10.1093/jac/dkaa199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mengyan Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yanhong Shang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Rui Yu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zongmei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| |
Collapse
|
26
|
Chen W, He C, Yang H, Shu W, Cui Z, Tang R, Zhang C, Liu Q. Prevalence and molecular characterization of methicillin-resistant Staphylococcus aureus with mupirocin, fusidic acid and/or retapamulin resistance. BMC Microbiol 2020; 20:183. [PMID: 32600253 PMCID: PMC7325228 DOI: 10.1186/s12866-020-01862-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background The data on the prevalence of resistance to mupirocin (MUP), fusidic acid (FA) and retapamulin (RET) in methicillin-resistant Staphylococcus aureus (MRSA) from China are still limited. This study aimed to examine these three antibiotics resistance in 1206 MRSA clinical isolates from Eastern China. Phenotypic MUP, FA and RET resistance was determined by minimum inhibitory concentrations (MICs), and genotypic by PCR and DNA sequencing of the mupA/B, fusB-D, cfr, vgaA/Av/ALC/B/C/E, lsaA-C/E and salA and mutations in ileS, fusA/E, rplC, and 23S RNA V domain. The genetic characteristics of resistance isolates were conducted by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Results Overall MRSA MUP, FA and RET resistance was low (5.1, 1.0 and 0.3%, respectively). MupA was the mechanism of high-level MUP resistance. All low-level MUP resistance isolates possessed an equivocal mutation N213D in IleS; of these, 2 reported an additional V588F mutation with an impact on the Rossman fold. FusA mutations, such as L461K, H457Q, H457Y and V90I were the primary FA mechanisms among high-level resistance isolates, most of which also contained fusC; however, all low-level resistance strains carried fusB. Except lsaE gene detected in one isolate, no other resistance mechanisms tested were found among RET-resistant isolates. Additionally, sixteen PFGE types (A-P) were observed, among which type B was the most common (49/76, 64.5%), followed by types E and G (4/76, 5.3% each) and types C and M (3/76, 3.9% each). All resistant strains were divided into 15 ST types by MLST. ST764 (24/76, 31.6%), ST630 (11/76, 14.5%), ST239 (9/76, 11.8%) and ST5 (7/76, 9.2%) were the major types. PFGE type B isolates with the aforementioned STs were mainly found in mupirocin resistant isolates. Conclusions MUP, FA and RET exhibited highly activity against the MRSA isolates. Acquired genes and chromosome-borne genes mutations were responsible for MUP and FA resistance; however, the mechanism for some RET-resistant isolates remains to be further elucidated. Also, the surveillance to MUP in MRSA should be strengthened to prevent elevated resistance due to the expansion of clones.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Shanghai, 200080, People's Republic of China
| | - Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Shanghai, 200080, People's Republic of China
| | - Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Shanghai, 200080, People's Republic of China
| | - Wen Shu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Shanghai, 200080, People's Republic of China
| | - Zelin Cui
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Shanghai, 200080, People's Republic of China
| | - Rong Tang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Shanghai, 200080, People's Republic of China
| | - Chuanling Zhang
- Department of Clinical Laboratory, Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
27
|
Richter A, Feßler AT, Böttner A, Köper LM, Wallmann J, Schwarz S. Reasons for antimicrobial treatment failures and predictive value of in-vitro susceptibility testing in veterinary practice: An overview. Vet Microbiol 2020; 245:108694. [PMID: 32456814 DOI: 10.1016/j.vetmic.2020.108694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
The choice of the most suitable antimicrobial agent for the treatment of an animal suffering from a bacterial infection is a complex issue. The results of bacteriological diagnostics and the in-vitro antimicrobial susceptibility testing (AST) provide guidance of potentially suitable antimicrobials. However, harmonized AST methods, veterinary-specific interpretive criteria and quality control ranges, which are essential to conduct AST in-vitro and to evaluate the corresponding results lege artis, are not available for all antimicrobial compounds, bacterial pathogens, animal species and sites of infection of veterinary relevance. Moreover, the clinical benefit of an antimicrobial agent (defined as its in vivo efficacy) is not exclusively dependent on the in-vitro susceptibility of the target pathogen. Apart from the right choice of an antibacterial drug with suitable pharmacokinetic properties and an appropriate pharmaceutical formulation, the success of treatment depends substantially on its adequate use. Even if this is ensured and in-vitro susceptibility confirmed, an insufficient improvement of clinical signs might be caused by biofilm-forming bacteria, persisters, or specific physicochemical conditions at the site of infection, such as pH value, oxygen partial pressure and perfusion rate. This review summarizes relevant aspects that have an impact on the predictive value of in-vitro AST and points out factors, potentially leading to an ineffective outcome of antibacterial treatment in veterinary practice. Knowing the reasons of inadequate beneficial effects can help to understand possible discrepancies between in-vitro susceptibility and in vivo efficacy and aid in undertaking strategies for an avoidance of treatment failures.
