1
|
Angulo Medina AS, Aguilar Bonilla MI, Rodríguez Giraldo ID, Montenegro Palacios JF, Cáceres Gutiérrez DA, Liscano Y. Electroencephalography-Based Brain-Computer Interfaces in Rehabilitation: A Bibliometric Analysis (2013-2023). SENSORS (BASEL, SWITZERLAND) 2024; 24:7125. [PMID: 39598903 PMCID: PMC11598414 DOI: 10.3390/s24227125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024]
Abstract
EEG-based Brain-Computer Interfaces (BCIs) have gained significant attention in rehabilitation due to their non-invasive, accessible ability to capture brain activity and restore neurological functions in patients with conditions such as stroke and spinal cord injuries. This study offers a comprehensive bibliometric analysis of global EEG-based BCI research in rehabilitation from 2013 to 2023. It focuses on primary research and review articles addressing technological innovations, effectiveness, and system advancements in clinical rehabilitation. Data were sourced from databases like Web of Science, and bibliometric tools (bibliometrix R) were used to analyze publication trends, geographic distribution, keyword co-occurrences, and collaboration networks. The results reveal a rapid increase in EEG-BCI research, peaking in 2022, with a primary focus on motor and sensory rehabilitation. EEG remains the most commonly used method, with significant contributions from Asia, Europe, and North America. Additionally, there is growing interest in applying BCIs to mental health, as well as integrating artificial intelligence (AI), particularly machine learning, to enhance system accuracy and adaptability. However, challenges remain, such as system inefficiencies and slow learning curves. These could be addressed by incorporating multi-modal approaches and advanced neuroimaging technologies. Further research is needed to validate the applicability of EEG-BCI advancements in both cognitive and motor rehabilitation, especially considering the high global prevalence of cerebrovascular diseases. To advance the field, expanding global participation, particularly in underrepresented regions like Latin America, is essential. Improving system efficiency through multi-modal approaches and AI integration is also critical. Ethical considerations, including data privacy, transparency, and equitable access to BCI technologies, must be prioritized to ensure the inclusive development and use of these technologies across diverse socioeconomic groups.
Collapse
Affiliation(s)
- Ana Sophia Angulo Medina
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| | - Maria Isabel Aguilar Bonilla
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| | - Ingrid Daniela Rodríguez Giraldo
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| | - John Fernando Montenegro Palacios
- Specialization in Internal Medicine, Department of Health, Universidad Santiago de Cali, Cali 5183000, Colombia; (J.F.M.P.); (D.A.C.G.)
| | - Danilo Andrés Cáceres Gutiérrez
- Specialization in Internal Medicine, Department of Health, Universidad Santiago de Cali, Cali 5183000, Colombia; (J.F.M.P.); (D.A.C.G.)
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| |
Collapse
|
2
|
He Y, Ven SVD, Liaw HP, Shi C, Russo P, Gourdouparis M, Konijnenburg M, Traferro S, Timmermans M, Lopez CM, Harpe P, Cantatore E, Chicca E, Liu YH. An Event-Based Neural Compressive Telemetry With >11× Loss-Less Data Reduction for High-Bandwidth Intracortical Brain Computer Interfaces. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1100-1111. [PMID: 38498746 PMCID: PMC7616507 DOI: 10.1109/tbcas.2024.3378973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Intracortical brain-computer interfaces offer superior spatial and temporal resolutions, but face challenges as the increasing number of recording channels introduces high amounts of data to be transferred. This requires power-hungry data serialization and telemetry, leading to potential tissue damage risks. To address this challenge, this paper introduces an event-based neural compressive telemetry (NCT) consisting of 8 channel-rotating Δ-ADCs, an event-driven serializer supporting a proposed ternary address event representation protocol, and an event-based LVDS driver. Leveraging a high sparsity of extracellular spikes and high spatial correlation of the high-density recordings, the proposed NCT achieves a compression ratio of >11.4×, while consumes only 1 µW per channel, which is 127× more efficient than state of the art. The NCT well preserves the spike waveform fidelity, and has a low normalized RMS error <23% even with a spike amplitude down to only 31 µV.
Collapse
|
3
|
Kalani M, Anjankar A. Revolutionizing Neurology: The Role of Artificial Intelligence in Advancing Diagnosis and Treatment. Cureus 2024; 16:e61706. [PMID: 38975469 PMCID: PMC11224934 DOI: 10.7759/cureus.61706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful tool in the field of neurology, significantly impacting the diagnosis and treatment of neurological disorders. Recent technological breakthroughs have given us access to a plethora of information relevant to many aspects of neurology. Neuroscience and AI share a long history of collaboration. Along with great potential, we encounter obstacles relating to data quality, ethics, and inherent difficulty in applying data science in healthcare. Neurological disorders pose intricate challenges due to their complex manifestations and variability. Automating image interpretation tasks, AI algorithms accurately identify brain structures and detect abnormalities. This accelerates diagnosis and reduces the workload on medical professionals. Treatment optimization benefits from AI simulations that model different scenarios and predict outcomes. These AI systems can currently perform many of the sophisticated perceptual and cognitive capacities of biological systems, such as object identification and decision making. Furthermore, AI is rapidly being used as a tool in neuroscience research, altering our understanding of brain functioning. It has the ability to revolutionize healthcare as we know it into a system in which humans and robots collaborate to deliver better care for our patients. Image analysis activities such as recognizing particular brain regions, calculating changes in brain volume over time, and detecting abnormalities in brain scans can be automated by AI systems. This lessens the strain on radiologists and neurologists while improving diagnostic accuracy and efficiency. It is now obvious that cutting-edge artificial intelligence models combined with high-quality clinical data will lead to enhanced prognostic and diagnostic models in neurological illness, permitting expert-level clinical decision aids across healthcare settings. In conclusion, AI's integration into neurology has revolutionized diagnosis, treatment, and research. As AI technologies advance, they promise to unravel the complexities of neurological disorders further, leading to improved patient care and quality of life. The symbiosis of AI and neurology offers a glimpse into a future where innovation and compassion converge to reshape neurological healthcare. This abstract provides a concise overview of the role of AI in neurology and its transformative potential.
Collapse
Affiliation(s)
- Meetali Kalani
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Abstract
The potential to collect brain data more directly, with higher resolution, and in greater amounts has heightened worries about mental and brain privacy. In order to manage the risks to individuals posed by these privacy challenges, some have suggested codifying new privacy rights, including a right to "mental privacy." In this paper, we consider these arguments and conclude that while neurotechnologies do raise significant privacy concerns, such concerns are-at least for now-no different from those raised by other well-understood data collection technologies, such as gene sequencing tools and online surveillance. To better understand the privacy stakes of brain data, we suggest the use of a conceptual framework from information ethics, Helen Nissenbaum's "contextual integrity" theory. To illustrate the importance of context, we examine neurotechnologies and the information flows they produce in three familiar contexts-healthcare and medical research, criminal justice, and consumer marketing. We argue that by emphasizing what is distinct about brain privacy issues, rather than what they share with other data privacy concerns, risks weakening broader efforts to enact more robust privacy law and policy.
