1
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
2
|
Xu Y, Du W, Xiao Y, Gao K, Li J, Li S. A Number of the N-terminal RASSF Family: RASSF7. Anticancer Agents Med Chem 2024; 24:889-895. [PMID: 36200241 DOI: 10.2174/1871520622666220930094149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
The Ras association domain family 7 (RASSF7, also named HRC1), a potential tumor-related gene, located on human chromosome 11p15, has been identified as an important member of the N-terminal RASSF family. Whereas, the molecular biological mechanisms of RASSF7 in tumorigenesis remain to be further established. We perform a systematic review of the literature and assessment from PUBMED and MEDLINE databases in this article. RASSF7 plays a significant role in mitosis, microtubule growth, apoptosis, proliferation and differentiation. Many research literature shows that the RASSF7 could promote the occurrence and advance of human tumors by regulating Aurora B, MKK4, MKK7, JNK, YAP, MEK, and ERK, whereas, it might inhibit c-Myc and thus lead to the suppression of tumorigenesis. The pregulation of RASSF7 often occurs in various malignancies such as lung cancer, neuroblastoma, thyroid neoplasm, hepatocellular cancer, breast cancer and gastric cancer. The expression stage of RASSF7 is positively correlated with the tumor TNM stage. In this review, we primarily elaborate on the acknowledged structure and progress in the various biomechanisms and research advances of RASSF7, especially the potential relevant signaling pathways. We hope that RASSF7 , a prospective therapeutic target for human malignancies, could play an available role in future anti-cancer treatment.
Collapse
Affiliation(s)
- Yang Xu
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
- Department of Urology, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Wei Du
- Department of Urology, Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, People's Republic of China
| | - Yongshuang Xiao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Keyu Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Jie Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Shuofeng Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
3
|
Ardanaz CG, Ezkurdia A, Bejarano A, Echarte B, Smerdou C, Martisova E, Martínez-Valbuena I, Luquin MR, Ramírez MJ, Solas M. JNK3 Overexpression in the Entorhinal Cortex Impacts on the Hippocampus and Induces Cognitive Deficiencies and Tau Misfolding. ACS Chem Neurosci 2023. [PMID: 37236204 DOI: 10.1021/acschemneuro.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases activated by a myriad of stimuli consequently modulating a vast range of biological processes. In human postmortem brain samples affected with Alzheimer's disease (AD), JNK overactivation has been described; however, its role in AD onset and progression is still under debate. One of the earliest affected areas in the pathology is the entorhinal cortex (EC). Noteworthy, the deterioration of the projection from EC to hippocampus (Hp) point toward the idea that the connection between EC and Hp is lost in AD. Thus, the main objective of the present work is to address if JNK3 overexpression in the EC could impact on the hippocampus, inducing cognitive deficits. Data obtained in the present work suggest that JNK3 overexpression in the EC influences the Hp leading to cognitive impairment. Moreover, proinflammatory cytokine expression and Tau immunoreactivity were increased both in the EC and in the Hp. Therefore, activation of inflammatory signaling and induction of Tau aberrant misfolding caused by JNK3 could be responsible for the observed cognitive impairment. Altogether, JNK3 overexpression in the EC may impact on the Hp inducing cognitive dysfunction and underlie the alterations observed in AD.
Collapse
Affiliation(s)
- Carlos G Ardanaz
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Amaia Ezkurdia
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Arantza Bejarano
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Beatriz Echarte
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Cristian Smerdou
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Eva Martisova
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Martínez-Valbuena
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - María-Rosario Luquin
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Neurology Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
4
|
Jun J, Moon H, Yang S, Lee J, Baek J, Kim H, Cho H, Hwang K, Ahn S, Kim Y, Kim G, Kim H, Kwon H, Hah JM. Carbamate JNK3 Inhibitors Show Promise as Effective Treatments for Alzheimer's Disease: In Vivo Studies on Mouse Models. J Med Chem 2023; 66:6372-6390. [PMID: 37094094 DOI: 10.1021/acs.jmedchem.3c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
We have been developing new inhibitors for c-Jun N-terminal kinase 3 (JNK3) as a potential treatment for Alzheimer's disease (AD). We identified potential JNK3 inhibitors through pharmacodynamic optimization studies, including benzimidazole compounds 2 and 3, but their unreliable pharmacokinetic properties led us to develop carbamate inhibitors 2h and 3h. In vitro studies validated carbamate inhibitors 2h and 3h as potent and highly selective JNK3 inhibitors with favorable pharmacokinetic profiles. Oral administration of 2h and 3h to both APP/PS1 and 3xTg AD mouse models improved cognitive function, indicating their potential as effective treatments for Alzheimer's disease. Carbamate JNK3 inhibitor 3h, in particular, restored cognitive function to near-normal levels in the 3xTg mice model of AD and led to pTau reduction in the hippocampal tissues of 3xTg-AD mice during in vivo behavioral evaluations. We intend to further develop these carbamate JNK3 inhibitors in preclinical studies as a potential first-in-class treatment for AD.
Collapse
Affiliation(s)
- Joonhong Jun
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Hyungwoo Moon
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Songyi Yang
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Junghun Lee
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Jihyun Baek
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Hyejin Kim
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Hyunwook Cho
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Kyungrim Hwang
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Soyeon Ahn
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Yuro Kim
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Gibeom Kim
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - HyunTae Kim
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Hoseok Kwon
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Jung-Mi Hah
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| |
Collapse
|
5
|
Shuai W, Bu F, Zhu Y, Wu Y, Xiao H, Pan X, Zhang J, Sun Q, Wang G, Ouyang L. Discovery of Novel Indazole Chemotypes as Isoform-Selective JNK3 Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2023; 66:1273-1300. [PMID: 36649216 DOI: 10.1021/acs.jmedchem.2c01410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the pathogenesis of various diseases. In particular, JNK3 and not JNK1/2 is primarily expressed in the brain and plays a key role in mediating neurodegenerative diseases like Parkinson's disease (PD). Due to the sequence similarity of JNK isoforms, developing isoform-selective JNK3 inhibitors to evaluate their biological functions and therapeutic potential in PD has become a challenge. Herein, docking-based virtual screening and structure-activity relationship studies identified 25c with excellent inhibitory activity against JNK3 (IC50 = 85.21 nM) and exhibited an over 100-fold isoform selectivity for JNK3 over JNK1/2 and remarkable kinase selectivity. 25c showed neuroprotective effects on in vitro and in vivo PD models by selectively inhibiting JNK3. Meanwhile, 25c showed an ideal blood-brain barrier permeability and low toxicity. Overall, this study provided a valuable molecular tool for investigating the role of JNK3 in PD and a solid foundation for developing JNK3-targeted drugs in PD treatment.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Ren DL, Hu B, Shao GJ, Wang XL, Wei ML. DUSP2 deletion with CRISPR/Cas9 promotes Mauthner cell axonal regeneration at the early stage of zebrafish. Neural Regen Res 2023; 18:577-581. [DOI: 10.4103/1673-5374.350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23084134. [PMID: 35456950 PMCID: PMC9032451 DOI: 10.3390/ijms23084134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer's disease, frontotemporal dementia, and Parkinson's diseases with a look toward their potential usefulness in biomarker searching.
