1
|
Kleinerova J, McKenna MC, Finnegan M, Tacheva A, Garcia-Gallardo A, Mohammed R, Tan EL, Christidi F, Hardiman O, Hutchinson S, Bede P. Clinical, Cortical, Subcortical, and White Matter Features of Right Temporal Variant FTD. Brain Sci 2024; 14:806. [PMID: 39199498 PMCID: PMC11352857 DOI: 10.3390/brainsci14080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The distinct clinical and radiological characteristics of right temporal variant FTD have only been recently recognized. METHODS Eight patients with right temporal variant FTD were prospectively recruited and underwent a standardised neuropsychological assessment, clinical MRI, and quantitative neuroimaging. RESULTS Our voxelwise grey analyses captured bilateral anterior and mesial temporal grey matter atrophy with a clear right-sided predominance. Bilateral hippocampal involvement was also observed, as well as disease burden in the right insular and opercula regions. White matter integrity alterations were also bilateral in anterior temporal and sub-insular regions with a clear right-hemispheric predominance. Extra-temporal white matter alterations have also been observed in orbitofrontal and parietal regions. Significant bilateral but right-predominant thalamus, putamen, hippocampus, and amygdala atrophy was identified based on subcortical segmentation. The clinical profile of our patients was dominated by progressive indifference, decline in motivation, loss of interest in previously cherished activities, incremental social withdrawal, difficulty recognising people, progressive language deficits, increasingly rigid routines, and repetitive behaviours. CONCLUSIONS Right temporal variant FTD has an insidious onset and may be mistaken for depression at symptom onset. It manifests in a combination of apathy, language, and behavioural features. Quantitative MR imaging captures a characteristic bilateral but right-predominant temporal imaging signature with extra-temporal frontal and parietal involvement.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Martha Finnegan
- Department of Psychiatry, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Rayan Mohammed
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
2
|
Hippocampal Metabolic Alterations in Amyotrophic Lateral Sclerosis: A Magnetic Resonance Spectroscopy Study. Life (Basel) 2023; 13:life13020571. [PMID: 36836928 PMCID: PMC9965919 DOI: 10.3390/life13020571] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) has been overwhelmingly applied to motor regions to date and our understanding of frontotemporal metabolic signatures is relatively limited. The association between metabolic alterations and cognitive performance in also poorly characterised. MATERIAL AND METHODS In a multimodal, prospective pilot study, the structural, metabolic, and diffusivity profile of the hippocampus was systematically evaluated in patients with ALS. Patients underwent careful clinical and neurocognitive assessments. All patients were non-demented and exhibited normal memory performance. 1H-MRS spectra of the right and left hippocampi were acquired at 3.0T to determine the concentration of a panel of metabolites. The imaging protocol also included high-resolution T1-weighted structural imaging for subsequent hippocampal grey matter (GM) analyses and diffusion tensor imaging (DTI) for the tractographic evaluation of the integrity of the hippocampal perforant pathway zone (PPZ). RESULTS ALS patients exhibited higher hippocampal tNAA, tNAA/tCr and tCho bilaterally, despite the absence of volumetric and PPZ diffusivity differences between the two groups. Furthermore, superior memory performance was associated with higher hippocampal tNAA/tCr bilaterally. Both longer symptom duration and greater functional disability correlated with higher tCho levels. CONCLUSION Hippocampal 1H-MRS may not only contribute to a better academic understanding of extra-motor disease burden in ALS, but given its sensitive correlations with validated clinical metrics, it may serve as practical biomarker for future clinical and clinical trial applications. Neuroimaging protocols in ALS should incorporate MRS in addition to standard structural, functional, and diffusion sequences.
Collapse
|
3
|
McKenna MC, Tahedl M, Murad A, Lope J, Hardiman O, Hutchinson S, Bede P. White matter microstructure alterations in frontotemporal dementia: Phenotype-associated signatures and single-subject interpretation. Brain Behav 2022; 12:e2500. [PMID: 35072974 PMCID: PMC8865163 DOI: 10.1002/brb3.2500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Frontotemporal dementias (FTD) include a genetically heterogeneous group of conditions with distinctive molecular, radiological and clinical features. The majority of radiology studies in FTD compare FTD subgroups to healthy controls to describe phenotype- or genotype-associated imaging signatures. While the characterization of group-specific imaging traits is academically important, the priority of clinical imaging is the meaningful interpretation of individual datasets. METHODS To demonstrate the feasibility of single-subject magnetic resonance imaging (MRI) interpretation, we have evaluated the white matter profile of 60 patients across the clinical spectrum of FTD. A z-score-based approach was implemented, where the diffusivity metrics of individual patients were appraised with reference to demographically matched healthy controls. Fifty white matter tracts were systematically evaluated in each subject with reference to normative data. RESULTS The z-score-based approach successfully detected white matter pathology in single subjects, and group-level inferences were analogous to the outputs of standard track-based spatial statistics. CONCLUSIONS Our findings suggest that it is possible to meaningfully evaluate the diffusion profile of single FTD patients if large normative datasets are available. In contrast to the visual review of FLAIR and T2-weighted images, computational imaging offers objective, quantitative insights into white matter integrity changes even at single-subject level.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Geser F, Mitrovics TCG, Haybaeck J, Yilmazer-Hanke D. Premorbid de novo artistic creativity in frontotemporal dementia (FTD) syndromes. J Neural Transm (Vienna) 2021; 128:1813-1833. [PMID: 34618237 DOI: 10.1007/s00702-021-02426-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022]
Abstract
The emergence of new artistic activities or shifts in artistic style in patients with frontotemporal dementia (FTD) syndromes is well documented at or after disease onset. However, a closer look in the literature reveals emerging artistic creativity also before FTD onset, although the significance and underlying pathology of such creative endeavors remain elusive. Here, we systematically review relevant studies and report an additional FTD case to elaborate on artistic activities that developed years before disease manifestation by paying particular attention to the sequence of events in individual patients' biography and clinical history. We further discuss the FTD patient's creative activities in the context of their life events, other initial or "premorbid" dementia symptoms or risk factors described in the literature such as mental illness and mild behavioral impairment (MBI), as well as changes in neuronal systems (i.e., neuroimaging and neuropathology). In addition to our FTD patient, we identified five published cases with an FTD syndrome, including three with FTD, one with primary progressive aphasia (PPA), and one with the behavioral variant of PPA (bvPPA). Premorbid novel creativity emerged across different domains (visual, musical, writing), with the FTD diagnosis ensuing artistic productivity by a median of 8 years. Data on late-life and pre-dementia life events were available in four cases. The late creative phase in our case was accompanied by personality changes, accentuation of personality traits, and cessation of painting activities occurred with the onset of memory complaints. Thus, premorbid personality changes in FTD patients can be associated with de novo creative activity. Stressful life events may also contribute to the burgeoning of creativity. Moreover, primary neocortical areas that are largely spared by pathology at early FTD stages may facilitate the engagement in artistic activities, offering a window of opportunity for art therapy and other therapeutic interventions during the MBI stage or even earlier.