Collapse
|
5
|
Selvam A, Aggarwal T, Mukherjee M, Verma YK. Humans and robots: Friends of the future? A bird's eye view of biomanufacturing industry 5.0. Biotechnol Adv 2023; 68:108237. [PMID: 37604228 DOI: 10.1016/j.biotechadv.2023.108237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The evolution of industries have introduced versatile technologies, motivating limitless possibilities of tackling pivotal global predicaments in the arenas of medicine, environment, defence, and national security. In this direction, ardently emerges the new era of Industry 5.0 through the eyes of biomanufacturing, which integrates the most advanced systems 21st century has to offer by means of integrating artificial systems to mimic and nativize the natural milieu to substitute the deficits of nature, thence leading to a new meta world. Albeit, it questions the natural order of the living world, which necessitates certain paramount stipulations to be addressed for a successful expansion of biomanufacturing Industry 5.0. Can humans live in synergism with artificial beings? How can humans establish dominance of hierarchy with artificial counterparts? This perspective provides a bird's eye view on the plausible direction of a new meta world inquisitively. For this purpose, we propose the influence of internet of things (IoT) via new generation interfacial systems, such as, human-machine interface (HMI) and brain-computer interface (BCI) in the domain of tissue engineering and regenerative medicine, which can be extended to target modern warfare and smart healthcare.
Collapse
Affiliation(s)
- Abhyavartin Selvam
- Amity Institute of Nanotechnology, Amity University Noida, Uttar Pradesh 201303, India
| | - Tanishka Aggarwal
- Department of Biotechnology, School of Chemical and Life Sciences (SCLS) Jamia Hamdard, New Delhi 110062, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, Uttar Pradesh 201303, India
| | - Yogesh Kumar Verma
- Stem Cell & Tissue Engineering Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi 110054, India.
| |
Collapse
|
6
|
Pitts J, Kannan L, Bhatt T. Cognitive Task Domain Influences Cognitive-Motor Interference during Large-Magnitude Treadmill Stance Perturbations. SENSORS (BASEL, SWITZERLAND) 2023; 23:7746. [PMID: 37765803 PMCID: PMC10534402 DOI: 10.3390/s23187746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Reactive balance is postulated to be attentionally demanding, although it has been underexamined in dual-tasking (DT) conditions. Further, DT studies have mainly included only one cognitive task, leaving it unknown how different cognitive domains contribute to reactive balance. This study examined how DT affected reactive responses to large-magnitude perturbations and compared cognitive-motor interference (CMI) between cognitive tasks. A total of 20 young adults aged 18-35 (40% female; 25.6 ± 3.8 y) were exposed to treadmill support surface perturbations alone (single-task (ST)) and while completing four cognitive tasks: Target, Track, Auditory Clock Test (ACT), Letter Number Sequencing (LNS). Three perturbations were delivered over 30 s in each trial. Cognitive tasks were also performed while seated and standing (ST). Compared to ST, post-perturbation MOS was lower when performing Track, and cognitive performance was reduced on the Target task during DT (p < 0.05). There was a larger decline in overall (cognitive + motor) performance from ST for both of the visuomotor tasks compared to the ACT and LNS (p < 0.05). The highest CMI was observed for visuomotor tasks; real-life visuomotor tasks could increase fall risk during daily living, especially for individuals with difficulty attending to more than one task.
Collapse
Affiliation(s)
| | | | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W Taylor St., Chicago, IL 60612, USA
| |
Collapse
|
7
|
Zhang R, Dong G, Li M, Tang Z, Chen X, Cui H. A Calibration-Free Hybrid BCI Speller System Based on High-Frequency SSVEP and sEMG. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3492-3500. [PMID: 37624717 DOI: 10.1109/tnsre.2023.3308779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Hybrid brain-computer interface (hBCI) systems that combine steady-state visual evoked potential (SSVEP) and surface electromyography (sEMG) signals have attracted attention of researchers due to the advantage of exhibiting significantly improved system performance. However, almost all existing studies adopt low-frequency SSVEP to build hBCI. It produces much more visual fatigue than high-frequency SSVEP. Therefore, the current study attempts to build a hBCI based on high-frequency SSVEP and sEMG. With these two signals, this study designed and realized a 32-target hBCI speller system. Thirty-two targets were separated from the middle into two groups. Each side contained 16 sets of targets with different high-frequency visual stimuli (i.e., 31-34.75 Hz with an interval of 0.25 Hz). sEMG was utilized to choose the group and SSVEP was adopted to identify intra-group targets. The filter bank canonical correlation analysis (FBCCA) and the root mean square value (RMS) methods were used to identify signals. Therefore, the proposed system allowed users to operate it without system calibration. A total of 12 healthy subjects participated in online experiment, with an average accuracy of 93.52 ± 1.66% and the average information transfer rate (ITR) reached 93.50 ± 3.10 bits/min. Furthermore, 12 participants perfectly completed the free-spelling tasks. These results of the experiments indicated feasibility and practicality of the proposed hybrid BCI speller system.
Collapse
|
8
|
Chailloux Peguero JD, Hernández-Rojas LG, Mendoza-Montoya O, Caraza R, Antelis JM. SSVEP detection assessment by combining visual stimuli paradigms and no-training detection methods. Front Neurosci 2023; 17:1142892. [PMID: 37274188 PMCID: PMC10233154 DOI: 10.3389/fnins.2023.1142892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Brain-Computer Interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) have great potential for use in communication applications because of their relatively simple assembly and in some cases the possibility of bypassing the time-consuming training stage. However, among multiple factors, the efficient performance of this technology is highly dependent on the stimulation paradigm applied in combination with the SSVEP detection algorithm employed. This paper proposes the performance assessment of the classification of target events with respect to non-target events by applying four types of visual paradigms, rectangular modulated On-Off (OOR), sinusoidal modulated On-Off (OOS), rectangular modulated Checkerboard (CBR), and sinusoidal modulated Checkerboard (CBS), with three types of SSVEP detection methods, Canonical Correlation Analysis (CCA), Filter-Bank CCA (FBCCA), and Minimum Energy Combination (MEC). Methods We set up an experimental protocol in which the four types of visual stimuli were presented randomly to twenty-seven participants and after acquiring their electroencephalographic responses to five stimulation frequencies (8.57, 10.909, 15, 20, and 24 Hz), the three detection methods were applied to the collected data. Results The results are conclusive, obtaining the best performance with the combination of either OOR or OOS visual stimulus and the FBCCA as a detection method, however, this finding contrasts with the opinion of almost half of the participants in terms of visual comfort, where the 51.9% of the subjects felt more comfortable and focused with CBR or CBS stimulation. Discussion Finally, the EEG recordings correspond to the SSVEP response of 27 subjects to four visual paradigms when selecting five items on a screen, which is useful in BCI navigation applications. The dataset is available to anyone interested in studying and evaluating signal processing and machine-learning algorithms for SSVEP-BCI systems.