Collapse
Affiliation(s)
- Marianna D’Anca
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Correspondence:
| | - Francesca R. Buccellato
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Chiara Fenoglio
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Galimberti
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
8
|
Fucoxanthin Prevents Long-Term Administration l-DOPA-Induced Neurotoxicity through the ERK/JNK-c-Jun System in 6-OHDA-Lesioned Mice and PC12 Cells. Mar Drugs 2022; 20:md20040245. [PMID: 35447917 PMCID: PMC9025159 DOI: 10.3390/md20040245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
As the most abundant marine carotenoid extracted from seaweeds, fucoxanthin is considered to have neuroprotective activity via its excellent antioxidant properties. Oxidative stress is regarded as an important starting factor for neuronal cell loss and necrosis, is one of the causes of Parkinson’s disease (PD), and is considered to be the cause of adverse reactions caused by the current PD commonly used treatment drug levodopa (l-DA). Supplementation with antioxidants early in PD can effectively prevent neurodegeneration and inhibit apoptosis in dopaminergic neurons. At present, the effect of fucoxanthin in improving the adverse effects triggered by long-term l-DA administration in PD patients is unclear. In the present study, we found that fucoxanthin can reduce cytotoxicity and suppress the high concentration of l-DA (200 μM)-mediated cell apoptosis in the 6-OHDA-induced PC12 cells through improving the reduction in mitochondrial membrane potential, suppressing ROS over-expression, and inhibiting active of ERK/JNK-c-Jun system and expression of caspase-3 protein. These results were demonstrated by PD mice with long-term administration of l-DA showing enhanced motor ability after intervention with fucoxanthin. Our data indicate that fucoxanthin may prove useful in the treatment of PD patients with long-term l-DA administration.
Collapse
|
9
|
Ogino Y, Bernas T, Greer JE, Povlishock JT. Axonal injury following mild traumatic brain injury is exacerbated by repetitive insult and is linked to the delayed attenuation of NeuN expression without concomitant neuronal death in the mouse. Brain Pathol 2021; 32:e13034. [PMID: 34729854 PMCID: PMC8877729 DOI: 10.1111/bpa.13034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI) affects brain structure and function and can lead to persistent abnormalities. Repetitive mTBI exacerbates the acute phase response to injury. Nonetheless, its long‐term implications remain poorly understood, particularly in the context of traumatic axonal injury (TAI), a player in TBI morbidity via axonal disconnection, synaptic loss and retrograde neuronal perturbation. In contrast to the examination of these processes in the acute phase of injury, the chronic‐phase burden of TAI and/or its implications for retrograde neuronal perturbation or death have received little consideration. To critically assess this issue, murine neocortical tissue was investigated at acute (24‐h postinjury, 24hpi) and chronic time points (28‐days postinjury, 28dpi) after singular or repetitive mTBI induced by central fluid percussion injury (cFPI). Neurons were immunofluorescently labeled for NeuroTrace and NeuN (all neurons), p‐c‐Jun (axotomized neurons) and DRAQ5 (cell nuclei), imaged in 3D and quantified in automated manner. Single mTBI produced axotomy in 10% of neurons at 24hpi and the percentage increased after repetitive injury. The fraction of p‐c‐Jun+ neurons decreased at 28dpi but without neuronal loss (NeuroTrace), suggesting their reorganization and/or repair following TAI. In contrast, NeuN+ neurons decreased with repetitive injury at 24hpi while the corresponding fraction of NeuroTrace+ neurons decreased over 28dpi. Attenuated NeuN expression was linked exclusively to non‐axotomized neurons at 24hpi which extended to the axotomized at 28dpi, revealing a delayed response of the axotomized neurons. Collectively, we demonstrate an increased burden of TAI after repetitive mTBI, which is most striking in the acute phase response to the injury. Our finding of widespread axotomy in large fields of intact neurons contradicts the notion that repetitive mTBI elicits progressive neuronal death, rather, emphasizing the importance of axotomy‐mediated change.
Collapse
Affiliation(s)
- Yasuaki Ogino
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John E Greer
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Surgery, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
10
|
Beatty AE, Mote DM, Schwartz TS. Tails of reproduction: Regeneration leads to increased reproductive investment. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:522-528. [PMID: 33970527 DOI: 10.1002/jez.2472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
Trade-offs between life-history traits are due to limited resources or constraints in the regulation of genetic and physiological networks. Tail autotomy, with subsequent regeneration, is a common anti-predation mechanism in lizards and is predicted to trade-off with life-history traits, such as reproduction. We utilize the brown anole lizard with its unusual reproductive pattern of single-egg clutches every 7-10 days to test for a trade-off in reproductive investment over 8 weeks of tail regeneration on a limited diet. In contrast to predictions, we found that investing in tissue regeneration had a positive effect on reproduction in terms of egg size (11.7% relative to controls) and hatchling size (11.5% relative to controls), and no effect on egg number or survival, with the increase in reproduction starting at peak regeneration. We discuss mechanistic hypotheses that the process of regeneration may cause increased energetic efficiency or utilized shared physiological pathways with reproductive investment.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - David M Mote
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
11
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Yadav RK, Minz E, Mehan S. Understanding Abnormal c-JNK/p38MAPK Signaling in Amyotrophic Lateral Sclerosis: Potential Drug Targets and Influences on Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:417-429. [PMID: 33557726 DOI: 10.2174/1871527320666210126113848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
c-JNK (c-Jun N-terminal kinase) and p38 mitogen-activated protein kinase (MAPK) family members work in a cell-specific manner to regulate neuronal signals. The abnormal activation of these cellular signals can cause glutamate excitotoxicity, disrupted protein homeostasis, defective axonal transport, and synaptic dysfunction. Various pre-clinical and clinical findings indicate that the up-regulation of c-JNK and p38MAPK signaling is associated with neurological disorders. Exceptionally, a significant amount of experimental data has recently shown that dysregulated c-JNK and p38MAPK are implicated in the damage to the central nervous system, including amyotrophic lateral sclerosis. Furthermore, currently available information has shown that c- JNK/p38MAPK signaling inhibitors may be a promising therapeutic alternative for improving histopathological, functional, and demyelination defects related to motor neuron disabilities. Understanding the abnormal activation of c-JNK/p38MAPK signaling and the prediction of motor neuron loss may help identify important therapeutic interventions that could prevent neurocomplications. Based on the involvement of c-JNK/p38MAPK signaling in the brain, we have assumed that the downregulation of the c-JNK/p38MAPK signaling pathway could trigger neuroprotection and neurotrophic effects towards clinicopathological presentations of ALS and other brain diseases. Thus, this research-based review also outlines the inhibition of c-JNK and p38MAPK signal downregulation in the pursuit of disease-modifying therapies for ALS.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Elizabeth Minz
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
13
|
Ravanidis S, Bougea A, Karampatsi D, Papagiannakis N, Maniati M, Stefanis L, Doxakis E. Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Mov Disord 2021; 36:1170-1179. [PMID: 33433033 PMCID: PMC8248110 DOI: 10.1002/mds.28467] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background New noninvasive and affordable molecular approaches that will complement current practices and increase the accuracy of Parkinson's disease (PD) diagnosis are urgently needed. Circular RNAs (circRNAs) are stable noncoding RNAs that accumulate with aging in neurons and are increasingly shown to regulate all aspects of neuronal development and function. Objectives Τhe aims of this study were to identify differentially expressed circRNAs in blood mononuclear cells of patients with idiopathic PD and explore the competing endogenous RNA networks affected. Methods Eighty‐seven circRNAs were initially selected based on relatively high gene expression in the human brain. More than half of these were readily detectable in blood mononuclear cells using real‐time reverse transcription‐polymerase chain reaction. Comparative expression analysis was then performed in blood mononuclear cells from 60 control subjects and 60 idiopathic subjects with PD. Results Six circRNAs were significantly down‐regulated in patients with PD. The classifier that best distinguished PD consisted of four circRNAs with an area under the curve of 0.84. Cross‐linking immunoprecipitation‐sequencing data revealed that the RNA‐binding proteins bound by most of the deregulated circRNAs include the neurodegeneration‐associated FUS, TDP43, FMR1, and ATXN2. MicroRNAs predicted to be sequestered by most deregulated circRNAs have the Gene Ontology categories “protein modification” and “transcription factor activity” mostly enriched. Conclusions This is the first study that identifies specific circRNAs that may serve as diagnostic biomarkers for PD. Because they are highly expressed in the brain and are derived from genes with essential brain functions, they may also hint on the PD pathways affected. © 2021 Biomedical Research Foundation, Academy of Athens. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitra Karampatsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matina Maniati
