1
|
Chen JN, Yang XJ, Cong M, Zhu LJ, Wu X, Wang LT, Sha L, Yu Y, He QR, Ding F, Xian H, Shi HY. Promotive effect of skin precursor-derived Schwann cells on brachial plexus neurotomy and motor neuron damage repair through milieu-regulating secretome. Regen Ther 2024; 27:365-380. [PMID: 38694448 PMCID: PMC11061650 DOI: 10.1016/j.reth.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.
Collapse
Affiliation(s)
- Jia-nan Chen
- School of Medicine, Nantong University, Nantong, 226001, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiao-jia Yang
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Ling-jie Zhu
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Li-ting Wang
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lei Sha
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Yan Yu
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qian-ru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hua Xian
- School of Medicine, Nantong University, Nantong, 226001, China
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Hai-yan Shi
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| |
Collapse
|
2
|
Gu F, Wang Z, Ding H, Tao X, Zhang J, Dai K, Li X, Shen H, Li H, Chen Z, Wang Z. Microglial mitochondrial DNA release contributes to neuroinflammation after intracerebral hemorrhage through activating AIM2 inflammasome. Exp Neurol 2024; 382:114950. [PMID: 39278588 DOI: 10.1016/j.expneurol.2024.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe disease that often leads to disability and death. Neuroinflammatory response is a key causative factor of early secondary brain injury after ICH. AIM2 is a DNA-sensing protein that recognizes cytosolic double-stranded DNA and take a significant part in neuroinflammation. Mitochondrial DNA participates in the translation of proteins such as the respiratory chain in the mitochondria. Whether mtDNA is involved in forming AIM2 inflammasome after ICH remains unclear. We used mice to construct ICH model in vivo and we used BV2 microglial cells treated with oxyhemoglobin to simulate ICH in vitro. Following lentiviral transfection to overexpress AIM2 antagonist P202, a notable decrease was observed in the levels of AIM2 inflammasome-associated proteins, leading to a reduction in dead neurons surrounding the hematoma and an enhancement in long-term and short-term behavior of neurological deficits. We further explored whether mtDNA took part in the AIM2 activation after ICH. The cytosolic mtDNA level was down-regulated by the mitochondrial division protector Mdivi-1 and up-regulated by transfection of mtDNA into cytoplasm. We found the expression level of AIM2 inflammasome-related proteins and inflammatory cytokines release were regulated by the cytosolic mtDNA level. In conclusion, after ICH, the mtDNA content in the cytoplasm of microglia around the hematoma rises, causing AIM2 inflammation leading to neuronal apoptosis, which leads to neurological deficits in mice. On the other hand, P202 was able to block inflammatory vesicle activation and improve neurological function by preventing the interaction between AIM2 protein and mitochondrial DNA.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
3
|
Wang Y, Bing H, Jiang C, Wang J, Wang X, Xia Z, Chu Q. Gut microbiota dysbiosis and neurological function recovery after intracerebral hemorrhage: an analysis of clinical samples. Microbiol Spectr 2024; 12:e0117824. [PMID: 39315788 PMCID: PMC11537008 DOI: 10.1128/spectrum.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. We designed two clinical cohort studies to explore the gut dysbiosis after ICH and their relationship with neurological function prognosis. First, fecal samples from patients with ICH at three time points: T1 (within 24 h of admission), T2 (3 days after surgery), and T3 (7 days after surgery), and healthy volunteers were subjected to 16S rRNA sequencing using Illumina high-throughput sequencing technology. When differential gut microbiota was identified, the correlation between clinical indicators and microbiotas was analyzed. Subsequently, the patients with ICH were categorized into GOOD and POOR groups based on their Glasgow Outcome Scale Extended (GOS-E) score, and the disparities in gut microbiota between the two groups were assessed. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The composition and diversity of the gut microbiota in patients with ICH were different from those in the control group and changed dynamically with the extension of the course of cerebral hemorrhage. The abundances of Enterococcaceae, Clostridiales incertae sedis XI, and Peptoniphilaceae were significantly increased in patients with ICH, whereas Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, and Veillonellaceae were significantly reduced. The relative abundance of Enterococcus gradually increased with the extension of the duration of ICH after surgery, and the abundance of Bacteroides gradually decreased. The abundance of Enterococcus before surgery was found to be negatively associated with patient neurological function prognosis. The original ICH score and Lachnospiraceae status were independent risk factors for predicting the prognosis of neurological function in patients with ICH (P < 0.05). Changes in the gut microbiota diversity in patients with ICH were related to prognosis. Lachnospiraceae may have a protective effect on prognosis.IMPORTANCEAcute central nervous system injuries like hemorrhagic stroke are major global health issues. While surgical hematoma removal can alleviate brain damage, severe cases still have a high 1-month mortality rate of up to 40%. Gut microbiota significantly impacts health, and treatments like fecal microbiota transplantation (FMT) and probiotics can improve brain damage by correcting gut microbiota imbalances caused by ischemic stroke. However, few clinical studies have explored this relationship in hemorrhagic stroke. This study investigated the impact of cerebral hemorrhage on the composition of gut microbiota, and we found that Lachnospiraceae were the independent risk factors for poor prognosis in intracerebral hemorrhage (ICH). The findings offer potential insights for the application of FMT in patients with ICH, and it may improve the prognosis of patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hailong Bing
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Conghui Jiang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuan Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Qinjun Chu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Zhou Y, Dong W, Wang L, Ren S, Wei W, Wu G. Cystatin C Attenuates Perihematomal Secondary Brain Injury by Inhibiting the Cathepsin B/NLRP3 Signaling Pathway in a Rat Model of Intracerebral Hemorrhage. Mol Neurobiol 2024; 61:9646-9662. [PMID: 38676809 DOI: 10.1007/s12035-024-04195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Secondary brain injury (SBI) is a noticeable contributor to the high mortality and morbidity rates associated with intracerebral hemorrhage (ICH), and effective treatment options remain limited. Cystatin C (CysC) emerges as a novel candidate for SBI intervention. The therapeutic effects and underlying mechanisms of CysC in mitigating SBI following ICH were explored in the current research. An in vivo ICH rat model was established by injecting autologous blood into the right caudate nucleus. Western blotting (WB) was utilized to assess the levels of CysC, cathepsin B (CTSB), and the NLRP3 inflammasome. Subsequently, the ICH rat model was treated with exogenous CysC supplementation or CysC knockdown plasmids. Various parameters, including Evans blue (EB) extravasation, brain water content, and neurological function in rats, were examined. RT-qPCR and WB were employed to determine the expression levels of CTSB and the NLRP3 inflammasome. The co-expression of CTSB, CysC, and NLRP3 inflammasome with GFAP, NeuN, and Iba1 was assessed through double-labeled immunofluorescence. The interaction between CysC and CTSB was investigated using double-labeled immunofluorescence and co-immunoprecipitation. The findings revealed an elevation of CysC expression level, particularly at 24 h after ICH. Exogenous CysC supplementation alleviated severe brain edema, neurological deficit scores, and EB extravasation induced by ICH. Conversely, CysC knockdown produced opposite effects. The expression levels of CTSB and the NLRP3 inflammasome were significantly risen following ICH, and exogenous CysC supplement attenuated their expression levels. Double-labeled immunofluorescence illustrated that CysC, CTSB, and the NLRP3 inflammasome were predominantly expressed in microglial cells, and the interaction between CysC and CTSB was evidenced. CysC exhibited potential in ameliorating SBI following ICH via effectively suppressing the activation of the NLRP3 inflammasome mediated by CTSB specifically in microglial cells. These findings underscore the prospective therapeutic efficacy of CysC in the treatment of ICH-induced complications.