Collapse
Affiliation(s)
- Felix Geser
- Department of Geriatric Psychiatry, Klinikum Christophsbad, Faurndauer Str. 6-28, 73035, Göppingen, Germany.
| | - Tibor C G Mitrovics
- Department of Radiology and Neuroradiology, Klinikum Christophsbad, Göppingen, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria.,Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Department of Neurology, University Hospital, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Ren Y, Li S, Chen S, Sun X, Yang F, Wang H, Li M, Cui F, Huang X. TDP-43 and Phosphorylated TDP-43 Levels in Paired Plasma and CSF Samples in Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:663637. [PMID: 34194383 PMCID: PMC8236522 DOI: 10.3389/fneur.2021.663637] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to measure both plasma and cerebrospinal fluid (CSF) TAR DNA-binding protein 43 (TDP-43) and phosphorylated TDP-43 (pTDP-43) levels in sporadic amyotrophic lateral sclerosis (sALS) patients, and to compare them with that of healthy controls. The correlation between plasma or CSF TDP-43/pTDP-43 and clinical indicators of ALS patients was assessed. Methods: Paired plasma and CSF TDP-43/pTDP-43 levels in 69 ALS patients and 59 healthy controls were measured by sandwich ELISA. Time to generalization (TTG), an indicator suggested that the time of symptoms spreading from spinal or bulbar localization to both, was evaluated in all patients screened for mutations in genes associated with ALS. Results: Both of the plasma TDP-43 and pTDP-43 levels were significantly higher in ALS patients than HCs (P < 0.001). The pTDP-43/TDP-43 ratios in plasma were significantly higher in HCs than ALS patients (P < 0.001). The area under the curve (AUC) value was 0.924 for plasma TDP-43 level, with a 91.3% sensitivity and 91.5% specificity. Moreover, the correlation between plasma and CSF TDP-43 was observed in each ALS patient (r = 0.195, P = 0.027). A correlation between CSF pTDP-43 levels and the ALSFRS-R (r = -0.245; P = 0.042) was established. A correlation was observed between plasma TDP-43 levels and TTG in ALS patients, which indicated that high levels of plasma TDP-43 correlated with prolonged TTG (r = 0.415; P = 0.004). Conclusion: The plasma TDP-43 and pTDP-43 levels might play an important role in diagnosis in the future study of ALS. The plasma TDP-43 might differentiate ALS and HC groups based on high sensitivity and specificity, and as an indicator of progression of disease.
Collapse
Affiliation(s)
- Yuting Ren
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siyuan Li
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siyu Chen
- Department of Geriatric Neurology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaosun Sun
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Tianjin Third Central Hospital, Tianjin, China
| | - Fei Yang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fang Cui
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Geser F, Jellinger KA, Fellner L, Wenning GK, Yilmazer-Hanke D, Haybaeck J. Emergent creativity in frontotemporal dementia. J Neural Transm (Vienna) 2021; 128:279-293. [PMID: 33709181 DOI: 10.1007/s00702-021-02325-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Numerous papers report on connections between creative work and dementing illness, particularly in frontotemporal dementia (FTD), which may combine with motor neuron disease (FTD-MND). However, the emergence of FTD(-MND) patients' de novo artistic activities is rarely reported and underappreciated. Therefore, the present review summarizes relevant case studies' outcomes, capturing creativity's multifaceted nature. Here, we systematically searched for case reports by paying particular attention to the chronological development of individual patients' clinical symptoms, signs, and life events. We synoptically compared the various art domains to the pattern of brain atrophy, the clinical and pathological FTD subtypes. 22 FTD(-MND) patients were identified with creativity occurring either at the same time (41%) or starting after the disease onset (59%); the median lag between the first manifestation of disease and the beginning of creativity was two years. In another five patients, novel artistic activity was developed by a median of 8 years before the start of dementia symptoms. Artistic activity usually evolved over time with a peak in performance, followed by a decline that was further hampered by physical impairment during disease progression. Early on, the themes and objects depicted were often concrete and realistic, but they could become more abstract or symbolic at later stages. Emergent artistic processes may occur early on in the disease process. They appear to be a communication of inner life and may also reflect an attempt of compensation or "self-healing". The relative preservation of primary neocortical areas such as the visual, auditory, or motor cortex may enable the development of artistic activity in the face of degeneration of association cortical areas and subcortical, deeper central nervous system structures. It is crucial to understand the differential loss of function and an individual's creative abilities to implement caregiver-guided, personalized therapeutic strategies such as art therapy.
Collapse
Affiliation(s)
- Felix Geser
- Department of Geriatric Psychiatry, Klinikum Christophsbad, Faurndauer Str. 6-28, 73035, Göppingen, Germany.
| | | | - Lisa Fellner
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Deniz Yilmazer-Hanke
- Department of Neurology, Clinical Neuroanatomy, University Hospital, Ulm University, Ulm, Germany
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Ferrer I, Andrés-Benito P, Carmona M, Assialioui A, Povedano M. TDP-43 Vasculopathy in the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis (sALS) and Frontal Cortex in sALS/FTLD-TDP. J Neuropathol Exp Neurol 2021; 80:229-239. [PMID: 33421065 PMCID: PMC7899266 DOI: 10.1093/jnen/nlaa162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum.
Collapse
Affiliation(s)
- Isidro Ferrer
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Andrés-Benito
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Abdelilah Assialioui
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Utrecht, The Netherlands
| |
Collapse
|
8
|
Li Hi Shing S, McKenna MC, Siah WF, Chipika RH, Hardiman O, Bede P. The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging Behav 2021; 15:2693-2719. [PMID: 33398779 DOI: 10.1007/s11682-020-00429-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/14/2023]
Abstract
While C9orf72-specific imaging signatures have been proposed by both ALS and FTD research groups and considerable presymptomatic alterations have also been confirmed in young mutation carriers, considerable inconsistencies exist in the literature. Accordingly, a systematic review of C9orf72-imaging studies has been performed to identify consensus findings, stereotyped shortcomings, and unique contributions to outline future directions. A formal literature review was conducted according to the STROBE guidelines. All identified papers were individually reviewed for sample size, choice of controls, study design, imaging modalities, statistical models, clinical profiling, and identified genotype-associated pathological patterns. A total of 74 imaging papers were systematically reviewed. ALS patients with GGGGCC repeat expansions exhibit relatively limited motor cortex involvement and widespread extra-motor pathology. C9orf72 positive FTD patients often show preferential posterior involvement. Reports of thalamic involvement are relatively consistent across the various phenotypes. Asymptomatic hexanucleotide repeat carriers often exhibit structural and functional changes decades prior to symptom onset. Common shortcomings included sample size limitations, lack of disease-controls, limited clinical profiling, lack of genetic testing in healthy controls, and absence of post mortem validation. There is a striking paucity of longitudinal studies and existing presymptomatic studies have not evaluated the predictive value of radiological changes with regard to age of onset and phenoconversion. With the advent of antisense oligonucleotide therapies, the meticulous characterisation of C9orf72-associated changes has gained practical relevance. Neuroimaging offers non-invasive biomarkers for future clinical trials, presymptomatic ascertainment, diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Geser F, Fellner L, Haybaeck J, Wenning GK. Development of neurodegeneration in amyotrophic lateral sclerosis: from up or down? J Neural Transm (Vienna) 2020; 127:1097-1105. [PMID: 32500222 DOI: 10.1007/s00702-020-02213-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease associated with neurodegeneration and intracellular pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) positive inclusions. The various clinical symptoms, such as motor disorders and cognitive impairment, reflect the degeneration of certain areas of the nervous system. Since the discovery of the significance of pathological TDP-43 for human disease including ALS, there has been an increasing number of studies reporting on the distribution and severity of neurodegeneration. These have rekindled the old debate about whether the first or second motor neuron is the primary site of degeneration in ALS. To shed light on this question, the following is a review of the relevant neuropathological studies.
