1
|
Lu Y, Shan Y, Dai L, Jiang X, Song C, Chen B, Zhang J, Li J, Zhang Y, Xu J, Li T, Xiong Z, Bai Y, Huang X. Sex-specific equations to estimate body composition: Derivation and validation of diagnostic prediction models using UK Biobank. Clin Nutr 2023; 42:511-518. [PMID: 36857960 DOI: 10.1016/j.clnu.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND & AIMS Body mass index and waist circumference are simple measures of obesity. However, they do not distinguish between visceral and subcutaneous fat, or muscle, potentially leading to biased relationships between individual body composition parameters and adverse health outcomes. The purpose of this study was to develop and validate prediction models for volumetric adipose and muscle. METHODS Based on cross-sectional data of 18,457, 18,260, and 17,052 White adults from the UK Biobank, we developed sex-specific equations to estimate visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (ASAT), and total thigh fat-free muscle (FFM) volumes, respectively. Volumetric magnetic resonance imaging served as the reference. We used the least absolute shrinkage and selection operator and the extreme gradient boosting methods separately to fit three sequential models, the inputs of which included demographics and anthropometrics and, in some, bioelectrical impedance analysis parameters. We applied comprehensive metrics to assess model performance in the temporal validation set. RESULTS The equations that included more predictors generally performed better. Accuracy of the equations was moderate for VAT (percentage of estimates that differed <30% from the measured values, 70 to 78 in males, 64 to 69 in females) and good for ASAT (85 to 91 in males, 90 to 95 in females) and FFM (99 to 100 in both sexes). All the equations appeared precise (interquartile range of the difference, 0.89 to 1.76 L for VAT, 1.16 to 1.61 L for ASAT, 0.81 to 1.39 L for FFM). Bias of all the equations was negligible (-0.17 to 0.05 L for VAT, -0.10 to 0.12 L for ASAT, -0.07 to 0.09 L for FFM). The equations achieved superior cardiometabolic correlations compared with body mass index and waist circumference. CONCLUSIONS The developed equations to estimate VAT, ASAT, and FFM volumes achieved moderate to good performance. They may be cost-effective tools to revisit the implications of diverse body components.
Collapse
Affiliation(s)
| | - Ying Shan
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Liang Dai
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | | | - Congying Song
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Bangwei Chen
- BGI-Shenzhen, Shenzhen, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jingwen Zhang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Jing Li
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China; Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Yue Zhang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Junjie Xu
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Tao Li
- BGI-Shenzhen, Shenzhen, China
| | - Zuying Xiong
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | | | - Xiaoyan Huang
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China; Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, China.
| |
Collapse
|
2
|
Raguindin PF, Bertolo A, Zeh RM, Fränkl G, Itodo OA, Capossela S, Bally L, Minder B, Brach M, Eriks-Hoogland I, Stoyanov J, Muka T, Glisic M. Body Composition According to Spinal Cord Injury Level: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10173911. [PMID: 34501356 PMCID: PMC8432215 DOI: 10.3390/jcm10173911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The level of injury is linked with biochemical alterations and limitations in physical activity among individuals with spinal cord injury (SCI), which are crucial determinants of body composition. We searched five electronic databases from inception until 22 July 2021. The pooled effect estimates were computed using random-effects models, and heterogeneity was calculated using I2 statistics and the chi-squared test. Study quality was assessed using the Newcastle–Ottawa Scale. We pooled 40 studies comprising 4872 individuals with SCI (3991 males, 825 females, and 56 sex-unknown) in addition to chronic SCI (median injury duration 12.3 y, IQR 8.03–14.8). Individuals with tetraplegia had a higher fat percentage (weighted mean difference (WMD) 1.9%, 95% CI 0.6, 3.1) and lower lean mass (WMD −3.0 kg, 95% CI −5.9, −0.2) compared to those with paraplegia. Those with tetraplegia also had higher indicators of central adiposity (WMD, visceral adipose tissue area 0.24 dm2 95% CI 0.05, 0.43 and volume 1.05 L 95% CI 0.14, 1.95), whereas body mass index was lower in individuals with tetraplegia than paraplegia (WMD −0.9 kg/mg2, 95% CI −1.4, −0.5). Sex, age, and injury characteristics were observed to be sources of heterogeneity. Thus, individuals with tetraplegia have higher fat composition compared to paraplegia. Anthropometric measures, such as body mass index, may be inaccurate in describing adiposity in SCI individuals.