Collapse
Affiliation(s)
- Yongfang Zhou
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wentao Dong
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Likun Wang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Siying Ren
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Weiqing Wei
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
5
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
6
|
Almalki WH, Almujri SS. Therapeutic approaches to microglial dysfunction in Alzheimer's disease: Enhancing phagocytosis and metabolic regulation. Pathol Res Pract 2024; 263:155614. [PMID: 39342887 DOI: 10.1016/j.prp.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Microglia are essential in neurogenesis, synaptic pruning, and homeostasis. Nevertheless, aging, and cellular senescence may modify their role, causing them to shift from being shields to being players of neurodegeneration. In the aging brain, the population of microglia increases, followed by enhanced activity of genes related to neuroinflammation. This change increases their ability to cause inflammation, resulting in a long-lasting state of inflammation in the brain that harms the condition of neurons. In Alzheimer's Disease (AD), microglia are located inside amyloid plaques and exhibit an inflammatory phenotype characterized by a diminished ability to engulf and remove waste material, worsening the illness's advancement. Genetic polymorphisms in TREM2, APOE, and CD33 highlight the significant impact of microglial dysfunction in AD. This review examines therapeutic approaches that aim to address microglial dysfunction, such as enhancing the microglial capability to engulf and remove amyloid-β clumps and regulating microglial metabolism and mitochondrial activity. Microglial transplanting and reprogramming advancements show the potential to restore their ability to reduce inflammation. Although there has been notable advancement, there are still voids in our knowledge of microglial biology, including their relationships with other brain cells. Further studies should prioritize the improvement of human AD models, establish standardized methods for characterizing microglia, and explore how various factors influence microglial responses. It is essential to tackle these problems to create effective treatment plans that focus on reducing inflammation in the brain and protecting against damage in age-related neurodegenerative illnesses.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
7
|
Tao J, Li J, Fan X, Jiang C, Wang Y, Qin M, Nikfard Z, Nikfard F, Wang Y, Zhao T, Xing N, Zille M, Wang J, Zhang J, Chen X, Wang J. Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after stroke. Ageing Res Rev 2024; 101:102489. [PMID: 39277050 DOI: 10.1016/j.arr.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function. Post-translational modifications (PTMs) have been recognized as crucial regulatory mechanisms in ischemic and hemorrhagic stroke-induced brain injury. These PTMs include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and succinylation. This comprehensive review delves into recent research on the PTMs landscape associated with neuroinflammation and neuronal death specific to cerebral ischemia, ICH, and SAH. This review aims to explain the role of PTMs in regulating pathologic mechanisms and present critical techniques and proteomic strategies for identifying PTMs. This knowledge helps us comprehend the underlying mechanisms of stroke injury and repair processes, leading to the development of innovative treatment strategies. Importantly, this review underscores the significance of exploring PTMs to understand the pathophysiology of stroke.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jiaxin Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Yebin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Mengzhe Qin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zahra Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fatemeh Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yunchao Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
8
|
Fu X, Ye F, Wan Y, Xi G, Hua Y, Keep RF. The Role of Complement C1qa in Experimental Intracerebral Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01302-4. [PMID: 39370487 DOI: 10.1007/s12975-024-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Evidence indicates that the complement system is activated and plays a role in brain injury after intracerebral hemorrhage (ICH). Most studies have focused on the role of C3, C5 and the membrane attack complex. The purpose of this study was to investigate the potential impact of complement C1q, a key upstream component of the classical pathway, on ICH-induced brain injury. Wild-type (WT) and C1qa knock out (KO) mice were compared using an autologous blood injection ICH model. Magnetic resonance imaging (MRI) was performed on days 1, 3 and 7 and brains harvested on days 3 and 7 for immunohistochemistry to examine brain injury mechanisms. WT and C1qa KO mice also received an intracerebral injection of thrombin, a key factor in ICH-induced brain injury. Following MRI scans, brains were harvested for immunohistochemistry on day 1. In comparison to WT mice, C1qa KO mice had reduced hematoma erythrolysis and neutrophil infiltration after ICH. However, they also had delayed hematoma clearance, which was associated with reduced induction of phagocytic multinuclear giant cells, and increased perihematomal neuronal damage. After thrombin injection, C1qa KO mice had smaller lesion volumes, less neuronal loss, reduced neutrophil infiltration, and less BBB damage. C1qa knockout has beneficial and detrimental effects on ICH-induced brain injury mechanisms, but a consistent beneficial effect after thrombin injection. Strategies to balance the roles of C1q after ICH may represent a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiongjie Fu
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, the 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yingfeng Wan
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Jin Z, Lu J, Xu H, Zhang Y, Zhang S, Zhang D, Hu J, Shi Z, Li Z, Wang J. Exploring the correlation between innate immune activation of inflammasome and regulation of pyroptosis after intracerebral hemorrhage: From mechanism to treatment. Biomed Pharmacother 2024; 179:117382. [PMID: 39241565 DOI: 10.1016/j.biopha.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Stroke has emerged as the primary cause of disability and death globally in recent years. Intracerebral hemorrhage (ICH), a particularly severe kind of stroke, is occurring in an increasing number of people. The two main clinical treatments for ICH now in use are conservative pharmaceutical therapy and surgical intervention, both of which have risks and drawbacks. Consequently, it is crucial to look into the pathophysiology of ICH and consider cutting-edge therapeutic approaches. Recent research has revealed that pyroptosis is a newly identified type of cell death distinguished by the break of the cell membrane and the discharge of pro-inflammatory substances through different routes. Following ICH, glial cells experience pyroptosis, which worsens neuroinflammation. Hence, the onset and progression of ICH are strongly linked to pyroptosis, which is facilitated by different inflammasomes. It is essential to conduct a comprehensive investigation of ICH damage processes and uncover new targets for treatment. The impact and function of pyroptosis in ICH, as well as the activation and regulation of inflammasomes and their mediated pyroptosis pathways will be fully discussed in this review.