Collapse
Affiliation(s)
- F Geser
- Department of Neurology, Hegau-Bodensee-Klinikum Singen, Virchowstr. 10, 78224, Singen (Hohentwiel), Germany.
| | - L Fellner
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - J Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuropathology, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - G K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Role of [18F]-FDG PET in patients with atypical parkinsonism associated with dementia. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00360-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Huynh W, Ahmed R, Mahoney CJ, Nguyen C, Tu S, Caga J, Loh P, Lin CSY, Kiernan MC. The impact of cognitive and behavioral impairment in amyotrophic lateral sclerosis. Expert Rev Neurother 2020; 20:281-293. [DOI: 10.1080/14737175.2020.1727740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William Huynh
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Prince of Wales Clinical School, The University of New South Wales, Sydney, Australia
| | - Rebekah Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| | - Colin J. Mahoney
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Chilan Nguyen
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medicine, The University of Notre Dame, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jashelle Caga
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Patricia Loh
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Cindy S-Y Lin
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
12
|
Bede P, Pradat PF. Editorial: Biomarkers and Clinical Indicators in Motor Neuron Disease. Front Neurol 2020; 10:1318. [PMID: 31920939 PMCID: PMC6920250 DOI: 10.3389/fneur.2019.01318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| |
Collapse
|
13
|
Finegan E, Li Hi Shing S, Chipika RH, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Pender N, McLaughlin RL, Hardiman O, Bede P. Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. NEUROIMAGE-CLINICAL 2019; 24:102089. [PMID: 31795059 PMCID: PMC6978214 DOI: 10.1016/j.nicl.2019.102089] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/02/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is a low incidence motor neuron disease which carries a markedly better prognosis than amyotrophic lateral sclerosis (ALS). Despite sporadic reports of extra-motor symptoms, PLS is widely regarded as a pure upper motor neuron disorder. The post mortem literature of PLS is strikingly sparse and very little is known of subcortical grey matter pathology in this condition. METHODS A prospective imaging study was undertaken with 33 PLS patients, 117 healthy controls and 100 ALS patients to specifically assess the integrity of subcortical grey matter structures and determine whether PLS and ALS have divergent thalamic, hippocampal and basal ganglia signatures. Volumetric, morphometric, segmentation and vertex-wise analyses were carried out in the three study groups to evaluate the integrity of thalamus, hippocampus, caudate, amygdala, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated to characterise the involvement of specific subfields. RESULTS Considerable thalamic, caudate, and hippocampal atrophy was detected in PLS based on both volumetric and vertex analyses. Significant volume reductions were also detected in the accumbens nuclei. Hippocampal atrophy in PLS was dominated by dentate gyrus, hippocampal tail and CA4 subfield volume reductions. The morphometric comparison of ALS and PLS cohorts revealed preferential medial bi-thalamic pathology in PLS compared to the predominant putaminal degeneration detected in ALS. Another distinguishing feature between ALS and PLS was the preferential atrophy of the amygdala in ALS. CONCLUSIONS PLS is associated with considerable subcortical grey matter degeneration and due to the extensive extra-motor involvement, it should no longer be regarded a pure upper motor neuron disorder. Given its unique pathological features and a clinical course which differs considerably from ALS, dedicated research studies and disease-specific therapeutic strategies are urgently required in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | | | - Niall Pender
- Department of Psychology, Beaumont Hospital Dublin, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
14
|
Bede P, Chipika RH, Finegan E, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NEUROIMAGE-CLINICAL 2019; 24:102054. [PMID: 31711033 PMCID: PMC6849418 DOI: 10.1016/j.nicl.2019.102054] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
Computational neuroimaging captures focal brainstem pathology in motor neuron diseases in contrast to both healthy- and disease controls. ALS patients exhibit progressive medulla oblongata, pontine and mesencephalic volume loss over time. Brainstem atrophy in ALS and PLS is dominated by medulla oblongata volume reductions. Vertex analyses of ALS patients reveal flattening of the medullary pyramids bilaterally. Morphometric analyses in ALS detect density reductions in the mesencephalic crura consistent with corticospinal tract degeneration.
Background Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement. Methods A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology. Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesencephalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile of each study group and region-of-interest morphometry was used to evaluate focal density alterations. Results ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls. Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density reductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients. Conclus ions: Computational brainstem imaging captures the degeneration of both white and grey matter components in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy. Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Western Health & Social Care Trust, Belfast, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
15
|
Bede P. The histological correlates of imaging metrics: postmortem validation of in vivo findings. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:457-460. [PMID: 31293187 DOI: 10.1080/21678421.2019.1639195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
16
|
Fourier A, Escal J, Bernard E, Lachman I, Perret-Liaudet A, Leblanc P, Quadrio I. Development of an automated capillary nano-immunoassay-Simple Western assay-to quantify total TDP43 protein in human platelet samples. Anal Bioanal Chem 2018; 411:267-275. [PMID: 30374726 DOI: 10.1007/s00216-018-1437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration syndrome is the second cause of young-onset dementia. Unfortunately, reliable biomarkers are currently lacking for the diagnosis of this disease. As TDP43 protein is one of the proteins pathologically involved in frontotemporal lobar degeneration, many studies have been performed to assess TDP43 protein diagnostic performances. Mixed results were obtained using cerebrospinal fluid and plasma samples so far. The aim of the study was to develop an automated capillary nano-immunoassay-Simple Western assay-to detect and quantify TDP43 protein simultaneously in human blood-based samples. Simple Western assay was developed with two different cell lysates used as positive controls and was compared to Western blot. TDP43 protein profiles in plasma samples were disappointing, as they were discordant to our positive controls. On the contrary, similar TDP43 patterns were obtained between platelet samples and cell lysates using both assays. Simple Western assay provided good quantitative performances in platelet samples: a linearity of signals could be observed (r2 = 0.994), associated to a within-run variability at 5.7%. Preliminary results based on a cohort of patients suffering from frontotemporal lobar degeneration showed large inter-individual variations superior to Simple Western's analytical variability. Simple Western assay seems to be suitable for detecting and quantifying TDP43 protein in platelet samples, providing a potential candidate biomarker in this disease. Further confirmation studies should now be performed on larger cohorts of patients to assess diagnostic performances of TDP43 protein in platelet samples.
Collapse
Affiliation(s)
- Anthony Fourier
- Neurochemistry Laboratory, Biochemistry Department, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Bron, France. .,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028, Université de Lyon - Université Claude Bernard, 95 Bd Pinel, 69675, Bron, France.