Collapse
Affiliation(s)
- Peter Francis Raguindin
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland; (O.A.I.); (T.M.); (M.G.)
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
- Graduate School for Health Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
- Correspondence:
| | - Alessandro Bertolo
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
| | - Ramona Maria Zeh
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
| | - Gion Fränkl
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Oche Adam Itodo
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland; (O.A.I.); (T.M.); (M.G.)
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
- Graduate School for Health Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Simona Capossela
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine, Metabolism, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland;
| | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland;
| | - Mirjam Brach
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
| | - Inge Eriks-Hoogland
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
- Swiss Paraplegic Center, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland; (O.A.I.); (T.M.); (M.G.)
| | - Marija Glisic
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland; (O.A.I.); (T.M.); (M.G.)
- Swiss Paraplegic Research, Guido A. Zäch Str. 1, 6207 Nottwil, Switzerland; (A.B.); (R.M.Z.); (G.F.); (S.C.); (M.B.); (I.E.-H.); (J.S.)
| |
Collapse
|
3
|
Assessment of body composition in spinal cord injury: A scoping review. PLoS One 2021; 16:e0251142. [PMID: 33961647 PMCID: PMC8104368 DOI: 10.1371/journal.pone.0251142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this scoping review was to map the evidence on measurement properties of body composition tools to assess whole-body and regional fat and fat-free mass in adults with SCI, and to identify research gaps in order to set future research priorities. Electronic databases of PubMed, EMBASE and the Cochrane library were searched up to April 2020. Included studies employed assessments related to whole-body or regional fat and/or fat-free mass and provided data to quantify measurement properties that involved adults with SCI. All searches and data extractions were conducted by two independent reviewers. The scoping review was designed and conducted together with an expert panel (n = 8) that represented research, clinical, nutritional and lived SCI experience. The panel collaboratively determined the scope and design of the review and interpreted its findings. Additionally, the expert panel reached out to their professional networks to gain further stakeholder feedback via interactive practitioner surveys and workshops with people with SCI. The research gaps identified by the review, together with discussions among the expert panel including consideration of the survey and workshop feedback, informed the formulation of future research priorities. A total of 42 eligible articles were identified (1,011 males and 143 females). The only tool supported by studies showing both acceptable test-retest reliability and convergent validity was whole-body dual-energy x-ray absorptiometry (DXA). The survey/workshop participants considered the measurement burden of DXA acceptable as long as it was reliable, valid and would do no harm (e.g. radiation, skin damage). Practitioners considered cost and accessibility of DXA major barriers in applied settings. The survey/workshop participants expressed a preference towards simple tools if they could be confident in their reliability and validity. This review suggests that future research should prioritize reliability and validity studies on: (1) DXA as a surrogate 'gold standard' tool to assess whole-body composition, regional fat and fat-free mass; and (2) skinfold thickness and waist circumference as practical low-cost tools to assess regional fat mass in persons with SCI, and (3) females to explore potential sex differences of body composition assessment tools. Registration review protocol: CRD42018090187 (PROSPERO).