Collapse
Affiliation(s)
| | | | | | - Ricardo Caraza
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Javier M. Antelis
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
9
|
Jadavji Z, Kirton A, Metzler MJ, Zewdie E. BCI-activated electrical stimulation in children with perinatal stroke and hemiparesis: A pilot study. Front Hum Neurosci 2023; 17:1006242. [PMID: 37007682 PMCID: PMC10063823 DOI: 10.3389/fnhum.2023.1006242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundPerinatal stroke (PS) causes most hemiparetic cerebral palsy (CP) and results in lifelong disability. Children with severe hemiparesis have limited rehabilitation options. Brain computer interface- activated functional electrical stimulation (BCI-FES) of target muscles may enhance upper extremity function in hemiparetic adults. We conducted a pilot clinical trial to assess the safety and feasibility of BCI-FES in children with hemiparetic CP.MethodsThirteen participants (mean age = 12.2 years, 31% female) were recruited from a population-based cohort. Inclusion criteria were: (1) MRI-confirmed PS, (2) disabling hemiparetic CP, (3) age 6–18 years, (4) informed consent/assent. Those with neurological comorbidities or unstable epilepsy were excluded. Participants attended two BCI sessions: training and rehabilitation. They wore an EEG-BCI headset and two forearm extensor stimulation electrodes. Participants’ imagination of wrist extension was classified on EEG, after which muscle stimulation and visual feedback were provided when the correct visualization was detected.ResultsNo serious adverse events or dropouts occurred. The most common complaints were mild headache, headset discomfort and muscle fatigue. Children ranked the experience as comparable to a long car ride and none reported as unpleasant. Sessions lasted a mean of 87 min with 33 min of stimulation delivered. Mean classification accuracies were (M = 78.78%, SD = 9.97) for training and (M = 73.48, SD = 12.41) for rehabilitation. Mean Cohen’s Kappa across rehabilitation trials was M = 0.43, SD = 0.29, range = 0.019–1.00, suggesting BCI competency.ConclusionBrain computer interface-FES was well -tolerated and feasible in children with hemiparesis. This paves the way for clinical trials to optimize approaches and test efficacy.
Collapse
Affiliation(s)
- Zeanna Jadavji
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | - Adam Kirton
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children’s Hospital, Calgary, AB, Canada
| | - Megan J. Metzler
- Department of Clinical Neurosciences, Alberta Children’s Hospital, Calgary, AB, Canada
| | - Ephrem Zewdie
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- *Correspondence: Ephrem Zewdie,
| |
Collapse
|
10
|
Pavón-Pulido N, Blasco-García JD, López-Riquelme JA, Feliu-Batlle J, Oterino-Bono R, Herrero MT. JUNO Project: Deployment and Validation of a Low-Cost Cloud-Based Robotic Platform for Reliable Smart Navigation and Natural Interaction with Humans in an Elderly Institution. SENSORS (BASEL, SWITZERLAND) 2023; 23:483. [PMID: 36617079 PMCID: PMC9824260 DOI: 10.3390/s23010483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
This paper describes the main results of the JUNO project, a proof of concept developed in the Region of Murcia in Spain, where a smart assistant robot with capabilities for smart navigation and natural human interaction has been developed and deployed, and it is being validated in an elderly institution with real elderly users. The robot is focused on helping people carry out cognitive stimulation exercises and other entertainment activities since it can detect and recognize people, safely navigate through the residence, and acquire information about attention while users are doing the mentioned exercises. All the information could be shared through the Cloud, if needed, and health professionals, caregivers and relatives could access such information by considering the highest standards of privacy required in these environments. Several tests have been performed to validate the system, which combines classic techniques and new Deep Learning-based methods to carry out the requested tasks, including semantic navigation, face detection and recognition, speech to text and text to speech translation, and natural language processing, working both in a local and Cloud-based environment, obtaining an economically affordable system. The paper also discusses the limitations of the platform and proposes several solutions to the detected drawbacks in this kind of complex environment, where the fragility of users should be also considered.
Collapse
Affiliation(s)
- Nieves Pavón-Pulido
- Automation, Electrical Engineering and Electronic Technology Department, Industrial Engineering Technical School, Technical University of Cartagena, 30202 Cartagena, Spain
| | - Jesús Damián Blasco-García
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, Biomedical Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), School of Medicine, University of Murcia, Campus Mare Nostrum, 30120 Murcia, Spain
| | - Juan Antonio López-Riquelme
- Automation, Electrical Engineering and Electronic Technology Department, Industrial Engineering Technical School, Technical University of Cartagena, 30202 Cartagena, Spain
| | - Jorge Feliu-Batlle
- Automation, Electrical Engineering and Electronic Technology Department, Industrial Engineering Technical School, Technical University of Cartagena, 30202 Cartagena, Spain
| | - Roberto Oterino-Bono
- Automation, Electrical Engineering and Electronic Technology Department, Industrial Engineering Technical School, Technical University of Cartagena, 30202 Cartagena, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, Biomedical Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), School of Medicine, University of Murcia, Campus Mare Nostrum, 30120 Murcia, Spain
| |
Collapse
|
11
|
Das T, Gohain L, Kakoty NM, Malarvili MB, Widiyanti P, Kumar G. Hierarchical Approach for Fusion of Electroencephalography and Electromyography for Predicting Finger Movements and Kinematics using Deep Learning. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Kruppa C, Benner S, Brinkemper A, Aach M, Reimertz C, Schildhauer TA. [New technologies and robotics]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2023; 126:9-18. [PMID: 36515725 DOI: 10.1007/s00113-022-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The development of increasingly more complex computer and electromotor technologies enables the increasing use and expansion of robot-assisted systems in trauma surgery rehabilitation; however, the currently available devices are rarely comprehensively applied but are often used within pilot projects and studies. Different technological approaches, such as exoskeletal systems, functional electrical stimulation, soft robotics, neurorobotics and brain-machine interfaces are used and combined to read and process the communication between, e.g., residual musculature or brain waves, to transfer them to the executing device and to enable the desired execution.Currently, the greatest amount of evidence exists for the use of exoskeletal systems with different modes of action in the context of gait and stance rehabilitation in paraplegic patients; however, their use also plays a role in the rehabilitation of fractures close to the hip joint and endoprosthetic care. So-called single joint systems are also being tested in the rehabilitation of functionally impaired extremities, e.g., after knee prosthesis implantation. At this point, however, the current data situation is still too limited to be able to make a clear statement about the use of these technologies in the trauma surgery "core business" of rehabilitation after fractures and other joint injuries.For rehabilitation after limb amputation, in addition to the further development of myoelectric prostheses, the current development of "sentient" prostheses is of great interest. The use of 3D printing also plays a role in the production of individualized devices.Due to the current progress of artificial intelligence in all fields, ground-breaking further developments and widespread application possibilities in the rehabilitation of trauma patients are to be expected.
Collapse
Affiliation(s)
- Christiane Kruppa
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland.
| | - Sebastian Benner
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Alexis Brinkemper
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Mirko Aach
- Chirurgische Klinik und Poliklinik, Abteilung für Rückenmarkverletzte, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Christoph Reimertz
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Thomas A Schildhauer
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| |
Collapse
|
13
|
Ayasreh S, Jurado I, López-León CF, Montalà-Flaquer M, Soriano J. Dynamic and Functional Alterations of Neuronal Networks In Vitro upon Physical Damage: A Proof of Concept. MICROMACHINES 2022; 13:2259. [PMID: 36557557 PMCID: PMC9782595 DOI: 10.3390/mi13122259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
There is a growing technological interest in combining biological neuronal networks with electronic ones, specifically for biological computation, human-machine interfacing and robotic implants. A major challenge for the development of these technologies is the resilience of the biological networks to physical damage, for instance, when used in harsh environments. To tackle this question, here, we investigated the dynamic and functional alterations of rodent cortical networks grown in vitro that were physically damaged, either by sequentially removing groups of neurons that were central for information flow or by applying an incision that cut the network in half. In both cases, we observed a remarkable capacity of the neuronal cultures to cope with damage, maintaining their activity and even reestablishing lost communication pathways. We also observed-particularly for the cultures cut in half-that a reservoir of healthy neurons surrounding the damaged region could boost resilience by providing stimulation and a communication bridge across disconnected areas. Our results show the remarkable capacity of neuronal cultures to sustain and recover from damage, and may be inspirational for the development of future hybrid biological-electronic systems.