Collapse
Affiliation(s)
- Ziqi Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Ying Zhang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shanshan Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Jing Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhao Shi
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhuyang Li
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Wang Z, Li Y, Wang Z, Liao Y, Ye Q, Tang S, Wei T, Xiao P, Huang J, Lu W. Edaravone Maintains AQP4 Polarity Via OS/MMP9/β-DG Pathway in an Experimental Intracerebral Hemorrhage Mouse Model. Mol Neurobiol 2024; 61:7639-7658. [PMID: 38421470 DOI: 10.1007/s12035-024-04028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Oxidative stress (OS) is the main cause of secondary damage following intracerebral hemorrhage (ICH). The polarity expression of aquaporin-4 (AQP4) has been shown to be important in maintaining the homeostasis of water transport and preventing post-injury brain edema in various neurological disorders. This study primarily aimed to investigate the effect of the oxygen free radical scavenger, edaravone, on AQP4 polarity expression in an ICH mouse model and determine whether it involves in AQP4 polarity expression via the OS/MMP9/β-dystroglycan (β-DG) pathway. The ICH mouse model was established by autologous blood injection into the basal nucleus. Edaravone or the specific inhibitor of matrix metalloproteinase 9 (MMP9), MMP9-IN-1, called MMP9-inh was administered 10 min after ICH via intraperitoneal injection. ELISA detection, neurobehavioral tests, dihydroethidium staining (DHE staining), intracisternal tracer infusion, hematoxylin and eosin (HE) staining, immunofluorescence staining, western blotting, Evans blue (EB) permeability assay, and brain water content test were performed. The results showed that OS was exacerbated, AQP4 polarity was lost, drainage function of brain fluids was damaged, brain injury was aggravated, expression of AQP4, MMP9, and GFAP increased, while the expression of β-DG decreased after ICH. Edaravone reduced OS, restored brain drainage function, reduced brain injury, and downregulated the expression of AQP4, MMP9. Both edaravone and MMP9-inh alleviated brain edema, maintained blood-brain barrier (BBB) integrity, mitigated the loss of AQP4 polarity, downregulated GFAP expression, and upregulated β-DG expression. The current study suggests that edaravone can maintain AQP4 polarity expression by inhibiting the OS /MMP9/β-DG pathway after ICH.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Li
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Zhixu Wang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Yuhui Liao
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
- Sichuan University of Arts and Science, Sichuan, China
| | - Qingqing Ye
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Shilong Tang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wei
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Pengyu Xiao
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China.
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China.
| | - Weitian Lu
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China.
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Yuan X, Hu S, Fan X, Jiang C, Xu Y, Hao R, Xu Z, Yu Y, Rastegar-Kashkooli Y, Huang L, Wang TJ, Wang Q, Su S, Wang L, Wang J, Wang M, Kim YT, Bhawal UK, Wang F, Zhao T, Wang J, Chen X, Wang J. Central post-stroke pain: advances in clinical and preclinical research. Stroke Vasc Neurol 2024:svn-2024-003418. [PMID: 39343438 DOI: 10.1136/svn-2024-003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Central poststroke pain (CPSP) is a medical complication that arises poststroke and significantly impacts the quality of life and social functioning of affected individuals. Despite ongoing research, the exact pathomechanisms of CPSP remain unclear, and practical treatments are still unavailable. Our review aims to systematically analyse current clinical and preclinical studies on CPSP, which is critical for identifying gaps in knowledge and guiding the development of effective therapies. The review will clarify the clinical characteristics, evaluation scales and contemporary therapeutic approaches for CPSP based on clinical investigations. It will particularly emphasise the CPSP model initiated by stroke, shedding light on its underlying mechanisms and evaluating treatments validated in preclinical studies. Furthermore, the review will not only highlight methodological limitations in animal trials but also offer specific recommendations to researchers to improve the quality of future investigations and guide the development of effective therapies. This review is expected to provide valuable insights into the current knowledge regarding CPSP and can serve as a guide for future research and clinical practice. The review will contribute to the scientific understanding of CPSP and help develop effective clinical interventions.