Collapse
|
4
|
Gorgey AS, Ennasr AN, Farkas GJ, Gater DR. Anthropometric Prediction of Visceral Adiposity in Persons With Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:23-35. [PMID: 33814881 DOI: 10.46292/sci20-00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over two-thirds of persons with spinal cord injury (SCI) experience neurogenic obesity-induced cardiometabolic syndrome (CMS) and other chronic comorbidities. Obesity is likely to impede social and recreational activities, impact quality of life, and impose additional socioeconomic burdens on persons with SCI. Advances in imaging technology facilitate the mapping of adiposity and its association with the cardiometabolic profile after SCI. Central adiposity or central obesity is characterized by increased waist (WC) and abdominal circumferences (AC) as well as visceral adipose tissue (VAT). A number of studies, while relying on expensive imaging techniques, have reported direct associations of both central obesity and VAT in imposing significant health risks after SCI. The mechanistic role of central obesity on cardiometabolic heath in persons with SCI has yet to be identified, despite the knowledge that it has been designated as an independent risk factor for cardiometabolic dysfunction and premature mortality in other clinical populations. In persons with SCI, the distribution of adipose tissue has been suggested to be a function of sex, level of injury, and age. To date, there is no SCI-specific WC or AC cutoff value to provide anthropometric prediction of VAT and diagnostic capability of persons at risk for central obesity, CMS, and cardiovascular disease after SCI. The purpose of the current review is to summarize the factors contributing to visceral adiposity in persons with SCI and to develop an SCI-specific anthropometric prediction equation for this population. Furthermore, a proposed WC cutoff will be discussed as a surrogate index for central obesity, CMS, and cardiovascular disorders after SCI.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Areej N Ennasr
- Spinal Cord Injury and Disorders Center, Central Virginia VA Health Care System, Richmond, Virginia
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
Hansen RK, Samani A, Laessoe U, Handberg A, Larsen RG. Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users: protocol for a randomised controlled trial. BMJ Open 2020; 10:e040727. [PMID: 33067301 PMCID: PMC7569950 DOI: 10.1136/bmjopen-2020-040727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cardiovascular and metabolic diseases are a growing concern for individuals with spinal cord injury (SCI). Physical inactivity contributes to cardiometabolic morbidity and mortality in the SCI population. However, previous studies have shown mixed results regarding the effects of exercise on cardiometabolic risk factors in individuals with SCI. This discrepancy could be influenced by insufficient exercise stimuli. Recent guidelines recommend 30 min of moderate-to-vigorous intensity aerobic exercise, three times per week, for improvement in cardiometabolic health in individuals with SCI. However, to date, no studies have implemented an exercise intervention matching the new recommendations to examine the effects on cardiometabolic risk factors. Therefore, the primary objective of this study is to determine the effects of 12 weeks of wheelchair user-modified upper-body rowing exercise on both traditional (constituents of the metabolic syndrome) and novel (eg, vascular structure and function) cardiometabolic risk factors in manual wheelchair users with SCI. METHODS AND ANALYSIS A randomised controlled trial will compare 12 weeks of upper-body rowing exercise, 30 min three times per week, with a control group continuing their normal lifestyle. Outcome measurements will be performed immediately before (baseline), after 6 weeks (halfway), 12 weeks of training (post) and 6 months after the termination of the intervention period (follow-up). Outcomes will include inflammatory (eg, C reactive protein) and metabolic biomarkers determined from venous blood (with serum fasting insulin as primary outcome), body composition, arterial blood pressure, cardiorespiratory fitness level, brachial artery vascular structure and function and autonomic nervous system function. ETHICS AND DISSEMINATION This trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406) and approved by the Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (J.nr. N-20190053). The principal investigator will collect written informed consent from all participants prior to inclusion. Irrespective of study outcomes, the results will be submitted to peer-reviewed scientific journals for publication. TRIAL REGISTRATION NUMBER NCT04390087.