Collapse
Affiliation(s)
- Sàlem Ayasreh
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Imanol Jurado
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Marc Montalà-Flaquer
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| |
Collapse
|
14
|
Saichoo T, Boonbrahm P, Punsawad Y. Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair. SENSORS (BASEL, SWITZERLAND) 2022; 22:9788. [PMID: 36560158 PMCID: PMC9781917 DOI: 10.3390/s22249788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The research on the electroencephalography (EEG)-based brain-computer interface (BCI) is widely utilized for wheelchair control. The ability of the user is one factor of BCI efficiency. Therefore, we focused on BCI tasks and protocols to yield high efficiency from the robust EEG features of individual users. This study proposes a task-based brain activity to gain the power of the alpha band, which included eyes closed for alpha response at the occipital area, attention to an upward arrow for alpha response at the frontal area, and an imagined left/right motor for alpha event-related desynchronization at the left/right motor cortex. An EPOC X neuroheadset was used to acquire the EEG signals. We also proposed user proficiency in motor imagery sessions with limb movement paradigms by recommending motor imagination tasks. Using the proposed system, we verified the feature extraction algorithms and command translation. Twelve volunteers participated in the experiment, and the conventional paradigm of motor imagery was used to compare the efficiencies. With utilized user proficiency in motor imagery, an average accuracy of 83.7% across the left and right commands was achieved. The recommended MI paradigm via user proficiency achieved an approximately 4% higher accuracy than the conventional MI paradigm. Moreover, the real-time control results of a simulated wheelchair revealed a high efficiency based on the time condition. The time results for the same task as the joystick-based control were still approximately three times longer. We suggest that user proficiency be used to recommend an individual MI paradigm for beginners. Furthermore, the proposed BCI system can be used for electric wheelchair control by people with severe disabilities.
Collapse
Affiliation(s)
- Theerat Saichoo
- School of Informatics, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Poonpong Boonbrahm
- School of Informatics, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yunyong Punsawad
- School of Informatics, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Informatics Innovative Center of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
15
|
Esfandiari H, Troxler P, Hodel S, Suter D, Farshad M, Cavalcanti N, Wetzel O, Mania S, Cornaz F, Selman F, Kabelitz M, Zindel C, Weber S, Haupt S, Fürnstahl P. Introducing a brain-computer interface to facilitate intraoperative medical imaging control – a feasibility study. BMC Musculoskelet Disord 2022; 23:701. [PMID: 35869451 PMCID: PMC9306028 DOI: 10.1186/s12891-022-05384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Background Safe and accurate execution of surgeries to date mainly rely on preoperative plans generated based on preoperative imaging. Frequent intraoperative interaction with such patient images during the intervention is needed, which is currently a cumbersome process given that such images are generally displayed on peripheral two-dimensional (2D) monitors and controlled through interface devices that are outside the sterile filed. This study proposes a new medical image control concept based on a Brain Computer Interface (BCI) that allows for hands-free and direct image manipulation without relying on gesture recognition methods or voice commands. Method A software environment was designed for displaying three-dimensional (3D) patient images onto external monitors, with the functionality of hands-free image manipulation based on the user’s brain signals detected by the BCI device (i.e., visually evoked signals). In a user study, ten orthopedic surgeons completed a series of standardized image manipulation tasks to navigate and locate predefined 3D points in a Computer Tomography (CT) image using the developed interface. Accuracy was assessed as the mean error between the predefined locations (ground truth) and the navigated locations by the surgeons. All surgeons rated the performance and potential intraoperative usability in a standardized survey using a five-point Likert scale (1 = strongly disagree to 5 = strongly agree). Results When using the developed interface, the mean image control error was 15.51 mm (SD: 9.57). The user's acceptance was rated with a Likert score of 4.07 (SD: 0.96) while the overall impressions of the interface was rated as 3.77 (SD: 1.02) by the users. We observed a significant correlation between the users' overall impression and the calibration score they achieved. Conclusions The use of the developed BCI, that allowed for a purely brain-guided medical image control, yielded promising results, and showed its potential for future intraoperative applications. The major limitation to overcome was noted as the interaction delay. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05384-9.
Collapse
|
16
|
Behboodi A, Lee WA, Hinchberger VS, Damiano DL. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review. J Neuroeng Rehabil 2022; 19:104. [PMID: 36171602 PMCID: PMC9516814 DOI: 10.1186/s12984-022-01081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Brain–computer interfaces (BCI), initially designed to bypass the peripheral motor system to externally control movement using brain signals, are additionally being utilized for motor rehabilitation in stroke and other neurological disorders. Also called neurofeedback training, multiple approaches have been developed to link motor-related cortical signals to assistive robotic or electrical stimulation devices during active motor training with variable, but mostly positive, functional outcomes reported. Our specific research question for this scoping review was: for persons with non-progressive neurological injuries who have the potential to improve voluntary motor control, which mobile BCI-based neurofeedback methods demonstrate or are associated with improved motor outcomes for Neurorehabilitation applications? Methods We searched PubMed, Web of Science, and Scopus databases with all steps from study selection to data extraction performed independently by at least 2 individuals. Search terms included: brain machine or computer interfaces, neurofeedback and motor; however, only studies requiring a motor attempt, versus motor imagery, were retained. Data extraction included participant characteristics, study design details and motor outcomes. Results From 5109 papers, 139 full texts were reviewed with 23 unique studies identified. All utilized EEG and, except for one, were on the stroke population. The most commonly reported functional outcomes were the Fugl-Meyer Assessment (FMA; n = 13) and the Action Research Arm Test (ARAT; n = 6) which were then utilized to assess effectiveness, evaluate design features, and correlate with training doses. Statistically and functionally significant pre-to post training changes were seen in FMA, but not ARAT. Results did not differ between robotic and electrical stimulation feedback paradigms. Notably, FMA outcomes were positively correlated with training dose. Conclusion This review on BCI-based neurofeedback training confirms previous findings of effectiveness in improving motor outcomes with some evidence of enhanced neuroplasticity in adults with stroke. Associative learning paradigms have emerged more recently which may be particularly feasible and effective methods for Neurorehabilitation. More clinical trials in pediatric and adult neurorehabilitation to refine methods and doses and to compare to other evidence-based training strategies are warranted.
Collapse
Affiliation(s)
- Ahad Behboodi
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Walker A Lee
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | | | - Diane L Damiano
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Loriette C, Amengual JL, Ben Hamed S. Beyond the brain-computer interface: Decoding brain activity as a tool to understand neuronal mechanisms subtending cognition and behavior. Front Neurosci 2022; 16:811736. [PMID: 36161174 PMCID: PMC9492914 DOI: 10.3389/fnins.2022.811736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
One of the major challenges in system neurosciences consists in developing techniques for estimating the cognitive information content in brain activity. This has an enormous potential in different domains spanning from clinical applications, cognitive enhancement to a better understanding of the neural bases of cognition. In this context, the inclusion of machine learning techniques to decode different aspects of human cognition and behavior and its use to develop brain-computer interfaces for applications in neuroprosthetics has supported a genuine revolution in the field. However, while these approaches have been shown quite successful for the study of the motor and sensory functions, success is still far from being reached when it comes to covert cognitive functions such as attention, motivation and decision making. While improvement in this field of BCIs is growing fast, a new research focus has emerged from the development of strategies for decoding neural activity. In this review, we aim at exploring how the advanced in decoding of brain activity is becoming a major neuroscience tool moving forward our understanding of brain functions, providing a robust theoretical framework to test predictions on the relationship between brain activity and cognition and behavior.