Collapse
Affiliation(s)
- Xiqian Yuan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Hu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruochen Hao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zili Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yiyang Yu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of International Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Tom J Wang
- Program in Behavioral Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Qiao Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Wanju Jeollabuk-do, Korea (the Republic of)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Korea (the Republic of)
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil nadu, India
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan, China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Inhibits Intracerebral Hemorrhage-Induced Inflammatory Response and Neuron Cell Apoptosis. Int J Mol Sci 2024; 25:10321. [PMID: 39408651 PMCID: PMC11476780 DOI: 10.3390/ijms251910321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague-Dawley rats (7 weeks old, 200-250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Hu N, Liu J, Luo Y, Li Y. A comprehensive review of traditional Chinese medicine in treating neuropathic pain. Heliyon 2024; 10:e37350. [PMID: 39296122 PMCID: PMC11407996 DOI: 10.1016/j.heliyon.2024.e37350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Neuropathic pain (NP) is a common, intractable chronic pain caused by nerve dysfunction and primary lesion of the nervous system. The etiology and pathogenesis of NP have not yet been clarified, so there is a lack of precise and effective clinical treatments. In recent years, traditional Chinese medicine (TCM) has shown increasing advantages in alleviating NP. Our review aimed to define the therapeutic effect of TCM (including TCM prescriptions, TCM extracts and natural products from TCM) on NP and reveal the underlying mechanisms. Literature from 2018 to 2024 was collected from databases including Web of Science, PubMed, ScienceDirect, Google academic and CNKI databases. Herbal medicine, Traditional Chinese medicines (TCM), neuropathic pain, neuralgia and peripheral neuropathy were used as the search terms. The anti-NP activity of TCM is clarified to propose strategies for discovering active compounds against NP, and provide reference to screen anti-NP drugs from TCM. We concluded that TCM has the characteristics of multi-level, multi-component, multi-target and multi-pathway, which can alleviate NP through various pathways such as anti-inflammation, anti-oxidant, anti-apoptotic pathway, regulating autophagy, regulating intestinal flora, and influencing ion channels. Based on the experimental study and anti-NP mechanism of TCM, this paper can offer analytical evidence to support the effectiveness in treating NP. These references will be helpful to the research and development of innovative TCM with multiple levels and multiple targets. TCM can be an effective treatment for NP and can serve as a treasure house for new drug development.
Collapse
Affiliation(s)
- Naihua Hu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Jie Liu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yong Luo
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
14
|
Wu X, Liu J, Tian D, Chen J, Li H. Associations of serum Dickkopf-1 levels with disease severity and 90-day Prognosis after spontaneous intracerebral hemorrhage: results from the prospective cohort study. Neurosurg Rev 2024; 47:528. [PMID: 39227406 DOI: 10.1007/s10143-024-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Dickkopf-1 (DKK-1) may be involved in inflammatory response and secondary brain injury after acute brain injury. We gauged serum DKK-1 levels and further assessed its correlation with disease severity and investigated its predictive value for 90-day prognosis in patients with spontaneous intracerebral hemorrhage (sICH). Serum DKK-1 levels were measured in 128 sICH patients and 128 healthy controls. The severity of sICH was assessed using the Glasgow Coma Scale (GCS) scores and hematoma volumes. Poor prognosis was referred to as a Glasgow Outcome Scale (GOS) score of 1-3 at 90 days after stroke. Multivariate analysis was performed to identify associations of serum DKK-1 levels with disease severity, early neurological deterioration (END) and poor prognosis. Receiver operating characteristic curve (ROC) was built to investigate the prognostic predictive capability. The serum DKK-1 levels of patients were significantly higher than those of controls (median, 4.74 ng/mL versus 1.98 ng/mL; P < 0.001), and were independently correlated with hematoma volumes (ρ = 0.567, P < 0.001; t = 3.444, P = 0.001) and GCS score (ρ = -0.612, P < 0.001; t = -2.048, P = 0.043). Serum DKK-1 significantly differentiated patients at risk of END (area under ROC curve (AUC), 0.850; 95% confidence interval (CI), 0.777-0.907; P < 0.001) and poor prognosis (AUC, 0.830; 95% CI, 0.753-0.890; P < 0.001), which had similar prognostic ability, as compared to GCS scores and hematoma volumes. Subsequent Logistic regression model affirmed that GCS score, hematoma volume, and serum DKK-1 levels were independently associated with END and poor prognosis at 90 days after sICH. The models, which contained them, performed well using ROC curve analysis and calibration curve analysis. Serum DKK-1 levels are markedly associated with disease severity, END and 90-day poor prognosis in sICH. Hence, serum DKK-1 is presumed to be used as a potential prognostic biomarker of sICH.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Jin Liu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Da Tian
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Junxia Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Huguang Li
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China.