| | - Jean Escal
- Neurochemistry Laboratory, Biochemistry Department, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028, Université de Lyon - Université Claude Bernard, 95 Bd Pinel, 69675, Bron, France
| | - Emilien Bernard
- Hôpital Neurologique Pierre Wertheimer, 59 Bd Pinel, 69677, Bron, France
| | - Ingolf Lachman
- AJ Roboscreen GmbH, Hohmannstraße 7, 04129, Leipzig, Germany
| | - Armand Perret-Liaudet
- Neurochemistry Laboratory, Biochemistry Department, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028, Université de Lyon - Université Claude Bernard, 95 Bd Pinel, 69675, Bron, France.,Center for Memory Resources and Research, Hospices Civils de Lyon, Charpennes Hospital, Lyon 1 University, 69100, Villeurbanne, France
| | - Pascal Leblanc
- Institut NeuroMyoGène (INMG), CNRS UMR5310 - INSERM U1217, Université de Lyon - Université Claude Bernard, 69008, Lyon, France
| | - Isabelle Quadrio
- Neurochemistry Laboratory, Biochemistry Department, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 59 Bd Pinel, 69677, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028, Université de Lyon - Université Claude Bernard, 95 Bd Pinel, 69675, Bron, France.,Center for Memory Resources and Research, Hospices Civils de Lyon, Charpennes Hospital, Lyon 1 University, 69100, Villeurbanne, France
| |
Collapse
|
17
|
Christidi F, Karavasilis E, Velonakis G, Ferentinos P, Rentzos M, Kelekis N, Evdokimidis I, Bede P. The Clinical and Radiological Spectrum of Hippocampal Pathology in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:523. [PMID: 30018591 PMCID: PMC6037820 DOI: 10.3389/fneur.2018.00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Hippocampal pathology in Amyotrophic Lateral Sclerosis (ALS) remains surprisingly under recognized despite compelling evidence from neuropsychology, neuroimaging and neuropathology studies. Hippocampal dysfunction contributes significantly to the clinical heterogeneity of ALS and requires structure-specific cognitive and neuroimaging tools for accurate in vivo evaluation. Recent imaging studies have generated unprecedented insights into the presymptomatic and longitudinal processes affecting this structure and have contributed to the characterisation of both focal and network-level changes. Emerging neuropsychology data suggest that memory deficits in ALS may be independent from executive dysfunction. In the era of precision medicine, where the development of individualized care strategies and patient stratification for clinical trials are key priorities, the comprehensive review of hippocampal dysfunction in ALS is particularly timely.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Nascimento C, Di Lorenzo Alho AT, Conceição Amaral CB, Paraizo Leite RE, Nitrini R, Jacob-Filho W, Pasqualucci CA, Kastehelmi Hokkanen SR, Hunter S, Keage H, Kovacs GG, Grinberg LT, Suemoto CK. Prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults: systematic review and meta-analysis. Neuropathol Appl Neurobiol 2018; 44:286-297. [PMID: 28793370 PMCID: PMC5902737 DOI: 10.1111/nan.12430] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To perform a systematic review and meta-analysis on the prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults. METHODS We systematically reviewed and performed a meta-analysis on the prevalence of TDP-43 proteinopathy in older adults with normal cognition, evaluated by the Mini-Mental State Examination or the Clinical Dementia Rating. We estimated the overall prevalence of TDP-43 using random-effect models, and stratified by age, sex, sample size, study quality, antibody used to assess TDP-43 aggregates, analysed brain regions, Braak stage, Consortium to Establish a Registry for Alzheimer's Disease score, hippocampal sclerosis and geographic location. RESULTS A total of 505 articles were identified in the systematic review, and 7 were included in the meta-analysis with 1196 cognitively normal older adults. We found an overall prevalence of TDP-43 proteinopathy of 24%. Prevalence of TDP-43 proteinopathy varied widely across geographic location (North America: 37%, Asia: 29%, Europe: 14%, and Latin America: 11%). Estimated prevalence of TDP-43 proteinopathy also varied according to study quality (quality score >7: 22% vs. quality score <7: 42%), antibody used to assess TDP-43 proteinopathy (native: 18% vs. hyperphosphorylated: 24%) and presence of hippocampal sclerosis (without 24% vs. with hippocampal sclerosis: 48%). Other stratified analyses by age, sex, analysed brain regions, sample size and severity of AD neuropathology showed similar pooled TDP-43 prevalence. CONCLUSIONS Different methodology to access TDP-43, and also differences in lifestyle and genetic factors across different populations could explain our results. Standardization of TDP-43 measurement, and future studies about the impact of genetic and lifestyle characteristics on the development of neurodegenerative diseases are needed.
Collapse
Affiliation(s)
- Camila Nascimento
- University of São Paulo Medical School, Department of Psychiatry, São Paulo, BR
| | - Ana Tereza Di Lorenzo Alho
- University of São Paulo Medical School, Department of Radiology, São Paulo, BR
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, BR
| | | | | | - Ricardo Nitrini
- University of São Paulo Medical School, Department of Neurology, São Paulo, BR
| | - Wilson Jacob-Filho
- University of São Paulo Medical School, Division of Geriatrics, São Paulo, BR
| | | | | | - Sally Hunter
- University of Cambridge, Department of Public Health and Primary Care, Cambridge, United Kingdom
| | - Hannah Keage
- University of South Australia, School of Psychology, Social Work and Social Policy, AU
| | - Gabor G Kovacs
- Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Lea Tenenholz Grinberg
- University of São Paulo Medical School, Department of Pathology, São Paulo, BR
- University of San Francisco, Department of Neurology, Memory and Aging Center, San Francisco, CA, USA
| | | |
Collapse
|
19
|
Abstract
INTRODUCTION Nuclear factor TDP-43 is a ubiquitously expressed RNA binding protein that plays a key causative role in several neurodegenerative diseases, especially in the ALS/FTD spectrum. In addition, its aberrant aggregation and expression has been recently observed in other type of diseases, such as myopathies and Niemann-Pick C, a lysosomal storage disease. Areas covered: This review aims to specifically cover the post-translational modifications (PTMs) that can affect TDP-43 function and cellular status both in health and disease. To this date, these include phosphorylation, formation of C-terminal fragments, disulfide bridge formation, ubiquitination, acetylation, and sumoylation. Recently published articles on these subjects have been reviewed in this manuscript. Expert opinion: Targeting aberrant TDP-43 expression in neurodegenerative diseases is a very challenging task due to the fact that both its overexpression and downregulation are considerably toxic to cells. This characteristic makes it difficult to therapeutically target this protein in a generalized manner. An alternative approach could be the identification of specific aberrant PTMs that promote its aggregation or toxicity, and developing novel therapeutic approaches toward their selective modification.
Collapse
Affiliation(s)
- Emanuele Buratti
- a Department of Molecular Pathology , International Centre for Genetic Engineering and Biotechnology (ICGEB) , Trieste , Italy
| |
Collapse
|
20
|
Cykowski MD, Powell SZ, Peterson LE, Appel JW, Rivera AL, Takei H, Chang E, Appel SH. Clinical Significance of TDP-43 Neuropathology in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2017; 76:402-413. [PMID: 28521037 PMCID: PMC5901081 DOI: 10.1093/jnen/nlx025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To determine the significance of TAR DNA binding protein 43 kDa (TDP-43) pathology in amyotrophic lateral sclerosis (ALS), we examined the whole brains and spinal cords of 57 patients (35 men; 22 women; mean age 63.3 years; 15 patients with c9orf72-associated ALS [c9ALS]). TDP-43 pathologic burden was determined relative to symptom onset site, disease duration, progression rate, cognitive status, and c9ALS status. There was a trend for greater TDP-43 pathologic burden in cognitively impaired patients (p = 0.07), though no association with disease duration or progression rate was seen. Shorter disease duration (p = 0.0016), more severe striatal pathology (p = 0.0029), and a trend toward greater whole brain TDP-43 pathology (p = 0.059) were found in c9ALS. Cluster analysis identified “TDP43-limited,” “TDP43-moderate,” and “TDP43-severe” subgroups. The TDP43-limited group contained more cognitively intact (p = 0.005) and lower extremity onset site (p = 0.019) patients, while other subgroups contained more cognitively impaired patients. We conclude that TDP-43 pathologic burden in ALS is associated with cognitive impairment and c9ALS, but not duration of disease or rate of progression. Further, we demonstrate a subgroup of patients with low TDP-43 burden, lower extremity onset, and intact cognition, which requires further investigation.
Collapse
Affiliation(s)
- Matthew D Cykowski
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Suzanne Z Powell
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Leif E Peterson
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Joan W Appel
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Andreana L Rivera
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Hidehiro Takei
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Ellen Chang
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Stanley H Appel
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| |
Collapse
|
21
|
Omer T, Finegan E, Hutchinson S, Doherty M, Vajda A, McLaughlin RL, Pender N, Hardiman O, Bede P. Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:611-623. [DOI: 10.1080/21678421.2017.1332077] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taha Omer
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eoin Finegan
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Mark Doherty
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alice Vajda
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Russell L. McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Niall Pender
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation 2017; 40:21-41. [PMID: 27730320 DOI: 10.1007/s10753-016-0449-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant activation of the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, triggers a pathogenic inflammatory response in many inherited neurodegenerative disorders. Inflammation has recently been associated with valosin-containing protein (VCP)-associated diseases, caused by missense mutations in the VCP gene. This prompted us to investigate whether NLRP3 inflammasome plays a role in VCP-associated diseases, which classically affects the muscles, bones, and brain. In this report, we demonstrate (i) an elevated activation of the NLRP3 inflammasome in VCP myoblasts, derived from induced pluripotent stem cells (iPSCs) of VCP patients, which was significantly decreased following in vitro treatment with the MCC950, a potent and specific inhibitor of NLRP3 inflammasome; (ii) a significant increase in the expression of NLRP3, caspase 1, IL-1β, and IL-18 in the quadriceps muscles of VCPR155H/+ heterozygote mice, an experimental mouse model that has many clinical features of human VCP-associated myopathy; (iii) a significant increase of number of IL-1β(+)F4/80(+)Ly6C(+) inflammatory macrophages that infiltrate the muscles of VCPR155H/+ mice; (iv) NLRP3 inflammasome activation and accumulation IL-1β(+)F4/80(+)Ly6C(+) macrophages positively correlated with high expression of TDP-43 and p62/SQSTM1 markers of VCP pathology in damaged muscle; and (v) treatment of VCPR155H/+ mice with MCC950 inhibitor suppressed activation of NLRP3 inflammasome, reduced the F4/80(+)Ly6C(+)IL-1β(+) macrophage infiltrates in the muscle, and significantly ameliorated muscle strength. Together, these results suggest that (i) NLRP3 inflammasome and local IL-1β(+)F4/80(+)Ly6C(+) inflammatory macrophages contribute to pathogenesis of VCP-associated myopathy and (ii) identified MCC950 specific inhibitor of the NLRP3 inflammasome with promising therapeutic potential for the treatment of VCP-associated myopathy.