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
14
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
15
|
Musi CA, Agrò G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells 2020; 9:cells9102190. [PMID: 32998477 PMCID: PMC7600688 DOI: 10.3390/cells9102190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aβ oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and β-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Graziella Agrò
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Francesco Santarella
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Erika Iervasi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Correspondence: or ; Tel.: +39-023-901-4469; Fax: +39-023-900-1916
| |
Collapse
|
16
|
Igarashi M, Honda A, Kawasaki A, Nozumi M. Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Front Mol Neurosci 2020; 13:150. [PMID: 32922262 PMCID: PMC7456915 DOI: 10.3389/fnmol.2020.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal polarization and growth are developmental processes that occur during neuronal cell differentiation. The molecular signaling mechanisms involved in these events in in vivo mammalian brain remain unclear. Also, cellular events of the neuronal polarization process within a given neuron are thought to be constituted of many independent intracellular signal transduction pathways (the "tug-of-war" model). However, in vivo results suggest that such pathways should be cooperative with one another among a given group of neurons in a region of the brain. Lipid rafts, specific membrane domains with low fluidity, are candidates for the hotspots of such intracellular signaling. Among the signals reported to be involved in polarization, a number are thought to be present or translocated to the lipid rafts in response to extracellular signals. As part of our analysis, we discuss how such novel molecular mechanisms are combined for effective regulation of neuronal polarization and growth, focusing on the significance of the lipid rafts, including results based on recently introduced methods.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
17
|
Involvement of JNK1 in Neuronal Polarization During Brain Development. Cells 2020; 9:cells9081897. [PMID: 32823764 PMCID: PMC7466125 DOI: 10.3390/cells9081897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
The c-Jun N-terminal Kinases (JNKs) are a group of regulatory elements responsible for the control of a wide array of functions within the cell. In the central nervous system (CNS), JNKs are involved in neuronal polarization, starting from the cell division of neural stem cells and ending with their final positioning when migrating and maturing. This review will focus mostly on isoform JNK1, the foremost contributor of total JNK activity in the CNS. Throughout the text, research from multiple groups will be summarized and discussed in order to describe the involvement of the JNKs in the different steps of neuronal polarization. The data presented support the idea that isoform JNK1 is highly relevant to the regulation of many of the processes that occur in neuronal development in the CNS.
Collapse
|
18
|
Wang Z, Yang J, Qi J, Jin Y, Tong L. Activation of NADPH/ROS pathway contributes to angiogenesis through JNK signaling in brain endothelial cells. Microvasc Res 2020; 131:104012. [PMID: 32428522 DOI: 10.1016/j.mvr.2020.104012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023]
Abstract
Recent evidences have shown that reactive oxygen species (ROS) are involved in regulating angiogenesis and preventing tissue injury. However, the precise molecular mechanisms behind ROS-induced angiogenesis are still unknown. The aim of the present study was to investigate the effects of ROS-induced angiogenesis in rat brain microvessel endothelial cells (rBMECs) and identify involving the signal pathways. For initial experiments, the rBMECs were incubated with different concentrations of hydrogen peroxide (H2O2). For the second experiments, the rBMECs were respectively treated with ROS scavenger dimethylthiourea (DMTU), NADPH oxidase (Nox) inhibitor apocynin, small interfering RNAs-mediated knock down Nox2 or Nox4, or pretreated with c-Jun N-terminal kinase (JNK) inhibitor SP600125. The cell proliferation, migration, tube formation, and the expressions of several important neuroangiogenic factors including vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), matrix metalloproteinase (MMP) -9 and phos-JNK were measured. Low level of H2O2 significantly promoted endothelial cell (EC) proliferation, migration and tube formation and upregulated levels of VEGF, BDNF, MMP-9 and phos-JNK. DMTU and apocynin significantly inhibited endothelial angiogenesis and downregulated these protein levels. As expected, knockdown of Nox2 or Nox4 expression blocked endothelial angiogenesis and downregulated the expressions of pro-neuroangiogenic factors. Furthermore, H2O2-induced endothelial angiogenesis and high expressions of pro-neuroangiogenic factors were decreased by SP600125. In conclusion, Nox-derived ROS were required for endothelial angiogenesis. Low level of ROS may activate JNK signaling pathway and upregulate pro-neuroangiogenic factors, ultimately mediating endothelial angiogenesis.
Collapse
Affiliation(s)
- Zairan Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Jinchong Qi
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Yonghui Jin
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Liyan Tong
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| |
Collapse
|
19
|
Pilato CM, Park JH, Kong L, d'Ydewalle C, Valdivia D, Chen KS, Griswold-Prenner I, Sumner CJ. Motor neuron loss in SMA is not associated with somal stress-activated JNK/c-Jun signaling. Hum Mol Genet 2020; 28:3282-3292. [PMID: 31272106 DOI: 10.1093/hmg/ddz150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023] Open
Abstract
A pathological hallmark of spinal muscular atrophy (SMA) is severe motor neuron (MN) loss, which results in muscle weakness and often infantile or childhood mortality. Although it is well established that deficient expression of survival motor neuron (SMN) protein causes SMA, the molecular pathways that execute MN cell death are poorly defined. The c-Jun NH2-terminal kinases (JNKs) are stress-activated kinases with multiple substrates including c-Jun, which can be activated during neuronal injury and neurodegenerative disease leading to neuronal apoptosis. Recently, increased JNK-c-Jun signaling was reported in SMA raising the possibility that JNK inhibitors could be a novel treatment for this disease. We examined JNK-c-Jun activity in SMA mouse and human cultured cells and tissues. Anisomycin treatment of human SMA fibroblasts and sciatic nerve ligation in SMA mice provoked robust phosphorylated-c-Jun (p-c-Jun) expression indicating that SMN-deficiency does not prevent activation of the stress-induced JNK-c-Jun signaling pathway. Despite retained capacity to activate JNK-c-Jun, we observed no basal increase of p-c-Jun levels in SMA compared to control cultured cells, human or mouse spinal cord tissues, or mouse MNs during the period of MN loss in severe SMA model mice. In both controls and SMA, ~50% of α-MN nuclei express p-c-Jun with decreasing expression during the early postnatal period. Together these studies reveal no evidence of stress-activated JNK-c-Jun signaling in MNs of SMA mice or human tissues, but do highlight the important role of JNK-c-Jun activity during normal MN development raising caution about JNK antagonism in this pediatric neuromuscular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Charlotte J Sumner
- Department of Neurology.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Gatius A, Tarabal O, Cayuela P, Casanovas A, Piedrafita L, Salvany S, Hernández S, Soler RM, Esquerda JE, Calderó J. The Y172 Monoclonal Antibody Against p-c-Jun (Ser63) Is a Marker of the Postsynaptic Compartment of C-Type Cholinergic Afferent Synapses on Motoneurons. Front Cell Neurosci 2020; 13:582. [PMID: 32038174 PMCID: PMC6992659 DOI: 10.3389/fncel.2019.00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
C-bouton-type cholinergic afferents exert an important function in controlling motoneuron (MN) excitability. During the immunocytochemical analysis of the role of c-Jun in MNs with a monoclonal (clone Y172) antibody against phospho (p)-c-Jun (serine [Ser]63), unexpected labeling was identified in the cell body cytoplasm. As predicted for c-Jun in adult spinal cord, very few, if any MNs exhibited nuclear immunoreactivity with the Y172 antibody; conversely, virtually all MNs displayed strong Y172 immunostaining in cytoplasmic structures scattered throughout the soma and proximal dendrites. The majority of these cytoplasmic Y172-positive profiles was closely associated with VAChT-positive C-boutons, but not with other types of nerve afferents contacting MNs. Ultrastructural analysis revealed that cytoplasmic Y172 immunostaining was selectively located at the subsurface cistern (SSC) of C-boutons and also in the inner areas of the endoplasmic reticulum (ER). We also described changes in cytoplasmic Y172 immunoreactivity in injured and degenerating MNs. Moreover, we noticed that MNs from NRG1 type III-overexpressing transgenic mice, which show abnormally expanded SSCs, exhibited an increase in the density and size of peripherally located Y172-positive profiles. A similar immunocytochemical pattern to that of the Y172 antibody in MNs was found with a polyclonal antibody against p-c-Jun (Ser63) but not with another polyclonal antibody that recognizes c-Jun phosphorylated at a different site. No differential band patterns were found by western blotting with any of the antibodies against c-Jun or p-c-Jun used in our study. In cultured MNs, Y172-positive oval profiles were distributed in the cell body and proximal dendrites. The in vitro lentiviral-based knockdown of c-Jun resulted in a dramatic decrease in nuclear Y172 immunostaining in MNs without any reduction in the density of cytoplasmic Y172-positive profiles, suggesting that the synaptic antigen recognized by the antibody corresponds to a C-bouton-specific protein other than p-c-Jun. Our results lay the foundation for further studies aimed at identifying this protein and determining its role in this particular type of synapse.