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China.
| |
Collapse
|
15
|
Fu Y, Liu R, Zhao Y, Xie Y, Ren H, Wu Y, Zhang B, Chen X, Guo Y, Yao Y, Jiang W, Han R. Veliparib exerts protective effects in intracerebral hemorrhage mice by inhibiting the inflammatory response and accelerating hematoma resolution. Brain Res 2024; 1838:148988. [PMID: 38729332 DOI: 10.1016/j.brainres.2024.148988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have potent anti-inflammatory effects, including the suppression of brain microglial activation. Veliparib, a well-known PARP1/2 inhibitor, exhibits particularly high brain penetration, but its effects on stroke outcome is unknown. Here, the effects of veliparib on the short-term outcome of intracerebral hemorrhage (ICH), the most lethal type of stroke, were investigated. Collagenase-induced mice ICH model was applied, and the T2-weighted magnetic resonance imaging was performed to evaluate lesion volume. Motor function and hematoma volume were also measured. We further performed immunofluorescence, enzyme linked immunosorbent assay, flow cytometry, and blood-brain barrier assessment to explore the potential mechanisms. Our results demonstrated veliparib reduced the ICH lesion volume dose-dependently and at a dosage of 5 mg/kg, veliparib significantly improved mouse motor function and promoted hematoma resolution at days 3 and 7 post-ICH. Veliparib inhibited glial activation and downregulated the production of pro-inflammatory cytokines. Veliparib significantly decreased microglia counts and inhibited peripheral immune cell infiltration into the brain on day 3 after ICH. Veliparib improved blood-brain barrier integrity at day 3 after ICH. These findings demonstrate that veliparib improves ICH outcome by inhibiting inflammatory responses and may represent a promising novel therapy for ICH.
Collapse
Affiliation(s)
- Yiwei Fu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Rongrong Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuexin Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuhan Xie
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Department of Neurology, Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yu Wu
- Department of Neurology, Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Bohao Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuju Chen
- Department of Neurology, Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Guo
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
16
|
Zhang L, Li J, Zhang Y, Zhang H. Sanguiin inhibits cerebral hemorrhage in rats by protecting the blood-brain barrier. Arch Med Sci 2024; 20:1345-1348. [PMID: 39439695 PMCID: PMC11493038 DOI: 10.5114/aoms/193019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The aim of the study was to observe the effect of Sanguiin on cerebral edema and behavior in a rat cerebral hemorrhage model. Methods A rat collagenase-induced cerebral hemorrhage model was established to detect the effects of drugs on brain edema. Results Through magnetic resonance imaging (MRI) analysis and brain weight content (BWC) determination, it was found that Sanguiin could significantly reduce the brain swelling index and BWC of the affected hemisphere after cerebral hemorrhage. Conclusions Sanguiin can significantly improve the neurological deficits in rats with cerebral hemorrhage, and down-regulate the expression of MMP-9 after cerebral hemorrhage, suggesting that Sanguiin has a certain protective effect on the blood-brain barrier after cerebral hemorrhage.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Neurosurgery, The Dalian School of Clinical Medicine, Dalian Medical University, Dalian, Liaoning, China
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jing Li
- Department of Radiology, Shanghai Putuo Central Hospital, Shanghai, China
| | - Yisong Zhang
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Hengzhu Zhang
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine, Dalian Medical College, Yangzhou, Jiangsu, China
| |
Collapse
|
17
|
Huang X, Lan Z, Hu Z. Role and mechanisms of mast cells in brain disorders. Front Immunol 2024; 15:1445867. [PMID: 39253085 PMCID: PMC11381262 DOI: 10.3389/fimmu.2024.1445867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xuanyu Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Chen X, Ren Y, Xie P, Lei Q, Lu W. GM130-silencing may aggravate blood-brain barrier damage and affect microglia polarization by down-regulating PD-L1 expression after experimental intracerebral hemorrhage. Mol Biol Rep 2024; 51:919. [PMID: 39158740 DOI: 10.1007/s11033-024-09859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND In addition to primary injury, secondary injuries related to BBB disruption and immune-inflammatory response also play an important role in intracerebral hemorrhage (ICH). And the Golgi apparatus play an important role in the state of ICH. METHODS ICH model and GM130-silencing ICH model were established in SD rats. The Garcia score was used to score the neurological defects of the rats. Blood-brain barrier (BBB) integrity were assessed by amount of extravasated Evans blue, and tight junction proteins. The expression of PD-L1 and GM130were detected through Western-blot and the subtype of microglia was showing with Immunofluorescence staining. RESULTS Compared with the ICH group, GM130-silencing ICH rats got a worsened neurological deficit and enlarged volume of the hematoma. Evan's blue extravasation aggravated as well. The expression of GM130 in peri-hematoma tissue was further decreased, and the morphology and structure of the Golgi apparatus were further damaged. Meanwhile, the GM130 deficit resulted in decreased expression of PD-L1 and more polarization of microglia to the M1 subtype. CONCLUSION We demonstrate that GM130 could influence the integrity of BBB and plays a role in neuroinflammation via regulation of PD-L1 after ICH. The manipulation of GM130 might be a promising therapeutical target in ICH.