Collapse
Affiliation(s)
- Célia Loriette
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Bron, France
| | | | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
18
|
Remsik AB, van Kan PLE, Gloe S, Gjini K, Williams L, Nair V, Caldera K, Williams JC, Prabhakaran V. BCI-FES With Multimodal Feedback for Motor Recovery Poststroke. Front Hum Neurosci 2022; 16:725715. [PMID: 35874158 PMCID: PMC9296822 DOI: 10.3389/fnhum.2022.725715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
An increasing number of research teams are investigating the efficacy of brain-computer interface (BCI)-mediated interventions for promoting motor recovery following stroke. A growing body of evidence suggests that of the various BCI designs, most effective are those that deliver functional electrical stimulation (FES) of upper extremity (UE) muscles contingent on movement intent. More specifically, BCI-FES interventions utilize algorithms that isolate motor signals-user-generated intent-to-move neural activity recorded from cerebral cortical motor areas-to drive electrical stimulation of individual muscles or muscle synergies. BCI-FES interventions aim to recover sensorimotor function of an impaired extremity by facilitating and/or inducing long-term motor learning-related neuroplastic changes in appropriate control circuitry. We developed a non-invasive, electroencephalogram (EEG)-based BCI-FES system that delivers closed-loop neural activity-triggered electrical stimulation of targeted distal muscles while providing the user with multimodal sensory feedback. This BCI-FES system consists of three components: (1) EEG acquisition and signal processing to extract real-time volitional and task-dependent neural command signals from cerebral cortical motor areas, (2) FES of muscles of the impaired hand contingent on the motor cortical neural command signals, and (3) multimodal sensory feedback associated with performance of the behavioral task, including visual information, linked activation of somatosensory afferents through intact sensorimotor circuits, and electro-tactile stimulation of the tongue. In this report, we describe device parameters and intervention protocols of our BCI-FES system which, combined with standard physical rehabilitation approaches, has proven efficacious in treating UE motor impairment in stroke survivors, regardless of level of impairment and chronicity.
Collapse
Affiliation(s)
- Alexander B. Remsik
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- School of Medicine and Public Health, Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Peter L. E. van Kan
- Department of Kinesiology, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Shawna Gloe
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Klevest Gjini
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin–Madison, Madison, WI, United States
| | - Leroy Williams
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI, United States
| | - Veena Nair
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Kristin Caldera
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
19
|
Zhao CG, Ju F, Sun W, Jiang S, Xi X, Wang H, Sun XL, Li M, Xie J, Zhang K, Xu GH, Zhang SC, Mou X, Yuan H. Effects of Training with a Brain-Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. Neurol Ther 2022; 11:679-695. [PMID: 35174449 PMCID: PMC9095806 DOI: 10.1007/s40120-022-00333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/25/2022] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Stroke is always associated with a difficult functional recovery process. A brain-computer interface (BCI) is a technology which provides a direct connection between the human brain and external devices. The primary aim of this study was to determine whether training with a BCI-controlled robot can improve functions in patients with subacute stroke. METHODS Subacute stroke patients aged 32-68 years with a course of 2 weeks to 3 months were randomly assigned to the BCI group or to the sham group for a 4-week course. The primary outcome measures were Loewenstein Occupational Therapy Cognitive Assessment (LOCTA) and Fugl-Meyer Assessment for Lower Extremity (FMA-LE). Secondary outcome measures included Fugl-Meyer Assessment for Balance (FMA-B), Functional Ambulation Category (FAC), Modified Barthel Index (MBI), serum brain-derived neurotrophic factor (BDNF) levels and motor-evoked potential (MEP). RESULTS A total of 28 patients completed the study. Both groups showed a significant increase in mean LOCTA (sham: P < 0.001, Cohen's d = - 2.972; BCI: P < 0.001, Cohen's d = - 4.266) and FMA-LE (sham: P < 0.001, Cohen's d = - 3.178; BCI: P < 0.001, Cohen's d = - 3.063) scores. The LOCTA scores in the BCI group were 14.89% higher than in the sham group (P = 0.049, Cohen's d = - 0.580). There were no significant differences between the two groups in terms of FMA-B (P = 0.363, Cohen's d = - 0.252), FAC (P = 0.363), or MBI (P = 0.493, Cohen's d = - 0.188) scores. The serum levels of BDNF were significantly higher within the BCI group (P < 0.001, Cohen's d = - 1.167), and the MEP latency decreased by 3.75% and 4.71% in the sham and BCI groups, respectively. CONCLUSION Training with a BCI-controlled robot combined with traditional physiotherapy promotes cognitive function recovery, and enhances motor functions of the lower extremity in patients with subacute stroke. These patients also showed increased secretion of BDNF. TRIAL REGISTRATION Chinese clinical trial registry: ChiCTR-INR-17012874.
Collapse
Affiliation(s)
- Chen-Guang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fen Ju
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shan Jiang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiao Xi
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Wang
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Long Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jun Xie
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kai Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Guang-Hua Xu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Si-Cong Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiang Mou
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Pazzi C, Farrehi C, Capron M, Anderson K, Richardson B, Stillman M. An Assessment of Which Sociodemographic and Spinal Cord Injury-Specific Characteristics Influence Engagement With Experimental Therapies and Participation in Clinical Trials. Top Spinal Cord Inj Rehabil 2021; 27:28-39. [PMID: 34866886 DOI: 10.46292/sci20-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Although a number of experimental therapies for spinal cord injury (SCI) have recently emerged, few authors have examined the goals of individuals with SCI considering experimental therapies, and none have determined whether sociodemographic and injury-specific characteristics influence that engagement. Objectives: To determine (a) the goals of individuals with SCI who are considering experimental therapies; (b) whether sociodemographic factors, injury-specific characteristics, and concerns over adverse events influence those goals and/or participation in experimental therapies and clinical trials; and (c) whether people with SCI feel they have adequate information about experimental therapies and clinical trials. Methods: An online survey that yielded 364 responses. Results: Most respondents (83.7%) had sought information about experimental therapies, and just under half (47.8%) had received one. The most frequently cited functional goals were improvement in bowel and bladder function and elimination of dysreflexia (60.4%). Several goals were influenced by age and level and completeness of injury, and most respondents (93.4%) wanted more information about experimental therapies. Just over one-third (34.6%) of respondents had participated in a clinical trial, and nearly all (96.9%) wanted more information about them. Having received experimental therapies and participated in clinical trials was positively correlated with seeking SCI-specific care from an SCI specialist rather than from a primary care physician. Most (83.9%) respondents would avoid or be reluctant to engage with a medical center if they were made aware of harm done to trial participants. Conclusion: This work suggests that there are unmet information needs among people with SCI, specifically pertaining to experimental therapies and clinical trials. It also reveals that improved access to SCI specialists may enhance access to novel treatments and research efforts. Being made aware of harm to trial participants may influence the decision of individuals with SCI to seek care at or enroll in trials at these clinical sites.