Collapse
Affiliation(s)
- Alaó Gatius
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Paula Cayuela
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sara Salvany
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sara Hernández
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
21
|
Schellino R, Boido M, Vercelli A. JNK Signaling Pathway Involvement in Spinal Cord Neuron Development and Death. Cells 2019; 8:E1576. [PMID: 31817379 PMCID: PMC6953032 DOI: 10.3390/cells8121576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The c-Jun NH2-terminal protein kinase (JNK) is a Janus-faced kinase, which, in the nervous system, plays important roles in a broad range of physiological and pathological processes. Three genes, encoding for 10 JNK isoforms, have been identified: jnk1, jnk2, and jnk3. In the developing spinal cord, JNK proteins control neuronal polarity, axon growth/pathfinding, and programmed cell death; in adulthood they can drive degeneration and regeneration, after pathological insults. Indeed, recent studies have highlighted a role for JNK in motor neuron (MN) diseases, such as amyotrophic lateral sclerosis and spinal muscular atrophy. In this review we discuss how JNK-dependent signaling regulates apparently contradictory functions in the spinal cord, in both the developmental and adult stages. In addition, we examine the evidence that the specific targeting of JNK signaling pathway may represent a promising therapeutic strategy for the treatment of MN diseases.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| |
Collapse
|
22
|
Wang RR, Li CF, Wang DZ, Zhang CW, Liu GX. c-Jun N-terminal kinase 3 deficiency protects axotomized retinal ganglion cells via affecting mitochondria involved apoptosis pathway. Int J Ophthalmol 2019; 12:30-37. [PMID: 30662837 PMCID: PMC6326936 DOI: 10.18240/ijo.2019.01.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To illustrate the isoform-specific role and mechanism of c-Jun N-terminal kinases (JNKs) in mouse optic nerve axotomy induced neurotrauma. METHODS We firstly investigated the expression of JNK1, JNK2, and JNK3 in the retinal ganglion cells (RGCs) by double-immunofluorescent staining. Then we created optic nerve axotomy model in wild type as well as JNK1, JNK2, JNK3, isoform specific gene deficiency mice. With that, we checked the protein expression profile of JNKs and its active form, and quantified the survival RGCs number by immunofluorescence staining. We further explored the molecules underlying isoform specific protective effect by real-time polymerase chain reaction (PCR) and Western blotting assay. RESULTS We found that all the three isoforms of JNKs were expressed in the RGCs. Deficiency of JNK3, but not JNK1 or JNK2, significantly alleviated optic nerve axotomy induced RGCs apoptosis. We further established that expression of Noxa, a pro-apoptotic member of BH3 family, was significantly suppressed only in JNK3 gene deficiency mice. But tumor necrosis factor receptor 1 (TNFR1) and Fas, two key modulators of death receptor mediated apoptosis pathway, did not display obvious change in the expression. CONCLUSION It is suggested that mitochondria mediated apoptosis, but not death receptor mediated apoptosis got involved in the JNK3 gene deficiency induced RGCs protection. Our study provides a novel insight into the isoform-specific role of JNKs in neurotrauma and indicates some cues for its therapeutics.
Collapse
Affiliation(s)
- Rong-Rong Wang
- Qingdao University, Qingdao 266000, Shandong Province, China
- Department of Ophthalmology, Jimo Traditional Chinese Medicine Hospital, Qingdao 266200, Shandong Province, China
| | - Cheng-Fang Li
- Department of Ophthalmology, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - De-Zu Wang
- Department of Ophthalmology, Jimo Traditional Chinese Medicine Hospital, Qingdao 266200, Shandong Province, China
| | - Cheng-Wu Zhang
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 211800, Jiangsu Province, China
| | - Gui-Xiang Liu
- Department of Ophthalmology, Affiliated Hospital of the Medical College of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
23
|
You M, Dong J, Fu Y, Cong Z, Fu H, Wei L, Wang Y, Wang Y, Chen J. Exposure to Di-(2-ethylhexyl) Phthalate During Perinatal Period Gender-Specifically Impairs the Dendritic Growth of Pyramidal Neurons in Rat Offspring. Front Neurosci 2018; 12:444. [PMID: 30087586 PMCID: PMC6066609 DOI: 10.3389/fnins.2018.00444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), as a prevalent xenoestrogen endocrine disrupter, is omnipresent in the environment and commonly used in polyethylene plastic products. Although DEHP has potential adverse effects on multisystem organs, damage to the central nervous system is more significant. However, the consequences and mechanisms of DEHP exposure remain to be explored. The aim of this study was to investigate the effects and related mechanisms of maternal DEHP exposure on dendritic development of hippocampal pyramidal neurons in a rat model. Pregnant Wistar rats were intragastrically administrated either vehicle or DEHP (30, 300, and 750 mg/kg/d) from gestation day 0 to postnatal day (PN) 21. The dendritic length and complexity of dendritic arbors' pattern in pyramidal neurons of the hippocampus were measured using Golgi-Cox staining and Sholl analysis. The expression of dendritic development-related proteins was detected using western blot and immunofluorescence staining. DEHP-treated male but not female pups showed an obvious decrease in the total length and branching numbers of basal dendrites on PN7, PN14, and PN21. The phosphorylation of MAP2c, stathmin, and JNK1 in the male pup hippocampus was significantly decreased in DEHP treatment groups compared to controls. However, protein expression alteration in the hippocampus of female offspring was not observed. In summary, our study indicated that DEHP has a gender-specific negative impact on the dendritic growth of CA1 pyramidal neurons in male offspring of a rat model of DEHP exposure. The adverse impact may be related to the dysregulation of phosphorylated and total MAP2c and stathmin mediated by JNK1.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Dubový P, Klusáková I, Hradilová-Svíženská I, Joukal M. Expression of Regeneration-Associated Proteins in Primary Sensory Neurons and Regenerating Axons After Nerve Injury-An Overview. Anat Rec (Hoboken) 2018; 301:1618-1627. [PMID: 29740961 DOI: 10.1002/ar.23843] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/09/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury results in profound alterations of the affected neurons resulting from the interplay between intrinsic and extrinsic molecular events. Restarting the neuronal regenerative program is an important prerequisite for functional recovery of the injured peripheral nerve. The primary sensory neurons with their cell bodies in the dorsal root ganglia provide a useful in vivo and in vitro model for studying the mechanisms that regulate intrinsic neuronal regeneration capacity following axotomy. These studies frequently need to indicate the regenerative status of the corresponding neurons. We summarize the critical issues regarding immunohistochemical detection of several regeneration-associated proteins as markers for the initiation of the regeneration program in rat primary sensory neurons and indicators of axon regeneration in the peripheral nerves. This overview also includes our own results of GAP43 and SCG10 expression in different DRG neurons following double immunostaining with molecular markers of neuronal subpopulations (NF200, CGRP, and IB4) as well as transcription factors (ATF3 and activated STAT3) following unilateral sciatic nerve injury. Anat Rec, 301:1618-1627, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Ilona Klusáková