Collapse
Affiliation(s)
- Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Jürgen Wallmann
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Cheng G, Ning J, Ahmed S, Huang J, Ullah R, An B, Hao H, Dai M, Huang L, Wang X, Yuan Z. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob Resist Infect Control 2019; 8:158. [PMID: 31649815 PMCID: PMC6805589 DOI: 10.1186/s13756-019-0623-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Public unrest about the use of antimicrobial agents in farming practice is the leading cause of increasing and the emergences of Multi-drug Resistant Bacteria that have placed pressure on the agri-food industry to act. The usage of antimicrobials in food and agriculture have direct or indirect effects on the development of Antimicrobial resistance (AMR) by bacteria associated with animals and plants which may enter the food chain through consumption of meat, fish, vegetables or some other food sources. In addition to antimicrobials, recent reports have shown that AMR is associated with tolerance to heavy metals existing naturally or used in agri-food production. Besides, biocides including disinfectants, antiseptics and preservatives which are widely used in farms and slaughter houses may also contribute in the development of AMR. Though the direct transmission of AMR from food-animals and related environment to human is still vague and debatable, the risk should not be neglected. Therefore, combined global efforts are necessary for the proper use of antimicrobials, heavy metals and biocides in agri-food production to control the development of AMR. These collective measures will preserve the effectiveness of existing antimicrobials for future generations.
Collapse
Affiliation(s)
- Guyue Cheng
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jianan Ning
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Saeed Ahmed
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junhong Huang
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rizwan Ullah
- 3State key laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
| | - Boyu An
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haihong Hao
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Menghong Dai
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lingli Huang
- 2National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xu Wang
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zonghui Yuan
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China.,2National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
29
|
Low Prevalence of Gram-Positive Isolates Showing Elevated Lefamulin MIC Results during the SENTRY Surveillance Program for 2015-2016 and Characterization of Resistance Mechanisms. Antimicrob Agents Chemother 2019; 63:AAC.02158-18. [PMID: 30670418 DOI: 10.1128/aac.02158-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
This study investigated the molecular mechanisms possibly associated with non-wild-type MICs for lefamulin among staphylococci and streptococci included in the lefamulin surveillance program from 2015 to 2016. A total of 2,919 Staphylococcus aureus, 276 coagulase-negative staphylococci (CoNS), 3,923 Streptococcus pneumoniae, 389 β-hemolytic, and 178 viridans group streptococci isolates were included in the surveillance studies. Eleven (0.3% of all S. aureus) S. aureus isolates with lefamulin MICs above the staphylococcal epidemiological cutoff (ECOFF) value (>0.25 μg/ml) were selected for this study. Eight (72.7%) S. aureus (lefamulin MIC, 0.5 to 4 μg/ml) isolates carried vga(A or E), one isolate (MIC, 32 μg/ml) carried lsa(E), one isolate (MIC, 16 μg/ml) had an alteration in L4, and one strain (MIC, 0.5 μg/ml) did not carry any of the investigated resistance mechanisms. A total of 14 (5.1% of all CoNS) CoNS isolates had lefamulin MICs (0.5 to >32 μg/ml) above the ECOFF. Similar to S. aureus, 8 (57.1%) CoNS (lefamulin MIC, 1 to 8 μg/ml) isolates carried vga(A or B), while 2 isolates (MIC, 4 to 32 μg/ml) carried cfr High genetic diversity was observed among staphylococci, although 3 S. aureus isolates belonged to sequence type 398 (ST398). Among the 3 Streptococcus agalactiae and 3 viridans group streptococci (0.1% of all streptococci surveyed) isolates selected for additional characterization, all but 1 isolate carried lsa(E). This study documents a low occurrence of surveillance isolates exhibiting a non-wild-type MIC for lefamulin, and among these isolates, vga and lsa(E) prevailed in staphylococci and streptococci, respectively.
Collapse
|