Collapse
Affiliation(s)
- Carlotta Pazzi
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Clara Farrehi
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maclain Capron
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kim Anderson
- MetroHealth Medical Center of Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Michael Stillman
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Walker JR, Detloff MR. Plasticity in Cervical Motor Circuits following Spinal Cord Injury and Rehabilitation. BIOLOGY 2021; 10:biology10100976. [PMID: 34681075 PMCID: PMC8533179 DOI: 10.3390/biology10100976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Spinal cord injury results in a decreased quality of life and impacts hundreds of thousands of people in the US alone. This review discusses the underlying cellular mechanisms of injury and the concurrent therapeutic hurdles that impede recovery. It then describes the phenomena of neural plasticity—the nervous system’s ability to change. The primary focus of the review is on the impact of cervical spinal cord injury on control of the upper limbs. The neural plasticity that occurs without intervention is discussed, which shows new connections growing around the injury site and the involvement of compensatory movements. Rehabilitation-driven neural plasticity is shown to have the ability to guide connections to create more normal functions. Various novel stimulation and recording technologies are outlined for their role in further improving rehabilitative outcomes and gains in independence. Finally, the importance of sensory input, an often-overlooked aspect of motor control, is shown in driving neural plasticity. Overall, this review seeks to delineate the historical and contemporary research into neural plasticity following injury and rehabilitation to guide future studies. Abstract Neuroplasticity is a robust mechanism by which the central nervous system attempts to adapt to a structural or chemical disruption of functional connections between neurons. Mechanical damage from spinal cord injury potentiates via neuroinflammation and can cause aberrant changes in neural circuitry known as maladaptive plasticity. Together, these alterations greatly diminish function and quality of life. This review discusses contemporary efforts to harness neuroplasticity through rehabilitation and neuromodulation to restore function with a focus on motor recovery following cervical spinal cord injury. Background information on the general mechanisms of plasticity and long-term potentiation of the nervous system, most well studied in the learning and memory fields, will be reviewed. Spontaneous plasticity of the nervous system, both maladaptive and during natural recovery following spinal cord injury is outlined to provide a baseline from which rehabilitation builds. Previous research has focused on the impact of descending motor commands in driving spinal plasticity. However, this review focuses on the influence of physical therapy and primary afferent input and interneuron modulation in driving plasticity within the spinal cord. Finally, future directions into previously untargeted primary afferent populations are presented.
Collapse
|
22
|
Portillo-Lara R, Tahirbegi B, Chapman CAR, Goding JA, Green RA. Mind the gap: State-of-the-art technologies and applications for EEG-based brain-computer interfaces. APL Bioeng 2021; 5:031507. [PMID: 34327294 PMCID: PMC8294859 DOI: 10.1063/5.0047237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
Brain-computer interfaces (BCIs) provide bidirectional communication between the brain and output devices that translate user intent into function. Among the different brain imaging techniques used to operate BCIs, electroencephalography (EEG) constitutes the preferred method of choice, owing to its relative low cost, ease of use, high temporal resolution, and noninvasiveness. In recent years, significant progress in wearable technologies and computational intelligence has greatly enhanced the performance and capabilities of EEG-based BCIs (eBCIs) and propelled their migration out of the laboratory and into real-world environments. This rapid translation constitutes a paradigm shift in human-machine interaction that will deeply transform different industries in the near future, including healthcare and wellbeing, entertainment, security, education, and marketing. In this contribution, the state-of-the-art in wearable biosensing is reviewed, focusing on the development of novel electrode interfaces for long term and noninvasive EEG monitoring. Commercially available EEG platforms are surveyed, and a comparative analysis is presented based on the benefits and limitations they provide for eBCI development. Emerging applications in neuroscientific research and future trends related to the widespread implementation of eBCIs for medical and nonmedical uses are discussed. Finally, a commentary on the ethical, social, and legal concerns associated with this increasingly ubiquitous technology is provided, as well as general recommendations to address key issues related to mainstream consumer adoption.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Bogachan Tahirbegi
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Christopher A. R. Chapman
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Josef A. Goding
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Rylie A. Green
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Hu M, Cheng HJ, Ji F, Chong JSX, Lu Z, Huang W, Ang KK, Phua KS, Chuang KH, Jiang X, Chew E, Guan C, Zhou JH. Brain Functional Changes in Stroke Following Rehabilitation Using Brain-Computer Interface-Assisted Motor Imagery With and Without tDCS: A Pilot Study. Front Hum Neurosci 2021; 15:692304. [PMID: 34335210 PMCID: PMC8322606 DOI: 10.3389/fnhum.2021.692304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been proven effective in post-stroke motor function enhancement, yet whether the combination of MI-BCI and tDCS may further benefit the rehabilitation of motor functions remains unknown. This study investigated brain functional activity and connectivity changes after a 2 week MI-BCI and tDCS combined intervention in 19 chronic subcortical stroke patients. Patients were randomized into MI-BCI with tDCS group and MI-BCI only group who underwent 10 sessions of 20 min real or sham tDCS followed by 1 h MI-BCI training with robotic feedback. We derived amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) from resting-state functional magnetic resonance imaging (fMRI) data pre- and post-intervention. At baseline, stroke patients had lower ALFF in the ipsilesional somatomotor network (SMN), lower ReHo in the contralesional insula, and higher ALFF/Reho in the bilateral posterior default mode network (DMN) compared to age-matched healthy controls. After the intervention, the MI-BCI only group showed increased ALFF in contralesional SMN and decreased ALFF/Reho in the posterior DMN. In contrast, no post-intervention changes were detected in the MI-BCI + tDCS group. Furthermore, higher increases in ALFF/ReHo/FC measures were related to better motor function recovery (measured by the Fugl-Meyer Assessment scores) in the MI-BCI group while the opposite association was detected in the MI-BCI + tDCS group. Taken together, our findings suggest that brain functional re-normalization and network-specific compensation were found in the MI-BCI only group but not in the MI-BCI + tDCS group although both groups gained significant motor function improvement post-intervention with no group difference. MI-BCI and tDCS may exert differential or even opposing impact on brain functional reorganization during post-stroke motor rehabilitation; therefore, the integration of the two strategies requires further refinement to improve efficacy and effectiveness.
Collapse
Affiliation(s)
- Mengjiao Hu
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore.,Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao-Ju Cheng
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Fang Ji
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna Su Xian Chong
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhongkang Lu
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Weimin Huang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore.,School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kok Soon Phua
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore.,Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Xudong Jiang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Effie Chew
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Paek AY, Brantley JA, Evans BJ, Contreras-Vidal JL. Concerns in the Blurred Divisions between Medical and Consumer Neurotechnology. IEEE SYSTEMS JOURNAL 2021; 15:3069-3080. [PMID: 35126800 PMCID: PMC8813044 DOI: 10.1109/jsyst.2020.3032609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurotechnology has traditionally been central to the diagnosis and treatment of neurological disorders. While these devices have initially been utilized in clinical and research settings, recent advancements in neurotechnology have yielded devices that are more portable, user-friendly, and less expensive. These improvements allow laypeople to monitor their brain waves and interface their brains with external devices. Such improvements have led to the rise of wearable neurotechnology that is marketed to the consumer. While many of the consumer devices are marketed for innocuous applications, such as use in video games, there is potential for them to be repurposed for medical use. How do we manage neurotechnologies that skirt the line between medical and consumer applications and what can be done to ensure consumer safety? Here, we characterize neurotechnology based on medical and consumer applications and summarize currently marketed uses of consumer-grade wearable headsets. We lay out concerns that may arise due to the similar claims associated with both medical and consumer devices, the possibility of consumer devices being repurposed for medical uses, and the potential for medical uses of neurotechnology to influence commercial markets related to employment and self-enhancement.