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Research Group, Masaryk University, Brno, Czechia, Czech Republic
| |
Collapse
|
25
|
Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, Guo P, Qi S. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology 2018; 135:11-21. [PMID: 29510185 DOI: 10.1016/j.neuropharm.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
It is well known that Wnt5a activation plays a pivotal role in brain injury and β-arrestin2 induces c-Jun N-terminal kinase (JNK3) activation is involved in neuronal cell death. Nonetheless, the relationship between Wnt5a and JNK3 remains unexplored during cerebral ischemia/reperfusion (I/R). In the present study, we tested the hypothesis that Wnt5a-mediated JNK3 activation via the Wnt5a-Dvl-1-β-arrestin2-JNK3 signaling pathway was correlated with I/R brain injury. We found that cerebral I/R could enhance the assembly of the Dvl-1-β-arrestin2-JNK3 signaling module, Dvl-1 phosphorylation and JNK3 activation. Activated JNK3 could phosphorylate the transcription factor c-Jun, prompt caspase-3 activation and ultimately lead to neuronal cell death. To further explore specifically Wnt5a mediated JNK3 pathway activation in neuronal injury, we used Foxy-5 (a peptide that mimics the effects of Wnt5a) and Box5 (a Wnt5a antagonist) both in vitro and in vivo. AS-β-arrestin2 (an antisense oligonucleotide against β-arrestin2) and RRSLHL (a small peptide that competes with β-arrestin2 for binding to JNK3) were applied to confirm the positive signal transduction effect of the Dvl-1-β-arrestin2-JNK3 signaling module during cerebral I/R. Furthermore, Box5 and the RRSLHL peptide were found to play protective roles in neuronal death both in vivo global and focal cerebral I/R rat models and in vitro oxygen glucose deprivation (OGD) neural cells. In summary, our results indicate that Wnt5a-mediated JNK3 activation participates in I/R brain injury by targeting the Dvl-1-β-arrestin2/JNK3 interaction. Our results also point to the possibility that disrupting Wnt5a-JNK3 signaling pathway may provide a new approach for stroke therapy.
Collapse
Affiliation(s)
- Xuewen Wei
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - JuanJuan Gong
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Juyun Ma
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Taiyu Zhang
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yihang Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
26
|
Zheng M, Chen R, Chen H, Zhang Y, Chen J, Lin P, Lan Q, Yuan Q, Lai Y, Jiang X, Pan X, Liu N. Netrin-1 Promotes Synaptic Formation and Axonal Regeneration via JNK1/c-Jun Pathway after the Middle Cerebral Artery Occlusion. Front Cell Neurosci 2018; 12:13. [PMID: 29487502 PMCID: PMC5816818 DOI: 10.3389/fncel.2018.00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
As a secreted axon guidance molecule, Netrin-1 has been documented to be a neuroprotective factor, which can reduce infarct volume, promote angiogenesis and anti-apoptosis after stroke in rodents. However, its role in axonal regeneration and synaptic formation after cerebral ischemic injury, and the related underlying mechanisms remain blurred. In this study, we used Adeno-associated vectors carrying Netrin-1 gene (AAV-NT-1) to up-regulate the expression level of Netrin-1 in rats’ brain after middle cerebral artery occlusion (MCAO). We found that the up-regulated level of Netrin-1 and its receptor DCC promoted axonal regeneration and synaptic formation; the overexpression of Netrin-1 activated the JNK1 signaling pathway; these effects were partially reduced when JNK1 signaling pathway was inhibited by SP600125 (JNK specific inhibitor). Taken together, these findings suggest that Netrin-1 can facilitate the synaptic formation and axonal regeneration via the JNK1 signaling pathway after cerebral ischemia, thus promoting the recovery of neural functions.
Collapse
Affiliation(s)
- Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
27
|
Roux M, Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics 2017; 9:1326-1351. [DOI: 10.1039/c7mt00203c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal ions are critical to a wide range of biological processes.
Collapse
Affiliation(s)
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory
- School of Earth & Environmental Sciences
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
28
|
Vuong TA, Leem YE, Kim BG, Cho H, Lee SJ, Bae GU, Kang JS. A Sonic hedgehog coreceptor, BOC regulates neuronal differentiation and neurite outgrowth via interaction with ABL and JNK activation. Cell Signal 2016; 30:30-40. [PMID: 27871935 DOI: 10.1016/j.cellsig.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Neurite outgrowth is a critical step for neurogenesis and remodeling synaptic circuitry during neuronal development and regeneration. An immunoglobulin superfamily member, BOC functions as Sonic hedgehog (Shh) coreceptor in canonical and noncanonical Shh signaling in neuronal development and axon outgrowth/guidance. However signaling mechanisms responsible for BOC action during these processes remain unknown. In our previous studies, a multiprotein complex containing BOC and a closely related protein CDO promotes myogenic differentiation through activation of multiple signaling pathways, including non-receptor tyrosine kinase ABL. Given that ABL and Jun. N-terminal kinase (JNK) are implicated in actin cytoskeletal dynamics required for neurogenesis, we investigated the relationship between BOC, ABL and JNK during neuronal differentiation. Here, we demonstrate that BOC and ABL are induced in P19 embryonal carcinoma (EC) cells and cortical neural progenitor cells (NPCs) during neuronal differentiation. BOC-depleted EC cells or Boc-/- NPCs exhibit impaired neuronal differentiation with shorter neurite formation. BOC interacts with ABL through its putative SH2 binding domain and seems to be phosphorylated in an ABL activity-dependent manner. Unlike wildtype BOC, ABL-binding defective BOC mutants exhibit impaired JNK activation and neuronal differentiation. Finally, Shh treatment enhances JNK activation which is diminished by BOC depletion. These data suggest that BOC interacts with ABL and activates JNK thereby promoting neuronal differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Bok-Geon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea.
| |
Collapse
|
29
|
Moretti M, Budni J, Ribeiro CM, Rieger DK, Leal RB, Rodrigues ALS. Subchronic administration of ascorbic acid elicits antidepressant-like effect and modulates cell survival signaling pathways in mice. J Nutr Biochem 2016; 38:50-56. [PMID: 27721116 DOI: 10.1016/j.jnutbio.2016.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
In this study, we examined the ability of subchronic ascorbic acid administration to produce an antidepressant-like effect in the mouse tail suspension test (TST). Moreover, we investigated the effect of this vitamin on hippocampal and cerebrocortical brain-derived neurotrophic factor (BDNF) immunocontent, phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK), p38MAPK and c-Jun. N-terminal kinase (JNK). Fluoxetine (10 mg/kg, positive control, po) or ascorbic acid (0.1 and 1 mg/kg, po), administered once daily for 21 days, produced a significant antidepressant-like effect in the TST. The significant effects obtained in protein immunocontents were: administration of ascorbic acid at 1 mg/kg induced an increase in AKT phosphorylation in cerebral cortex of mice. Ascorbic acid treatment (1 mg/kg), similar to fluoxetine, decreased hippocampal p38MAPK but did not alter ERK or JNK phosphorylation. These results extend the data about the antidepressant-like effect of ascorbic acid by exploring, for the first time, the intracellular pathways involved in its antidepressant properties after subchronic administration.