Collapse
Affiliation(s)
- Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Afshin Samani
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Uffe Laessoe
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
- Physical Therapy Department, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Gill S, Sumrell RM, Sima A, Cifu DX, Gorgey AS. Waist circumference cutoff identifying risks of obesity, metabolic syndrome, and cardiovascular disease in men with spinal cord injury. PLoS One 2020; 15:e0236752. [PMID: 32726371 PMCID: PMC7390405 DOI: 10.1371/journal.pone.0236752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives To apply spinal cord injury (SCI) specific waist circumference (WC) cutoff point to identify risks of 1) obesity, 2) metabolic syndrome (MetS), 3) cardiovascular disease (CVD). Methods Thirty-six men with chronic SCI underwent anthropometric measurements, dual-energy x-ray absorptiometry (DXA), and magnetic resonance imaging (MRI) to measure total and regional adiposity. An SCI specific WC cutoff point of 86.5 cm was applied to the existing general population criteria. Pearson chi-square (χ2) analyses tested the difference in the number of participants classified as obese using the SCI specific cutoff point compared to the general population criteria. Sensitivity and specificity analyses relative to percentage body fat mass and visceral adipose tissue was used to assess classification performance of this cutoff point. The interrater reliability for three definitions of MetS was assessed using Cohen’s Kappa (κ) values. Linear regression analyses were utilized to propose SCI specific Framingham Coronary Heart Disease Risk Score (FRS) cutoff value. Results Using SCI specific WC cutoff point of 86.5 cm, 36% of participants were classified as obese compared to only 3% when using WC of 102 cm (P < 0.001). Relative to percentage body fat mass, the general population WC cutoff point of 102 cm had a sensitivity of 6.3% and specificity of 100% both which changed to 68.8% and 90%, respectively, with a SCI specific cutoff point of 86.5 cm. Similar results were obtained when using visceral adipose tissue as a reference. The Kappa (κ) values improved substantially after using SCI specific criteria (0.95 ± 0.05) compared to the general population criteria (0.47 ± 0.28) for three definitions of MetS. The SCI specific FRS cutoff value of 6 was predicted after applying a WC cutoff of 86.5 cm. Conclusions Using the existing general population criteria underestimated persons with SCI who are at risk of developing obesity, MetS, and CVD. The recommended SCI specific criteria are likely to distinguish those at risks of developing comorbidities and allow healthcare providers to intervene in a timely manner.
Collapse
Affiliation(s)
- Satinder Gill
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Ryan M. Sumrell
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Adam Sima
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - David X. Cifu
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
7
|
McCauley LS, Ghatas MP, Sumrell RM, Cirnigliaro CM, Kirshblum SC, Bauman WA, Gorgey AS. Measurement of Visceral Adipose Tissue in Persons With Spinal Cord Injury by Magnetic Resonance Imaging and Dual X-Ray Absorptiometry: Generation and Application of a Predictive Equation. J Clin Densitom 2020; 23:63-72. [PMID: 30638769 DOI: 10.1016/j.jocd.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) permits quantification of visceral adipose tissue (VAT). However, DXA has not been validated against MRI in persons with chronic spinal cord injury (SCI). A predictive equation was generated from the measurement of VAT by MRI, a "gold" standard to quantitate VAT, compared to that of DXA, a method with several practical advantages. METHOD DXA and MRI scans were performed in 27 participants with SCI. MRI multiaxial images were captured for VAT analysis. DXA-VAT was quantified at the android region (DXA-VATANDROID-VOL) using enCore software. Android regions of DXA and MRI were matched using android height. Volumes of multiaxial MRI-VAT and subcutaneous adipose tissue (SAT) were quantified for the android region (MRI-VATANDROID-VOL, MRI-SATANDROID-VOL) and total trunk (MRI-VATANDROID-VOL). Linear regression analysis was used to establish the proposed predication equations. The prediction equations were then applied to an independent sample that consisted of 98 participants with SCI. Bland-Altman analysis was used to determine the limits of agreement. RESULTS DXA-VATANDROID-VOL predicted 92% of the variance in MRI-VATANDROID-VOL (SEE = 252.5, p < 0.0005) and 85% of the variance in MRI-VATTRUNK-VOL (SEE = 1526.9, p < 0.0005). DXA-SATANDROID-VOL predicted 81.5% of the variance in MRI-SATANDROID-VOL (SEE = 458.2, p < 0.0005). Bland-Altman analysis revealed a high level of agreement between MRI-VATANDROID-VOL and DXA-VATANDROID-VOL (mean bias = 58.45 cm3). A predicted mean DXA-VATANDROID-VOL of 995.2 cm3 was estimated as the population-specific cut-off point for high levels of VAT. CONCLUSION DXA-VATANDROID-VOL may accurately predict MRI-VATANDROID-VOL in persons with SCI. The ability of DXA to detect VAT changes in longitudinal studies in persons with SCI should be performed.
Collapse
Affiliation(s)
- Liron S McCauley
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Mina P Ghatas
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ryan M Sumrell
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Steven C Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA; Physical Medicine and Rehabilitation Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|