Collapse
Affiliation(s)
- Andrew Y Paek
- Department of Electrical & Computer Engineering and the IUCRC BRAIN Center at the University of Houston, Houston, TX, USA
| | - Justin A Brantley
- Department of Electrical & Computer Engineering and the IUCRC BRAIN Center at the University of Houston. He is now with the Department of Bioengineering at the University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara J Evans
- Law Center and IUCRC BRAIN Center at the University of Houston. University of Houston, Houston, TX. She is now with the Wertheim College of Engineering and Levin College of Law at the University of Florida, Gainesville, FL, USA
| | - Jose L Contreras-Vidal
- Department of Electrical & Computer Engineering and the IUCRC BRAIN Center at the University of Houston, Houston, TX, USA
| |
Collapse
|
25
|
Abstract
Recent advances in brain-computer interface technology to restore and rehabilitate neurologic function aim to enable persons with disabling neurologic conditions to communicate, interact with the environment, and achieve other key activities of daily living and personal goals. Here we evaluate the principles, benefits, challenges, and future directions of brain-computer interfaces in the context of neurorehabilitation. We then explore the clinical translation of these technologies and propose an approach to facilitate implementation of brain-computer interfaces for persons with neurologic disease.
Collapse
Affiliation(s)
- Michael J Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J Lin
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
- Department of Veterans Affairs Medical Center, VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island
| | - Leigh R Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
- Department of Veterans Affairs Medical Center, VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island
| |
Collapse
|
26
|
Alchalabi B, Faubert J, Labbé D. A multi-modal modified feedback self-paced BCI to control the gait of an avatar. J Neural Eng 2021; 18. [PMID: 33711832 DOI: 10.1088/1741-2552/abee51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/12/2021] [Indexed: 11/12/2022]
Abstract
Brain-computer interfaces (BCI) have been used to control the gait of a virtual self-avatar with a proposed application in the field of gait rehabilitation. OBJECTIVE to develop a high performance multi-modal BCI to control single steps and forward walking of an immersive virtual reality avatar. This system will overcome the limitation of existing systems. APPROACH This system used MI of these actions, in cue-paced and self-paced modes. Twenty healthy participants participated in this 4 sessions study across 4 different days. They were cued to imagine a single step forward with their right or left foot, or to imagine walking forward. They were instructed to reach a target by using the MI of multiple steps (self-paced switch-control mode) or by maintaining MI of forward walking (continuous-control mode). The movement of the avatar was controlled by two calibrated RLDA classifiers that used the µ power spectral density (PSD) over the foot area of the motor cortex as a feature. The classifiers were retrained after every session. For a subset of the trials, positive modified feedback was presented to half of the participants. MAIN RESULTS All participants were able to operate the BCI. Their average offline performance, after retraining the classifiers was 86.0 ± 6.1%, showing that the recalibration of the classifiers enhanced the offline performance of the BCI (p < 0.01). The average online performance was 85.9 ± 8.4% showing that modified feedback enhanced BCI performance (p =0.001). The average performance was 83% at self-paced switch control and 92% at continuous control mode. SIGNIFICANCE This study reports on the first novel integration of different design approaches, different control modes and different performance enhancement techniques, all in parallel in one single high performance and multi-modal BCI system, to control single steps and forward walking of an immersive virtual reality avatar.
Collapse
Affiliation(s)
- Bilal Alchalabi
- biomedical engineering, University of Montreal, 2900 Boulevard Edouard mon Petit, Montreal, Quebec, H3C 3J7, CANADA
| | - Jocelyn Faubert
- Université de Montréal, 3744 Rue Jean Brillant, Montreal, Quebec, H3T 1P1, CANADA
| | - David Labbé
- École de technologie supérieure, 1100 Rue Notre-Dame ouest, Montreal, Quebec, H3C 1K3, CANADA
| |
Collapse
|
27
|
Visual-Electrotactile Stimulation Feedback to Improve Immersive Brain-Computer Interface Based on Hand Motor Imagery. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021. [DOI: 10.1155/2021/8832686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the aging society, the number of people suffering from vascular disorders is rapidly increasing and has become a social problem. The death rate due to stroke, which is the second leading cause of global mortality, has increased by 40% in the last two decades. Stroke can also cause paralysis. Of late, brain-computer interfaces (BCIs) have been garnering attention in the rehabilitation field as assistive technology. A BCI for the motor rehabilitation of patients with paralysis promotes neural plasticity, when subjects perform motor imagery (MI). Feedback, such as visual and proprioceptive, influences brain rhythm modulation to contribute to MI learning and motor function restoration. Also, virtual reality (VR) can provide powerful graphical options to enhance feedback visualization. This work aimed to improve immersive VR-BCI based on hand MI, using visual-electrotactile stimulation feedback instead of visual feedback. The MI tasks include grasping, flexion/extension, and their random combination. Moreover, the subjects answered a system perception questionnaire after the experiments. The proposed system was evaluated with twenty able-bodied subjects. Visual-electrotactile feedback improved the mean classification accuracy for the grasping (93.00%
3.50%) and flexion/extension (95.00%
5.27%) MI tasks. Additionally, the subjects achieved an acceptable mean classification accuracy (maximum of 86.5%
5.80%) for the random MI task, which required more concentration. The proprioceptive feedback maintained lower mean power spectral density in all channels and higher attention levels than those of visual feedback during the test trials for the grasping and flexion/extension MI tasks. Also, this feedback generated greater relative power in the
-band for the premotor cortex, which indicated better MI preparation. Thus, electrotactile stimulation along with visual feedback enhanced the immersive VR-BCI classification accuracy by 5.5% and 4.5% for the grasping and flexion/extension MI tasks, respectively, retained the subject’s attention, and eased MI better than visual feedback alone.
Collapse
|
28
|
Developing a Motor Imagery-Based Real-Time Asynchronous Hybrid BCI Controller for a Lower-Limb Exoskeleton. SENSORS 2020; 20:s20247309. [PMID: 33352714 PMCID: PMC7766128 DOI: 10.3390/s20247309] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.
Collapse
|
29
|
Chailloux Peguero JD, Mendoza-Montoya O, Antelis JM. Single-Option P300-BCI Performance Is Affected by Visual Stimulation Conditions. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7198. [PMID: 33339105 PMCID: PMC7765532 DOI: 10.3390/s20247198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023]
Abstract
The P300 paradigm is one of the most promising techniques for its robustness and reliability in Brain-Computer Interface (BCI) applications, but it is not exempt from shortcomings. The present work studied single-trial classification effectiveness in distinguishing between target and non-target responses considering two conditions of visual stimulation and the variation of the number of symbols presented to the user in a single-option visual frame. In addition, we also investigated the relationship between the classification results of target and non-target events when training and testing the machine-learning model with datasets containing different stimulation conditions and different number of symbols. To this end, we designed a P300 experimental protocol considering, as conditions of stimulation: the color highlighting or the superimposing of a cartoon face and from four to nine options. These experiments were carried out with 19 healthy subjects in 3 sessions. The results showed that the Event-Related Potentials (ERP) responses and the classification accuracy are stronger with cartoon faces as stimulus type and similar irrespective of the amount of options. In addition, the classification performance is reduced when using datasets with different type of stimulus, but it is similar when using datasets with different the number of symbols. These results have a special connotation for the design of systems, in which it is intended to elicit higher levels of evoked potentials and, at the same time, optimize training time.