Collapse
Affiliation(s)
- Morgana Moretti
- Post-Graduate Nutrition Program, Center of Health Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil.
| | - Josiane Budni
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC, Brazil
| | - Camille Mertins Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Débora Kurrle Rieger
- Department of Nutrition, Center of Health Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Rodrigo Bainy Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
30
|
Neuroprotective and Neurorestorative Processes after Spinal Cord Injury: The Case of the Bulbospinal Respiratory Neurons. Neural Plast 2016; 2016:7692602. [PMID: 27563469 PMCID: PMC4987469 DOI: 10.1155/2016/7692602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
High cervical spinal cord injuries interrupt the bulbospinal respiratory pathways projecting to the cervical phrenic motoneurons resulting in important respiratory defects. In the case of a lateralized injury that maintains the respiratory drive on the opposite side, a partial recovery of the ipsilateral respiratory function occurs spontaneously over time, as observed in animal models. The rodent respiratory system is therefore a relevant model to investigate the neuroplastic and neuroprotective mechanisms that will trigger such phrenic motoneurons reactivation by supraspinal pathways. Since part of this recovery is dependent on the damaged side of the spinal cord, the present review highlights our current understanding of the anatomical neuroplasticity processes that are developed by the surviving damaged bulbospinal neurons, notably axonal sprouting and rerouting. Such anatomical neuroplasticity relies also on coordinated molecular mechanisms at the level of the axotomized bulbospinal neurons that will promote both neuroprotection and axon growth.
Collapse
|
31
|
17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms. J Neurosci 2016; 36:3309-21. [PMID: 26985039 DOI: 10.1523/jneurosci.0257-15.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female mice. Although GPER activation did enhance object recognition and spatial memory, it did so by activating different cell-signaling mechanisms from ERα, ERβ, or 17β-estradiol. These data indicate that 17β-estradiol and GPER independently regulate hippocampal memory, and suggest that hippocampal GPER may not function as an estrogen receptor in the dorsal hippocampus. These findings are significant because they provide novel insights about the molecular mechanisms through which 17β-estradiol modulates hippocampal memory.
Collapse
|
32
|
Cai C, Lin J, Sun S, He Y. JNK Inhibition Inhibits Lateral Line Neuromast Hair Cell Development. Front Cell Neurosci 2016; 10:19. [PMID: 26903805 PMCID: PMC4742541 DOI: 10.3389/fncel.2016.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
JNK signaling is known to play a role in regulating cell behaviors such as cell cycle progression, cell proliferation, and apoptosis, and recent studies have suggested important roles for JNK signaling in embryonic development. However, the precise function of JNK signaling in hair cell development remains poorly studied. In this study, we used the small molecule JNK inhibitor SP600125 to examine the effect of JNK signaling abrogation on the development of hair cells in the zebrafish lateral line neuromast. Our results showed that SP600125 reduced the numbers of both hair cells and supporting cells in neuromasts during larval development in a dose-dependent manner. Additionally, JNK inhibition strongly inhibited the proliferation of neuromast cells, which likely explains the decrease in the number of differentiated hair cells in inhibitor-treated larvae. Furthermore, western blot and in situ analysis showed that JNK inhibition induced cell cycle arrest through induction of p21 expression. We also showed that SP600125 induced cell death in developing neuromasts as measured by cleaved caspase-3 immunohistochemistry, and this was accompanied with an induction of p53 gene expression. Together these results indicate that JNK might be an important regulator in the development of hair cells in the lateral line in zebrafish by controlling both cell cycle progression and apoptosis.
Collapse
Affiliation(s)
- Chengfu Cai
- Department of Otolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Xiamen UniversityXiamen, Fujian, China
| | - Jinchao Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Yingzi He
- Department of Otolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; Research Center, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| |
Collapse
|
33
|
L-DOPA modulates cell viability through the ERK-c-Jun system in PC12 and dopaminergic neuronal cells. Neuropharmacology 2016; 101:87-97. [DOI: 10.1016/j.neuropharm.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 01/20/2023]
|
34
|
Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease. Front Pharmacol 2016; 6:321. [PMID: 26793112 PMCID: PMC4709475 DOI: 10.3389/fphar.2015.00321] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/28/2015] [Indexed: 01/08/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death, and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or Aβ peptides. Altogether, JNKs have become a focus of screening strategies searching for new therapeutic approaches to diabetes, cancer or liver diseases. In addition, activation of JNK has been identified as a key element responsible for the regulation of apoptosis signals and therefore, it is critical for pathological cell death associated with neurodegenerative diseases and, among them, with Alzheimer’s disease (AD). In addition, in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK’s, particularly JNK3, not only enhance Aβ production, moreover it plays a key role in the maturation and development of neurofibrillary tangles. This review aims to explain the rationale behind testing therapies based on inhibition of JNK signaling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Ramon Yarza
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Silvia Vela
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| | - Maria J Ramirez
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| |
Collapse
|
35
|
Zhu XJ, Liu Y, Yuan X, Wang M, Zhao W, Yang X, Zhang X, Hsu W, Qiu M, Zhang Z, Zhang Z. Ectodermal Wnt controls nasal pit morphogenesis through modulation of the BMP/FGF/JNK signaling axis. Dev Dyn 2016; 245:414-26. [PMID: 26661618 DOI: 10.1002/dvdy.24376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mutations of WNT3, WNT5A, WNT9B, and WNT11 genes are associated with orofacial birth defects, including nonsyndromic cleft lip with cleft palate in humans. However, the source of Wnt ligands and their signaling effects on the orofacial morphogenetic process remain elusive. RESULTS Using Foxg1-Cre to impair Wnt secretion through the inactivation of Gpr177/mWls, we investigate the relevant regulation of Wnt production and signaling in nasal-facial development. Ectodermal ablation of Gpr177 leads to severe facial deformities resulting from dramatically reduced cell proliferation and increased cell death due to a combined loss of WNT, FGF and BMP signaling in the developing facial prominence. In the invaginating nasal pit, the Gpr177 disruption also causes a detrimental effect on migration of the olfactory epithelial cells into the mesenchymal region. The blockage of Wnt secretion apparently impairs the olfactory epithelial cells through modulation of JNK signaling. CONCLUSIONS Our study thus suggests the head ectoderm, including the facial ectoderm and the neuroectoderm, as the source of canonical as well as noncanonical Wnt ligands during early development of the nasal-facial prominence. Both β-catenin-dependent and -independent signaling pathways are required for proper development of these morphogenetic processes.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Yudong Liu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xueyan Yuan
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Min Wang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Wanxin Zhao
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xueqin Yang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xiaoyun Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Ze Zhang
- Department of Ophthalmology, Tulane University Medical center, New Orleans, Louisiana
| | - Zunyi Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
36
|
Costa AP, Lopes MW, Rieger DK, Barbosa SGR, Gonçalves FM, Xikota JC, Walz R, Leal RB. Differential Activation of Mitogen-Activated Protein Kinases, ERK 1/2, p38(MAPK) and JNK p54/p46 During Postnatal Development of Rat Hippocampus. Neurochem Res 2015; 41:1160-9. [PMID: 26700434 DOI: 10.1007/s11064-015-1810-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38(MAPK), ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38(MAPK) at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38(MAPK) during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38(MAPK) are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus.