Collapse
|
23
|
James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA. TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia. Brain 2016; 139:2983-2993. [PMID: 27694152 PMCID: PMC5091047 DOI: 10.1093/brain/aww224] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022] Open
Abstract
Hyperphosphorylated transactive response DNA-binding protein 43 (TDP-43, encoded by TARDBP ) proteinopathy has recently been described in ageing and in association with cognitive impairment, especially in the context of Alzheimer's disease pathology. To explore the role of mixed Alzheimer's disease and TDP-43 pathologies in clinical Alzheimer's-type dementia, we performed a comprehensive investigation of TDP-43, mixed pathologies, and clinical Alzheimer's-type dementia in a large cohort of community-dwelling older subjects. We tested the hypotheses that TDP-43 with Alzheimer's disease pathology is a common mixed pathology; is related to increased likelihood of expressing clinical Alzheimer's-type dementia; and that TDP-43 pathologic stage is an important determinant of clinical Alzheimer's-type dementia. Data came from 946 older adults with ( n = 398) and without dementia ( n = 548) from the Rush Memory and Aging Project and Religious Orders Study. TDP-43 proteinopathy (cytoplasmic inclusions) was present in 496 (52%) subjects, and the pattern of deposition was classified as stage 0 (none; 48%), stage 1 (amygdala; 18%), stage 2 (extension to hippocampus/entorhinal; 21%), or stage 3 (extension to neocortex; 14%). TDP-43 pathology combined with a pathologic diagnosis of Alzheimer's disease was a common mixed pathology (37% of all participants), and the proportion of subjects with clinical Alzheimer's-type dementia formerly labelled 'pure pathologic diagnosis of Alzheimer's disease' was halved when TDP-43 was considered. In logistic regression models adjusted for age, sex, and education, TDP-43 pathology was associated with clinical Alzheimer's-type dementia (odds ratio = 1.51, 95% confidence interval = 1.11, 2.05) independent of pathological Alzheimer's disease (odds ratio = 4.30, 95% confidence interval = 3.08, 6.01) or other pathologies (infarcts, arteriolosclerosis, Lewy bodies, and hippocampal sclerosis). Mixed Alzheimer's disease and TDP-43 pathologies were associated with higher odds of clinical Alzheimer's-type dementia (odds ratio = 6.73, 95% confidence interval = 4.18, 10.85) than pathologic Alzheimer's disease alone (odds ratio = 4.62, 95% confidence interval = 2.84, 7.52). In models examining TDP-43 stage, a dose-response relationship with clinical Alzheimer's-type dementia was observed, and a significant association was observed starting at stage 2, extension beyond the amygdala. In this large sample from almost 1000 community participants, we observed that TDP-43 proteinopathy was very common, frequently mixed with pathological Alzheimer's disease, and associated with a higher likelihood of the clinical expression of clinical Alzheimer's-type dementia but only when extended beyond the amygdala.
Collapse
Affiliation(s)
- Bryan D. James
- 1 Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Internal Medicine, 600 s. Paulina Street, Chicago, IL 60612, USA,Correspondence to: Bryan D. James, Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Internal Medicine, 600 s. Paulina Street, Room 1038, Chicago, IL 60612, USA E-mail:
| | - Robert S. Wilson
- 2 Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Neurological Sciences, 600 s. Paulina Street, Chicago, IL 60612, USA,3 Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Behavioral Sciences, 600 s. Paulina Street, Chicago, IL 60612, USA
| | - Patricia A. Boyle
- 3 Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Behavioral Sciences, 600 s. Paulina Street, Chicago, IL 60612, USA
| | - John Q. Trojanowski
- 4 Department of Pathology and Laboratory Medicine, Institute on Aging Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, 3rd Floor Maloney Building, Philadelphia, PA 19104-4283, USA
| | - David A. Bennett
- 2 Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Neurological Sciences, 600 s. Paulina Street, Chicago, IL 60612, USA
| | - Julie A. Schneider
- 2 Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Neurological Sciences, 600 s. Paulina Street, Chicago, IL 60612, USA,5 Rush Alzheimer’s Disease Center, Rush University Medical Center, Department of Pathology, 600 s. Paulina Street, Chicago, IL 60612, USA
| |
Collapse
|
24
|
Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin 2016; 33:855-76. [PMID: 26515626 DOI: 10.1016/j.ncl.2015.07.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropathologic molecular signature common to almost all sporadic amyotrophic lateral sclerosis (ALS) and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathologic and molecular neuropathologic features of ALS variants, primarily lateral sclerosis and progressive muscular atrophy, are less certain but also seem to share the primary features of ALS. Genetic causes, including mutations in SOD1, TDP-43, FUS, and C9orf72, all have distinctive molecular neuropathologic signatures. Neuropathology will continue to play an increasingly key role in solving the puzzle of ALS pathogenesis.
Collapse
Affiliation(s)
- Shahram Saberi
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Jennifer E Stauffer
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Derek J Schulte
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Pan J, Connolly ID, Dangelmajer S, Kintzing J, Ho AL, Grant G. Sports-related brain injuries: connecting pathology to diagnosis. Neurosurg Focus 2016; 40:E14. [DOI: 10.3171/2016.1.focus15607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.
Collapse
Affiliation(s)
| | | | | | - James Kintzing
- 3Bioengineering, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
26
|
Zhao W, Beers DR, Bell S, Wang J, Wen S, Baloh RH, Appel SH. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp Neurol 2015. [PMID: 26222336 DOI: 10.1016/j.expneurol.2015.07.019] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transactive response DNA-binding protein-43 (TDP-43) is a multifunctional nucleic acid binding protein present in ubiquitinated inclusions in tissues of patients with amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). The ALS-associated mutations in the glycine-rich C-terminal domain of TDP-43 established a causal link between TDP-43 and disease, and conferred both loss- and gain-of-function properties in neurons. Since it has not been established whether these intra-neuronal changes are sufficient to cause ALS or whether non-cell autonomous neuronal-glial signaling could be involved, we investigated the extracellular effects of TDP-43 proteins on microglial activation and motoneuron toxicity. Wild-type, truncated 25kD C-terminal fragments, or mutant forms of TDP-43 all activated microglia and upregulated NOX2, TNF-α, and IL-1β, with WT forms being significantly less effective in activating microglia. This response to TDP-43 was mediated by its interaction with the microglial surface CD14 receptor and subsequent stimulation of the NF-κB and AP-1 pathways, as well as the intracellular inflammasome. At the cell surface, CD14 blocking antibodies suppressed microglial NF-κB activation and proinflammatory cytokine production mediated by TDP-43. Intracellularly, the NLRP3 inflammasome was induced and functional caspase-1 was produced augmenting the release of mature IL-1β. Further, TDP-43-mediated activation of microglia caused a proinflammatory cascade that was toxic to motoneurons. In the absence of microglia, TDP-43 was not toxic to motoneurons. The ability of TDP-43 to promote CD14-mediated activation of microglial NF-κB and AP-1 pathways, as well as the NLRP3 inflammasome, suggests the involvement of a non-cell autonomous proinflammatory signaling that enhances motoneuron injury, and may offer novel therapeutic targets in ALS.