Collapse
Affiliation(s)
- Xiqian Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pinghui Xie
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Qiang Lei
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, Hunan, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Wu JW, Gao W, Shen LP, Chen YL, Du SQ, Du ZY, Zhao XD, Lu XJ. Leonurus japonicus Houtt. modulates neuronal apoptosis in intracerebral hemorrhage: Insights from network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118223. [PMID: 38642624 DOI: 10.1016/j.jep.2024.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houtt. (Labiatae), commonly known as Chinese motherwort, is a herbaceous flowering plant that is native to Asia. It is widely acknowledged in traditional medicine for its diuretic, hypoglycemic, antiepileptic properties and neuroprotection. Currently, Leonurus japonicus (Leo) is included in the Pharmacopoeia of the People's Republic of China. Traditional Chinese Medicine (TCM) recognizes Leo for its myriad pharmacological attributes, but its efficacy against ICH-induced neuronal apoptosis is unclear. AIMS OF THE STUDY This study aimed to identify the potential targets and regulatory mechanisms of Leo in alleviating neuronal apoptosis after ICH. MATERIALS AND METHODS The study employed network pharmacology, UPLC-Q-TOF-MS technique, molecular docking, pharmacodynamic studies, western blotting, and immunofluorescence techniques to explore its potential mechanisms. RESULTS Leo was found to assist hematoma absorption, thus improving the neurological outlook in an ICH mouse model. Importantly, molecular docking highlighted JAK as Leo's potential therapeutic target in ICH scenarios. Further experimental evidence demonstrated that Leo adjusts JAK1 and STAT1 phosphorylation, curbing Bax while augmenting Bcl-2 expression. CONCLUSION Leo showcases potential in mitigating neuronal apoptosis post-ICH, predominantly via the JAK/STAT mechanism.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Wei Gao
- Department of Neurology, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu Province, 214122, PR China
| | - Li-Ping Shen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yong-Lin Chen
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Shi-Qing Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Zhi-Yong Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Xu-Dong Zhao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiao-Jie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
20
|
Dingyi L, Libin H, Jifeng P, Ding Z, Yulong L, Zhangyi W, Yunong Y, Qinghua W, Feng L. Silencing CXCL16 alleviate neuroinflammation and M1 microglial polarization in mouse brain hemorrhage model and BV2 cell model through PI3K/AKT pathway. Exp Brain Res 2024; 242:1917-1932. [PMID: 38896294 DOI: 10.1007/s00221-024-06875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1β and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.
Collapse
Affiliation(s)
- Lv Dingyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Hu Libin
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Piao Jifeng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhiquan Ding
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Li Yulong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wu Zhangyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yin Yunong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wang Qinghua
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Li Feng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
21
|
Jiang ST, Sun YH, Li Y, Wang MQ, Wang XY, Dong YF. Gut microbiota is necessary for pair-housing to protect against post-stroke depression in mice. Exp Neurol 2024; 378:114834. [PMID: 38789022 DOI: 10.1016/j.expneurol.2024.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The goal of this study is to investigate the role of microbiota-gut-brain axis involved in the protective effect of pair-housing on post-stroke depression (PSD). PSD model was induced by occluding the middle cerebral artery (MCAO) plus restraint stress for four weeks. At three days after MCAO, the mice were restrained 2 h per day. For pair-housing (PH), each mouse was pair housed with a healthy isosexual cohabitor for four weeks. While in the other PH group, their drinking water was replaced with antibiotic water. On day 35 to day 40, anxiety- and depression-like behaviors (sucrose consumption, open field test, forced swim test, and tail-suspension test) were conducted. Results showed pair-housed mice had better performance on anxiety- and depression-like behaviors than the PSD mice, and the richness and diversity of intestinal flora were also improved. However, drinking antibiotic water reversed the effects of pair-housing. Furthermore, pair-housing had an obvious improvement in gut barrier disorder and inflammation caused by PSD. Particularly, they showed significant decreases in CD8 lymphocytes and mRNA levels of pro-inflammatory cytokines (TNF-a, IL-1β and IL-6), while IL-10 mRNA was upregulated. In addition, pair-housing significantly reduced activated microglia and increased Nissl's body in the hippocampus of PSD mice. However, all these improvements were worse in the pair-housed mice administrated with antibiotic water. We conclude that pair-housing significantly improves PSD in association with enhanced functions of microbiota-gut-brain axis, and homeostasis of gut microbiota is indispensable for the protective effect of pair-housing on PSD.