Collapse
Affiliation(s)
- Ana Paula Costa
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Mark William Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Débora K Rieger
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Sabrina Giovana Rocha Barbosa
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Filipe Marques Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - João Carlos Xikota
- Departamento de Pediatria, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Roger Walz
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Departamento de Clínica Médica, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Rodrigo B Leal
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
37
|
Lezana JP, Dagan SY, Robinson A, Goldstein RS, Fainzilber M, Bronfman FC, Bronfman M. Axonal PPARγ promotes neuronal regeneration after injury. Dev Neurobiol 2015; 76:688-701. [PMID: 26446277 DOI: 10.1002/dneu.22353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/15/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022]
Abstract
PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries.
Collapse
Affiliation(s)
- Juan Pablo Lezana
- Department of Physiology, Millenium Nucleus in Regenerative Biology (MINREB) and CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile.,Department of Cellular and Molecular Biology, CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Shachar Y Dagan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ari Robinson
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Francisca C Bronfman
- Department of Physiology, Millenium Nucleus in Regenerative Biology (MINREB) and CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Miguel Bronfman
- Department of Cellular and Molecular Biology, CARE Center, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
38
|
NKCC1 Activation Is Required for Myelinated Sensory Neurons Regeneration through JNK-Dependent Pathway. J Neurosci 2015; 35:7414-27. [PMID: 25972170 DOI: 10.1523/jneurosci.4079-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After peripheral nerve injury, axons are able to regenerate, although specific sensory reinnervation and functional recovery are usually worse for large myelinated than for small sensory axons. The mechanisms that mediate the regeneration of different sensory neuron subpopulations are poorly known. The Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) is particularly relevant in setting the intracellular chloride concentration. After axotomy, increased NKCC1 phosphorylation has been reported to be important for neurite outgrowth of sensory neurons; however, the mechanisms underlying its effects are still unknown. In the present study we used in vitro and in vivo models to assess the differential effects of blocking NKCC1 activity on the regeneration of different types of dorsal root ganglia (DRGs) neurons after sciatic nerve injury in the rat. We observed that blocking NKCC1 activity by bumetanide administration induces a selective effect on neurite outgrowth and regeneration of myelinated fibers without affecting unmyelinated DRG neurons. To further study the mechanism underlying NKCC1 effects, we also assessed the changes in mitogen-activated protein kinase (MAPK) signaling under NKCC1 modulation. The inhibition of NKCC1 activity in vitro and in vivo modified pJNK1/2/3 expression in DRG neurons. Together, our study identifies a mechanism selectively contributing to myelinated axon regeneration, and point out the role of Cl(-) modulation in DRG neuron regeneration and in the activation of MAPKs, particularly those belonging to the JNK family.
Collapse
|
39
|
Lu W, Lakonishok M, Gelfand VI. Kinesin-1-powered microtubule sliding initiates axonal regeneration in Drosophila cultured neurons. Mol Biol Cell 2015; 26:1296-307. [PMID: 25657321 PMCID: PMC4454177 DOI: 10.1091/mbc.e14-10-1423] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule sliding drives initial axon regeneration in Drosophila neurons. Axotomy leads to fast calcium influx and subsequent microtubule reorganization. Kinesin-1 heavy chain drives the sliding of antiparallel microtubules to power axonal regrowth, and the JNK pathway promotes axonal regeneration by enhancing microtubule sliding. Understanding the mechanism underlying axon regeneration is of great practical importance for developing therapeutic treatment for traumatic brain and spinal cord injuries. Dramatic cytoskeleton reorganization occurs at the injury site, and microtubules have been implicated in the regeneration process. Previously we demonstrated that microtubule sliding by conventional kinesin (kinesin-1) is required for initiation of neurite outgrowth in Drosophila embryonic neurons and that sliding is developmentally down-regulated when neurite outgrowth is completed. Here we report that mechanical axotomy of Drosophila neurons in culture triggers axonal regeneration and regrowth. Regenerating neurons contain actively sliding microtubules; this sliding, like sliding during initial neurite outgrowth, is driven by kinesin-1 and is required for axonal regeneration. The injury induces a fast spike of calcium, depolymerization of microtubules near the injury site, and subsequent formation of local new microtubule arrays with mixed polarity. These events are required for reactivation of microtubule sliding at the initial stages of regeneration. Furthermore, the c-Jun N-terminal kinase pathway promotes regeneration by enhancing microtubule sliding in injured mature neurons.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
40
|
Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 2014; 34:13222-33. [PMID: 25253866 DOI: 10.1523/jneurosci.1209-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.
Collapse
|
41
|
Sury MD, McShane E, Hernandez-Miranda LR, Birchmeier C, Selbach M. Quantitative proteomics reveals dynamic interaction of c-Jun N-terminal kinase (JNK) with RNA transport granule proteins splicing factor proline- and glutamine-rich (Sfpq) and non-POU domain-containing octamer-binding protein (Nono) during neuronal differentiation. Mol Cell Proteomics 2014; 14:50-65. [PMID: 25326457 DOI: 10.1074/mcp.m114.039370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) is an important mediator of physiological and pathophysiological processes in the central nervous system. Importantly, JNK not only is involved in neuronal cell death, but also plays a significant role in neuronal differentiation and regeneration. For example, nerve growth factor induces JNK-dependent neuronal differentiation in several model systems. The mechanism by which JNK mediates neuronal differentiation is not well understood. Here, we employed a proteomic strategy to better characterize the function of JNK during neuronal differentiation. We used SILAC-based quantitative proteomics to identify proteins that interact with JNK in PC12 cells in a nerve growth factor-dependent manner. Intriguingly, we found that JNK interacted with neuronal transport granule proteins such as Sfpq and Nono upon NGF treatment. We validated the specificity of these interactions by showing that they were disrupted by a specific peptide inhibitor that blocks the interaction of JNK with its substrates. Immunoprecipitation and Western blotting experiments confirmed the interaction of JNK1 with Sfpq/Nono and demonstrated that it was RNA dependent. Confocal microscopy indicated that JNK1 associated with neuronal granule proteins in the cytosol of PC12 cells, primary cortical neurons, and P19 neuronal cells. Finally, siRNA experiments confirmed that Sfpq was necessary for neurite outgrowth in PC12 cells and that it most likely acted in the same pathway as JNK. In summary, our data indicate that the interaction of JNK1 with transport granule proteins in the cytosol of differentiating neurons plays an important role during neuronal development.
Collapse
Affiliation(s)
- Matthias D Sury
- From ‡Cell Signaling/Mass Spectrometry, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Erik McShane
- From ‡Cell Signaling/Mass Spectrometry, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Luis Rodrigo Hernandez-Miranda
- §Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Carmen Birchmeier
- §Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Selbach
- From ‡Cell Signaling/Mass Spectrometry, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany;
| |
Collapse
|
42
|
Ben J, de Oliveira PA, Gonçalves FM, Peres TV, Matheus FC, Hoeller AA, Leal RB, Walz R, Prediger RD. Effects of Pentylenetetrazole Kindling on Mitogen-Activated Protein Kinases Levels in Neocortex and Hippocampus of Mice. Neurochem Res 2014; 39:2492-500. [DOI: 10.1007/s11064-014-1453-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
43
|
|
44
|
Yuan Q, Su H, Guo J, Wu W, Lin ZX. Induction of phosphorylated c-Jun in neonatal spinal motoneurons after axonal injury is coincident with both motoneuron death and regeneration. J Anat 2014; 224:575-82. [PMID: 24506149 DOI: 10.1111/joa.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 01/23/2023] Open
Abstract
c-Jun activation has been implicated not only in neuronal degeneration, but also in survival and regeneration. Here, we investigated c-Jun activation in injured motoneurons by using a nerve crush model in neonatal rats. We identified two distinct subpopulations of motoneurons: about 60% underwent degeneration following injury whereas the remaining 40% survived and induced a regeneration response at 3 weeks post injury. However, all motoneurons examined expressed phosphorylated-c-Jun-immunoreactivity (p-c-Jun-IR) at the early stage of 3 days following injury. These results suggest that active c-Jun was induced in all neonatal motoneurons following nerve crush injury, regardless of whether they were destined to degenerate or undergo successful regeneration at a later stage. Our findings therefore support the hypothesis that active c-Jun is involved in both neuronal degeneration and regeneration.