Collapse
Affiliation(s)
- Weihua Zhao
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - David R Beers
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shaughn Bell
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jinghong Wang
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shixiang Wen
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Robert H Baloh
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stanley H Appel
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
27
|
Sha SJ, Ghosh PM, Lee SE, Corbetta-Rastelli C, Jagust WJ, Kornak J, Rankin KP, Grinberg LT, Vinters HV, Mendez MF, Dickson DW, Seeley WW, Gorno-Tempini M, Kramer J, Miller BL, Boxer AL, Rabinovici GD. Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. ALZHEIMERS RESEARCH & THERAPY 2015; 7:8. [PMID: 25733984 PMCID: PMC4346122 DOI: 10.1186/s13195-014-0093-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
Abstract
Introduction Group comparisons demonstrate greater visuospatial and memory deficits and temporoparietal-predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer’s disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) for predicting amyloid deposition (as a surrogate of Alzheimer’s disease neuropathology) in patients presenting with CBS. Methods In total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG-PET were classified based on the predominant atrophy/hypometabolism pattern (frontal or temporoparietal). Results A total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra-rater reliability (Cohen’s kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra-rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD). Conclusions Splitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal-predominant neuroimaging patterns are sensitive but not specific for AD. Electronic supplementary material The online version of this article (doi:10.1186/s13195-014-0093-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sharon J Sha
- Department of Neurology and Neurological Sciences, Stanford University, 300 Pasteur Drive, Rm A343, Stanford, CA 94305 USA
| | - Pia M Ghosh
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
| | - Suzee E Lee
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Chiara Corbetta-Rastelli
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
| | - Willian J Jagust
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA ; Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA USA
| | - Katherine P Rankin
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Lea T Grinberg
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Harry V Vinters
- Department of Neurology, University of California, Los Angeles, CA USA ; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA USA
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles, CA USA
| | - Dennis W Dickson
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Marilu Gorno-Tempini
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Joel Kramer
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Adam L Boxer
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA
| | - Gil D Rabinovici
- Department of Neurology, University of California, San Francisco, San Francisco, CA USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA ; Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
28
|
Abstract
Alzheimer disease (AD) and Parkinson disease (PD) are the most common neurodegenerative disorders. For both diseases, early intervention is thought to be essential to the success of disease-modifying treatments. Cerebrospinal fluid (CSF) can reflect some of the pathophysiological changes that occur in the brain, and the number of CSF biomarkers under investigation in neurodegenerative conditions has grown rapidly in the past 20 years. In AD, CSF biomarkers are increasingly being used in clinical practice, and have been incorporated into the majority of clinical trials to demonstrate target engagement, to enrich or stratify patient groups, and to find evidence of disease modification. In PD, CSF biomarkers have not yet reached the clinic, but are being studied in patients with parkinsonism, and are being used in clinical trials either to monitor progression or to demonstrate target engagement and downstream effects of drugs. CSF biomarkers might also serve as surrogate markers of clinical benefit after a specific therapeutic intervention, although additional data are required. It is anticipated that CSF biomarkers will have an important role in trials aimed at disease modification in the near future. In this Review, we provide an overview of CSF biomarkers in AD and PD, and discuss their role in clinical trials.
Collapse
|
29
|
Okamoto K, Amari M, Fujita Y, Makioka K, Fukuda T, Suzuki K, Takatama M. Cytoplasmic TDP-43 accumulation in cells of the adrenal medulla in individuals with or without amyotrophic lateral sclerosis. Neuropathology 2014; 34:535-40. [PMID: 25039310 DOI: 10.1111/neup.12139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/14/2014] [Indexed: 02/03/2023]
Abstract
The transactive response DNA-binding protein of 43 kDa (TDP-43) is normally located predominantly in the nucleus, whereas pathological TDP-43 is mostly found in the cytoplasm. Cytoplasmic TDP-43 accumulation has not yet been reported in normal general organs. In our preliminary study, paraffin sections of the general organs of individuals with or without amyotrophic lateral sclerosis (ALS) were immunostained with antibodies against TDP-43 and phosphorylated TDP-43 (pTDP-43). Diffuse and granular immunostaining pattern of TDP-43 and pTDP-43 were observed frequently in the cytoplasm of renal tubular cells, and less frequently in the cells of several organs; however, the majority of these immunoreactivities were nonspecific biotin reactions. Conversely, many TDP-43-positive and pTDP-43-negative cytoplasmic accumulations were observed in the adrenal medulla in every individual (with or without ALS). Skein-like or round inclusions were not observed. The cells in the adrenal medulla were well preserved, and the cytoplasmic TDP-43 accumulations were frequent in the cells of all routine autopsy cases without loss of nuclear TDP-43 immunostaining; therefore, we considered that this was a physiological phenomenon. This is the first study that demonstrated the cytoplasmic accumulation of TDP-43 in routinely autopsied cases.
Collapse
Affiliation(s)
- Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
McCluskey LF, Geser F, Elman LB, Van Deerlin VM, Robinson JL, Lee VMY, Trojanowski JQ. Atypical Alzheimer's disease in an elderly United States resident with amyotrophic lateral sclerosis and pathological tau in spinal motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:466-72. [PMID: 24809433 DOI: 10.3109/21678421.2014.903973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Cerebrospinal fluid analysis in Alzheimer's disease: technical issues and future developments. J Neurol 2014; 261:1234-43. [PMID: 24807087 DOI: 10.1007/s00415-014-7366-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a leading cause of morbidity, mortality, and a major epidemic worldwide. Although clinical assessment continues to remain the keystone for patient management and clinical trials, such evaluation has important limitations. In this context, cerebrospinal fluid (CSF) biomarkers are important tools to better identify high-risk individuals, to diagnose AD promptly and accurately, especially at the prodromal mild cognitive impairment stage of the disease, and to effectively prognosticate and treat AD patients. Recent advances in functional genomics, proteomics, metabolomics, and bioinformatics will hopefully revolutionize unbiased inquiries into several putative CSF markers of cerebral pathology that may be concisely informative with regard to the various stages of AD progression through years and decades. Moreover, the identification of efficient drug targets and development of optimal therapeutic strategies for AD will increasingly rely on a better understanding and integration of the systems biology paradigm, which will allow predicting the series of events and resulting responses of the biological network triggered by the introduction of new therapeutic compounds. In this scenario, unbiased systems biology-based diagnostic and prognostic models in AD will consist of relevant comprehensive panels of molecules and key branches of the disease-affected cellular neuronal network. Such characteristic and unbiased biomarkers will more accurately and comprehensively reflect pathophysiology from the early asymptomatic and presymptomatic to the final prodromal and symptomatic clinical stages in individual patients (and their individual genetic disease predisposition), ultimately increasing the chances of success of future disease modifying and preventive treatments.