Collapse
|
30
|
Farrehi C, Pazzi C, Capron M, Anderson K, Richardson B, Stillman M. How individuals with spinal cord injury in the United States access and assess information about experimental therapies and clinical trials: results of a clinical survey. Spinal Cord Ser Cases 2020; 6:103. [PMID: 33230100 DOI: 10.1038/s41394-020-00354-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
STUDY DESIGN An internet-based survey. OBJECTIVES To determine how individuals with spinal cord injury (SCI) access information about experimental therapies and clinical trials. To understand which factors influence receipt of and perceived trustworthiness of that information. SETTING Two academic medical centers and an SCI organization. METHODS Demographic information frequencies and percentages were calculated then analyzed using chi-square tests for independence. Fisher's exact test of independence was used to assess significance for contingency tables with categories containing expected counts below five. RESULTS Three hundred sixty four persons with SCI participated in the survey. Most felt confident in their ability to evaluate SCI-specific information from a variety of sources, though SCI organizations and the medical literature were deemed the most reliable. Information from SCI specialists was deemed more credible than that from non-SCI specialists, but only 53.6% of participants had access to them. Nearly all (89.0%) respondents who had sought information about experimental therapies had found it online, while 51.4% of those who had participated in a clinical trial had been contacted by a research team. Only 8.4% of participants felt their medical teams offered them sufficient information about experimental therapies and clinical trials. Wealthier and more educated respondents were more knowledgeable about health-related resources on the internet. Nearly all participants (96.9%) expressed interest in learning more about trials related to SCI. CONCLUSIONS There is an information deficit among people with SCI pertaining to experimental therapies and clinical trials. It is exacerbated by lack of income, education, and access to SCI specialists.
Collapse
Affiliation(s)
- Clara Farrehi
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Carlotta Pazzi
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Maclain Capron
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Kim Anderson
- Metrohealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bonnie Richardson
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.,Metrohealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Michael Stillman
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
32
|
Ng DWK, Goh SY. Indirect Control of an Autonomous Wheelchair Using SSVEP BCI. JOURNAL OF ROBOTICS AND MECHATRONICS 2020. [DOI: 10.20965/jrm.2020.p0761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Having the capability to control a wheelchair using brain signals would be a major benefit to patients suffering from motor disabling diseases. However, one major challenge such systems are facing is the amount of input needed over time by the patient for control. Such a navigation control system results in a significant mental burden for the patient. The objective of this study is to develop a BCI system that requires a low number of inputs from a subject to operate. We propose an autonomous wheelchair that uses steady-state visual evoked potential based brain computer interfaces to achieve the objective. A dual mode system was implemented in this study to allow the autonomous wheelchair to work in both unknown and known environments. Robot operating system is used as the middleware in this study for the development of the algorithm to operate the wheelchair. The mental task for the subject using this wheelchair is reduced by relegating the responsibility of navigation control from the subject to the navigation software.
Collapse
|
33
|
Mazurek KA, Schieber MH. Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist 2020; 27:129-142. [PMID: 32648527 DOI: 10.1177/1073858420936253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For 150 years artificial stimulation has been used to study the function of the nervous system. Such stimulation-whether electrical or optogenetic-eventually may be used in neuroprosthetic devices to replace lost sensory inputs and to otherwise introduce information into the nervous system. Efforts toward this goal can be classified broadly as either biomimetic or arbitrary. Biomimetic stimulation aims to mimic patterns of natural neural activity, so that the subject immediately experiences the artificial stimulation as if it were natural sensation. Arbitrary stimulation, in contrast, makes no attempt to mimic natural patterns of neural activity. Instead, different stimuli-at different locations and/or in different patterns-are assigned different meanings randomly. The subject's time and effort then are required to learn to interpret different stimuli, a process that engages the brain's inherent plasticity. Here we will examine progress in using artificial stimulation to inject information into the cerebral cortex and discuss the challenges for and the promise of future development.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marc H Schieber
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.,Department of Neurology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
34
|
Xiong X, Yu Z, Ma T, Luo N, Wang H, Lu X, Fan H. Weighted Brain Network Metrics for Decoding Action Intention Understanding Based on EEG. Front Hum Neurosci 2020; 14:232. [PMID: 32714168 PMCID: PMC7343772 DOI: 10.3389/fnhum.2020.00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Understanding the action intentions of others is important for social and human-robot interactions. Recently, many state-of-the-art approaches have been proposed for decoding action intention understanding. Although these methods have some advantages, it is still necessary to design other tools that can more efficiently classify the action intention understanding signals. New Method: Based on EEG, we first applied phase lag index (PLI) and weighted phase lag index (WPLI) to construct functional connectivity matrices in five frequency bands and 63 micro-time windows, then calculated nine graph metrics from these matrices and subsequently used the network metrics as features to classify different brain signals related to action intention understanding. Results: Compared with the single methods (PLI or WPLI), the combination method (PLI+WPLI) demonstrates some overwhelming victories. Most of the average classification accuracies exceed 70%, and some of them approach 80%. In statistical tests of brain network, many significantly different edges appear in the frontal, occipital, parietal, and temporal regions. Conclusions: Weighted brain networks can effectively retain data information. The integrated method proposed in this study is extremely effective for investigating action intention understanding. Both the mirror neuron and mentalizing systems participate as collaborators in the process of action intention understanding.
Collapse
Affiliation(s)
- Xingliang Xiong
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Zhenhua Yu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, China
| | - Tian Ma
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, China
| | - Ning Luo
- Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Xuesong Lu
- Department of Rehabilitation, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hui Fan
- Co-innovation Center of Shandong Colleges and Universities: Future Intelligent Computing, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
35
|
Xiong X, Yu Z, Ma T, Wang H, Lu X, Fan H. Classifying action intention understanding EEG signals based on weighted brain network metric features. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Ganzer PD, Colachis SC, Schwemmer MA, Friedenberg DA, Dunlap CF, Swiftney CE, Jacobowitz AF, Weber DJ, Bockbrader MA, Sharma G. Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface. Cell 2020; 181:763-773.e12. [DOI: 10.1016/j.cell.2020.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
|
37
|
Electrocorticogram (ECoG) Is Highly Informative in Primate Visual Cortex. J Neurosci 2020; 40:2430-2444. [PMID: 32066581 DOI: 10.1523/jneurosci.1368-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Neural signals recorded at different scales contain information about environment and behavior and have been used to control Brain Machine Interfaces with varying degrees of success. However, a direct comparison of their efficacy has not been possible due to different recording setups, tasks, species, etc. To address this, we implanted customized arrays having both microelectrodes and electrocorticogram (ECoG) electrodes in the primary visual cortex of 2 female macaque monkeys, and also recorded electroencephalogram (EEG), while they viewed a variety of naturalistic images and parametric gratings. Surprisingly, ECoG had higher information and decodability than all other signals. Combining a few ECoG electrodes allowed more accurate decoding than combining a much larger number of microelectrodes. Control analyses showed that higher decoding accuracy of ECoG compared with local field potential was not because of differences in low-level visual features captured by them but instead because of larger spatial summation of the ECoG. Information was high in the 30-80 Hz range and at lower frequencies. Information in different frequencies and scales was nonredundant. These results have strong implications for Brain Machine Interface applications and for study of population representation of visual stimuli.SIGNIFICANCE STATEMENT Electrophysiological signals captured across scales by different recording electrodes are regularly used for Brain Machine Interfaces, but the information content varies due to electrode size and location. A systematic comparison of their efficiency for Brain Machine Interfaces is important but technically challenging. Here, we recorded simultaneous signals across four scales: spikes, local field potential, electrocorticogram (ECoG), and EEG, and compared their information and decoding accuracy for a large variety of naturalistic stimuli. We found that ECoGs were highly informative and outperformed other signals in information content and decoding accuracy.
Collapse
|
38
|
A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery. Brain Sci 2019; 9:brainsci9120372. [PMID: 31847114 PMCID: PMC6955896 DOI: 10.3390/brainsci9120372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/02/2022] Open
Abstract
Brain–computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1–30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.
Collapse
|