Collapse
Affiliation(s)
- Qiuju Yuan
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomy, University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
45
|
The Impact of JNK on Neuronal Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:37-57. [DOI: 10.1007/978-94-007-7687-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism. J Neurosci 2013; 33:14666-80. [PMID: 24027268 DOI: 10.1523/jneurosci.4821-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) mediates cell signaling essential for axon outgrowth, but the associated substrates and underlying mechanisms are poorly understood. We identified in Xenopus laevis embryos a novel posttranscriptional mechanism whereby JNK regulates axonogenesis by phosphorylating a specific site on heterogeneous nuclear ribonucleoprotein K (hnRNP K). Both JNK inhibition and hnRNP K knockdown inhibited axon outgrowth and translation of hnRNP K-regulated cytoskeletal RNAs (tau and neurofilament medium), effects that were alleviated by expressing phosphomimetic, but not phosphodeficient, forms of hnRNP K. Immunohistochemical and biochemical analyses indicated that JNK phosphorylation of hnRNP K occurred within the cytoplasm and was necessary for the translational initiation of hnRNP K-targeted RNAs but not for hnRNP K intracellular localization or RNA binding. Thus, in addition to its known roles in transcription and cytoskeletal organization, JNK acts posttranscriptionally through hnRNP K to regulate translation of proteins crucial for axonogenesis.
Collapse
|
47
|
Reddy CE, Albanito L, De Marco P, Aiello D, Maggiolini M, Napoli A, Musti AM. Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons. Cell Death Dis 2013; 4:e852. [PMID: 24113186 PMCID: PMC3824690 DOI: 10.1038/cddis.2013.381] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 02/07/2023]
Abstract
Cerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation is a model of election to study the interplay of pro-apoptotic and pro-survival signaling pathways in neuronal cell death. In this model, the c-Jun N-terminal kinase (JNK) induces pro-apoptotic genes through the c-Jun/activator protein 1 (AP-1) transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/AP-1 target genes without interfering with JNK activity. Yet, the mechanism by which lithium inhibits c-Jun activity remains to be elucidated. Here, we used this model system to study the regulation and function of site-specific c-Jun phosphorylation at the S63 and T91/T93 JNK sites in neuronal cell death. We found that TK-deprivation led to c-Jun multiphosphorylation at all three JNK sites. However, immunofluorescence analysis of c-Jun phosphorylation at single cell level revealed that the S63 site was phosphorylated in all c-Jun-expressing cells, whereas the response of T91/T93 phosphorylation was more sensitive, mirroring the switch-like apoptotic response of CGCs. Conversely, lithium prevented T91T93 phosphorylation and cell death without affecting the S63 site, suggesting that T91T93 phosphorylation triggers c-Jun pro-apoptotic activity. Accordingly, a c-Jun mutant lacking the T95 priming site for T91/93 phosphorylation protected CGCs from apoptosis, whereas it was able to induce neurite outgrowth in PC12 cells. Vice versa, a c-Jun mutant bearing aspartate substitution of T95 overwhelmed lithium-mediate protection of CGCs from TK-deprivation, validating that inhibition of T91/T93/T95 phosphorylation underlies the effect of lithium on cell death. Mass spectrometry analysis confirmed multiphosphorylation of c-Jun at T91/T93/T95 in cells. Moreover, JNK phosphorylated recombinant c-Jun at T91/T93 in a T95-dependent manner. On the basis of our results, we propose that T91/T93/T95 multiphosphorylation of c-Jun functions as a sensitivity amplifier of the JNK cascade, setting the threshold for c-Jun pro-apoptotic activity in neuronal cells.
Collapse
Affiliation(s)
- C E Reddy
- Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Knockout of c-Jun N-terminal kinases 1, 2 or 3 isoforms induces behavioural changes. Behav Brain Res 2013; 245:88-95. [DOI: 10.1016/j.bbr.2013.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/19/2022]
|
49
|
Sun T, Yu N, Zhai LK, Li N, Zhang C, Zhou L, Huang Z, Jiang XY, Shen Y, Chen ZY. c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) regulates neuronal axon elongation in a kinesin- and JNK-dependent manner. J Biol Chem 2013; 288:14531-14543. [PMID: 23576431 DOI: 10.1074/jbc.m113.464453] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of neuronal polarity is essential for the establishment of the accurate patterning of neuronal circuits in the brain. However, little is known about the underlying molecular mechanisms that control rapid axon elongation during neuronal development. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed at axon tips during the critical period for axon development. Using gain- and loss-of-function approaches, immunofluorescence analysis, and in utero electroporation, we find that JIP3 can enhance axon elongation in primary hippocampal neurons and cortical neurons in vivo. We further demonstrate that JIP3 promotes axon elongation in a kinesin- and JNK-dependent manner using several deletion mutants of JIP3. Next, we demonstrate that the successful transportation of JIP3 to axon tips by kinesin is a prerequisite for enhancing JNK phosphorylation in this area and therefore promotes axon elongation, constituting a novel mechanism for coupling JIP3 anterograde transport with JNK signaling at the distal axons and axon elongation. Finally, our immunofluorescence data suggest that the activation of JNK at axon tips facilitates axon elongation by modulating cofilin activity and actin filament dynamics. These findings may have important implications for our understanding of neuronal axon elongation during development.
Collapse
Affiliation(s)
- Tao Sun
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Nuo Yu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Lu-Kai Zhai
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Na Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Chao Zhang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012
| | - Liang Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058
| | - Zhuo Huang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing-Yu Jiang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 4 Wenhua Xi Road, Jinan, Shandong 250012.
| |
Collapse
|
50
|
Rallis A, Lu B, Ng J. Molecular chaperones protect against JNK- and Nmnat-regulated axon degeneration in Drosophila. J Cell Sci 2012; 126:838-49. [PMID: 23264732 DOI: 10.1242/jcs.117259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Axon degeneration is observed at the early stages of many neurodegenerative conditions and this often leads to subsequent neuronal loss. We previously showed that inactivating the c-Jun N-terminal kinase (JNK) pathway leads to axon degeneration in Drosophila mushroom body (MB) neurons. To understand this process, we screened candidate suppressor genes and found that the Wallerian degeneration slow (Wld(S)) protein blocked JNK axonal degeneration. Although the nicotinamide mononucleotide adenylyltransferase (Nmnat1) portion of Wld(S) is required, we found that its nicotinamide adenine dinucleotide (NAD(+)) enzyme activity and the Wld(S) N-terminus (N70) are dispensable, unlike axotomy models of neurodegeneration. We suggest that Wld(S)-Nmnat protects against axonal degeneration through chaperone activity. Furthermore, ectopically expressed heat shock proteins (Hsp26 and Hsp70) also protected against JNK and Nmnat degeneration phenotypes. These results suggest that molecular chaperones are key in JNK- and Nmnat-regulated axonal protective functions.
Collapse
Affiliation(s)
- Andrew Rallis
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|