Collapse
|
32
|
McMillan CT, Toledo JB, Avants BB, Cook PA, Wood EM, Suh E, Irwin DJ, Powers J, Olm C, Elman L, McCluskey L, Schellenberg GD, Lee VMY, Trojanowski JQ, Van Deerlin VM, Grossman M. Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiol Aging 2013; 35:1473-82. [PMID: 24373676 DOI: 10.1016/j.neurobiolaging.2013.11.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/18/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) that are sensitive for tau or TDP-43 pathology in frontotemporal lobar degeneration (FTLD). Neuroimaging analyses have revealed distinct distributions of disease in FTLD patients with genetic mutations. However, genetic influences on neuroanatomic structure in sporadic FTLD have not been assessed. In this report, we use novel multivariate tools, Eigenanatomy, and sparse canonical correlation analysis to identify associations between SNPs and neuroanatomic structure in sporadic FTLD. Magnetic resonance imaging analyses revealed that rs8070723 (MAPT) was associated with gray matter variance in the temporal cortex. Diffusion tensor imaging analyses revealed that rs1768208 (MOBP), rs646776 (near SORT1), and rs5848 (PGRN) were associated with white matter variance in the midbrain and superior longitudinal fasciculus. In an independent autopsy series, we observed that rs8070723 and rs1768208 conferred significant risk of tau pathology relative to TDP-43, and rs646776 conferred increased risk of TDP-43 pathology relative to tau. Identified brain regions and SNPs may help provide an in vivo screen for underlying pathology in FTLD and contribute to our understanding of sporadic FTLD.
Collapse
Affiliation(s)
- Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Jon B Toledo
- Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian B Avants
- Department of Radiology, Penn Image Computing and Science Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip A Cook
- Department of Radiology, Penn Image Computing and Science Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elisabeth M Wood
- Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eunran Suh
- Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John Powers
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher Olm
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lauren Elman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leo McCluskey
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gerard D Schellenberg
- Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Laboratory and Pathology Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
33
|
Wilson RS, Yu L, Trojanowski JQ, Chen EY, Boyle PA, Bennett DA, Schneider JA. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol 2013; 70:1418-24. [PMID: 24080705 PMCID: PMC3830649 DOI: 10.1001/jamaneurol.2013.3961] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Cognitive decline is a leading cause of disability and death in old age but its neurobiological bases are not well understood. OBJECTIVE To test the hypothesis that transactive response DNA-binding protein 43 (TDP-43) is related to late-life cognitive decline. DESIGN, SETTING, AND PARTICIPANTS Longitudinal clinical-pathologic cohort study involving more than 40 Catholic groups across the United States. A total of 130 older Catholic nuns, priests, and monks underwent annual clinical evaluations, including detailed cognitive testing, for a mean of 10.1 years prior to death. On neuropathologic examination, we collected semiquantitative measures of TDP-43 pathology, density of neuronal neurofibrillary tangles, area occupied by amyloid-beta plaques, and the presence of alpha-synuclein Lewy bodies from multiple brain regions. Gross and microscopic cerebral infarcts and hippocampal sclerosis were also identified. MAIN OUTCOMES AND MEASURES Annual rate of change in a previously established composite measure of global cognition during a mean of 10.1 years of annual observation before death. RESULTS Transactive response DNA-binding protein 43 pathology, ranging from sparse to severe, was identified in 46% of participants and was associated with amyloid plaques, tangles, and hippocampal sclerosis but not neocortical Lewy bodies or cerebral infarcts. After controlling for amyloid plaques, tangles, and hippocampal sclerosis, TDP-43 pathology was associated with more rapid cognitive decline and accounted for nearly as much of the variability in rates of global cognitive decline as did tangles. Transactive response DNA-binding protein 43 pathology had a distinct cognitive profile that differed from other neuropathologic processes (related to decline in episodic and working memory but not in other cognitive domains), and it was elevated in those who developed dementia but not in those with mild cognitive impairment. CONCLUSION AND RELEVANCE The results suggest that TDP-43 is an important brain pathology underlying cognitive decline and dementia in old age.
Collapse
Affiliation(s)
- Robert S. Wilson
- Rush Alzheimer’s Disease Center (RSW, LY, E-YC, PAB, DAB, JAS) and Departments of Neurological Sciences (RSW, LY, DAB, JAS), Behavioral Sciences (RSW, PAB), and Pathology (JAS), Rush University Medical Center, Chicago, IL; Institute on Aging (JQT), Center for Neurodegenerative Disease Research (JQT), and Department of Pathology and Laboratory Medicine (JQT), University of Pennsylvania, Philadelphia, PA
| | - Lei Yu
- Rush Alzheimer’s Disease Center (RSW, LY, E-YC, PAB, DAB, JAS) and Departments of Neurological Sciences (RSW, LY, DAB, JAS), Behavioral Sciences (RSW, PAB), and Pathology (JAS), Rush University Medical Center, Chicago, IL; Institute on Aging (JQT), Center for Neurodegenerative Disease Research (JQT), and Department of Pathology and Laboratory Medicine (JQT), University of Pennsylvania, Philadelphia, PA
| | - John Q. Trojanowski
- Rush Alzheimer’s Disease Center (RSW, LY, E-YC, PAB, DAB, JAS) and Departments of Neurological Sciences (RSW, LY, DAB, JAS), Behavioral Sciences (RSW, PAB), and Pathology (JAS), Rush University Medical Center, Chicago, IL; Institute on Aging (JQT), Center for Neurodegenerative Disease Research (JQT), and Department of Pathology and Laboratory Medicine (JQT), University of Pennsylvania, Philadelphia, PA
| | - Er-Yun Chen
- Rush Alzheimer’s Disease Center (RSW, LY, E-YC, PAB, DAB, JAS) and Departments of Neurological Sciences (RSW, LY, DAB, JAS), Behavioral Sciences (RSW, PAB), and Pathology (JAS), Rush University Medical Center, Chicago, IL; Institute on Aging (JQT), Center for Neurodegenerative Disease Research (JQT), and Department of Pathology and Laboratory Medicine (JQT), University of Pennsylvania, Philadelphia, PA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center (RSW, LY, E-YC, PAB, DAB, JAS) and Departments of Neurological Sciences (RSW, LY, DAB, JAS), Behavioral Sciences (RSW, PAB), and Pathology (JAS), Rush University Medical Center, Chicago, IL; Institute on Aging (JQT), Center for Neurodegenerative Disease Research (JQT), and Department of Pathology and Laboratory Medicine (JQT), University of Pennsylvania, Philadelphia, PA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center (RSW, LY, E-YC, PAB, DAB, JAS) and Departments of Neurological Sciences (RSW, LY, DAB, JAS), Behavioral Sciences (RSW, PAB), and Pathology (JAS), Rush University Medical Center, Chicago, IL; Institute on Aging (JQT), Center for Neurodegenerative Disease Research (JQT), and Department of Pathology and Laboratory Medicine (JQT), University of Pennsylvania, Philadelphia, PA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center (RSW, LY, E-YC, PAB, DAB, JAS) and Departments of Neurological Sciences (RSW, LY, DAB, JAS), Behavioral Sciences (RSW, PAB), and Pathology (JAS), Rush University Medical Center, Chicago, IL; Institute on Aging (JQT), Center for Neurodegenerative Disease Research (JQT), and Department of Pathology and Laboratory Medicine (JQT), University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Blokhuis AM, Groen EJN, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013; 125:777-94. [PMID: 23673820 PMCID: PMC3661910 DOI: 10.1007/s00401-013-1125-6] [Citation(s) in RCA: 406] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the aggregation of ubiquitinated proteins in affected motor neurons. Recent studies have identified several new molecular constituents of ALS-linked cellular aggregates, including FUS, TDP-43, OPTN, UBQLN2 and the translational product of intronic repeats in the gene C9ORF72. Mutations in the genes encoding these proteins are found in a subgroup of ALS patients and segregate with disease in familial cases, indicating a causal relationship with disease pathogenesis. Furthermore, these proteins are often detected in aggregates of non-mutation carriers and those observed in other neurodegenerative disorders, supporting a widespread role in neuronal degeneration. The molecular characteristics and distribution of different types of protein aggregates in ALS can be linked to specific genetic alterations and shows a remarkable overlap hinting at a convergence of underlying cellular processes and pathological effects. Thus far, self-aggregating properties of prion-like domains, altered RNA granule formation and dysfunction of the protein quality control system have been suggested to contribute to protein aggregation in ALS. The precise pathological effects of protein aggregation remain largely unknown, but experimental evidence hints at both gain- and loss-of-function mechanisms. Here, we discuss recent advances in our understanding of the molecular make-up, formation, and mechanism-of-action of protein aggregates in ALS. Further insight into protein aggregation will not only deepen our understanding of ALS pathogenesis but also may provide novel avenues for therapeutic intervention.
Collapse
|
35
|
Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 2013; 9:201-10. [PMID: 23399646 PMCID: PMC4513656 DOI: 10.1038/nrneurol.2013.9] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mild traumatic brain injury (TBI), which is defined as a head trauma resulting in a brief loss of consciousness and/or alteration of mental state, is usually benign, but occasionally causes persistent and sometimes progressive symptoms. Whether a threshold for the amount of brain injury and/or individual vulnerability might contribute to the development of these long-term consequences is unknown. Furthermore, reliable diagnostic methods that can establish whether a blow to the head has affected the brain (and in what way) are lacking. In this Review, we discuss potential biomarkers of injury to different structures and cell types in the CNS that can be detected in body fluids. We present arguments in support of the need for further development and validation of such biomarkers, and for their use in assessing patients with head trauma in whom the brain might have been affected. Specifically, we focus on the need for such biomarkers in the management of sports-related concussion, the most common cause of mild TBI in young individuals, to prevent long-term neurological sequelae due to concussive or subconcussive blows to the head.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, SE-431 80 Mölndal, Sweden.
| | | | | |
Collapse
|
36
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
37
|
Keller BA, Volkening K, Droppelmann CA, Ang LC, Rademakers R, Strong MJ. Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol 2012; 124:733-47. [PMID: 22941224 DOI: 10.1007/s00401-012-1035-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/22/2012] [Accepted: 08/14/2012] [Indexed: 12/11/2022]
Abstract
While the pathogenesis of amyotrophic lateral sclerosis (ALS) remains to be clearly delineated, there is mounting evidence that altered RNA metabolism is a commonality amongst several of the known genetic variants of the disease. In this study, we evaluated the expression of 10 ALS-associated proteins in spinal motor neurons (MNs) in ALS patients with mutations in C9orf72 (C9orf72(GGGGCC)-ALS; n = 5), SOD1 (mtSOD1-ALS; n = 9), FUS/TLS (mtFUS/TLS-ALS; n = 2), or TARDBP (mtTDP-43-ALS; n = 2) and contrasted these to cases of sporadic ALS (sALS; n = 4) and familial ALS without known mutations (fALS; n = 2). We performed colorimetric immunohistochemistry (IHC) using antibodies against TDP-43, FUS/TLS, SOD1, C9orf72, ubiquitin, sequestosome 1 (p62), optineurin, phosphorylated high molecular weight neurofilament, peripherin, and Rho-guanine nucleotide exchange factor (RGNEF). We observed that RGNEF-immunoreactive neuronal cytoplasmic inclusions (NCIs) can co-localize with TDP-43, FUS/TLS and p62 within spinal MNs. We confirmed their capacity to interact by co-immunoprecipitations. We also found that mtSOD1-ALS cases possess a unique IHC signature, including the presence of C9orf72-immunoreactive diffuse NCIs, which allows them to be distinguished from other variants of ALS at the level of light microscopy. These findings support the hypothesis that alterations in RNA metabolism are a core pathogenic pathway in ALS. We also conclude that routine IHC-based analysis of spinal MNs may aid in the identification of families not previously suspected to harbor SOD1 mutations.
Collapse
Affiliation(s)
- Brian A Keller
- Department of Pathology, Western University, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Zachau AC, Landén M, Mobarrez F, Nybom R, Wallén H, Wetterberg L. Leukocyte-derived microparticles and scanning electron microscopic structures in two fractions of fresh cerebrospinal fluid in amyotrophic lateral sclerosis: a case report. J Med Case Rep 2012; 6:274. [PMID: 22943439 PMCID: PMC3492039 DOI: 10.1186/1752-1947-6-274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder characterized by degeneration of motoneuron cells in anterior spinal horns. There is a need for early and accurate diagnosis with this condition. In this case report we used two complementary methods: scanning electron microscopy and fluorescence-activated cell sorting. This is the first report to our knowledge of microparticles in the cerebrospinal fluid of a patient with amyotrophic lateral sclerosis. Case presentation An 80-year-old Swedish man of Caucasian ethnicity presented to our facility with symptoms of amyotrophic lateral sclerosis starting a year before his first hospital examination, such as muscle weakness and twitching in his right hand progressing to arms, body and leg muscles. Electromyography showed classical neurophysiological findings of amyotrophic lateral sclerosis. Routine blood sample results were normal. A lumbar puncture was performed as a routine investigation and his cerebrospinal fluid was normal with regard to cell count and protein levels, and there were no signs of inflammation. However, scanning electron microscopy and fluorescence-activated cell sorting showed pronounced abnormalities compared to healthy controls. Flow cytometry analysis of two fractions of cerebrospinal fluid from our patient with amyotrophic lateral sclerosis was used to measure the specific binding of antibodies to CD42a, CD144 and CD45, and of phosphatidylserine to lactadherin. Our patient displayed over 100 times more phosphatidylserine-positive microparticles and over 400 times more cell-derived microparticles of leukocyte origin in his cerebrospinal fluid compared to healthy control subjects. The first cerebrospinal fluid fraction contained about 50% more microparticles than the second fraction. The scanning electron microscopy filters used with cerebrospinal fluid from our patient were filled with compact aggregates of spherical particles of lipid appearance, sticking together in a viscous batter. The quantitative increase in scanning electron microscopy findings corresponded to the flow cytometry result of an increase in leukocyte-derived microparticles. Conclusions Microparticles represent subcellular arrangements that can influence the pathogenesis of amyotrophic lateral sclerosis and may serve as biomarkers for underlying cellular disturbances. The increased number of leukocyte-derived microparticles with normal cell counts in cerebrospinal fluid may contribute to the amyotrophic lateral sclerosis inflammatory process by formation of immune complexes of prion-like propagation, possibly due to misfolded proteins. The two complementary methods used in this report may be additional tools for revealing the etiology of amyotrophic lateral sclerosis, for early diagnostic purposes and for evaluation of clinical trials, long-term follow-up studies and elucidating the pathophysiology in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Anne C Zachau
- Karolinska Institutet, Department of Clinical Neuroscience at St, Göran, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
39
|
Buratti E, Baralle FE. TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem Sci 2012; 37:237-47. [PMID: 22534659 DOI: 10.1016/j.tibs.2012.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/02/2012] [Accepted: 03/08/2012] [Indexed: 12/11/2022]
Abstract
Since the discovery that 43 kDa TAR DNA binding protein (TDP-43) is involved in neurodegeneration, studies of this protein have focused on the global effects of TDP-43 expression modulation on cell metabolism and survival. The major difficulty with these global searches, which can yield hundreds to thousands of variations in gene expression level and/or mRNA isoforms, is our limited ability to separate specific TDP-43 effects from secondary dysregulations occurring at the gene expression and various mRNA processing steps. In this review, we focus on two biochemical properties of TDP-43: its ability to bind RNA and its protein-protein interactions. In particular, we overview how these two properties may affect potentially very important processes for the pathology, from the autoregulation of TDP-43 to aggregation in the cytoplasmic/nuclear compartments.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | |
Collapse
|
40
|
Cardozo-Pelaez F, Bridges RJ. Coupling biomarkers and drug action for neurodegenerative disease therapies: does the nose know?: Commentary on Sattler et al.: human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Exp Neurol 2012; 235:508-12. [PMID: 22465461 DOI: 10.1016/j.expneurol.2012.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Fernando Cardozo-Pelaez
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
41
|
|