Collapse
Affiliation(s)
- Su-Ting Jiang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao-Huan Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ya Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Meng-Qing Wang
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Gusev E, Solomatina L, Bochkarev P, Zudova A, Chereshnev V. The Role of Systemic Inflammation in the Pathogenesis of Spontaneous Intracranial Hemorrhage in the Presence or Absence of Effective Cerebral Blood Flow. J Clin Med 2024; 13:4454. [PMID: 39124721 PMCID: PMC11313124 DOI: 10.3390/jcm13154454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Spontaneous intracerebral hemorrhage (ICH) is one of the leading causes of mortality in intensive care units. The role of systemic hyperintense inflammation (SHI) in the pathogenesis of critical complications of ICH remains a poorly understood problem. There is a specific variant of severe ICH associated with increased intracranial pressure and occlusion of intracranial vessels, defined as ineffective cerebral blood flow (IECBF). Methods: To evaluate the role of SHI in the pathogenesis of severe (comatose) ICH in a dynamic comparison of patients with IECBF (n-26) and without IECBF (n-52). The SHI integral score criterion (SI scale) was used, including certain values of plasma concentrations of IL-6, IL-8, IL-10; TNF-α, PCT, cortisol, myoglobin, troponin I, D-dimer, and, additionally, SOFA scale values. Blood levels of ACTH and neuron-specific enolase (NSE) were also assessed. Results: Twenty-eight-day mortality in severe ICH reached 84.6% (without IECBF) and 96.2% (with IECBF). Clear signs of SHI were detected in 61.5%/87.8% (without IECBF) and 0.0%/8.7% (with IECBF) within 1-3/5-8 days from the onset of ICH manifestation. The lower probability of developing SHI in the IECBF group was associated with low blood NSE concentrations. Conclusions: The development of SHI in ICH is pathogenetically related to the permeability of the blood-brain barrier for tissue breakdown products and other neuroinflammatory factors.
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| | - Liliya Solomatina
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| | - Peter Bochkarev
- Sverdlovsk Regional Clinical Hospital No. 1 (GAUZ SO “SOKB No. 1”), 620102 Yekaterinburg, Russia;
| | - Alevtina Zudova
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| | - Valeriy Chereshnev
- Institute of Immunology and Physiology Ural Branch of The Russian Academy of Sciences, 620078 Yekaterinburg, Russia; (E.G.); (A.Z.); (V.C.)
| |
Collapse
|
23
|
Zheng Y, Duan C, Yu H, Jiang G, Shen H, Li H, Wang Z, Zhou X, Li X, He M. Transcriptomic analysis reveals novel hub genes associated with astrocyte autophagy in intracerebral hemorrhage. Front Aging Neurosci 2024; 16:1433094. [PMID: 39026989 PMCID: PMC11256209 DOI: 10.3389/fnagi.2024.1433094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Neuroinflammation serves as a critical local defense mechanism against secondary brain injury following intracerebral hemorrhage (ICH), and astrocytes play a prominent role in this process. In this study, we investigated astrocytic changes during the inflammatory state after ICH to identify new targets for improving the inflammatory response. Methods We stimulated mouse astrocytes with lipopolysaccharide (LPS) in vitro and analyzed their transcriptomes via ribonucleic acid sequencing. We created an ICH model in living organisms by injecting autologous blood. Results RNA sequencing revealed that 2,717 genes were differentially expressed in the LPS group compared to those in the saline group, with notable enrichment of the autophagic pathway. By intersecting the 2,717 differentially expressed genes (DEGs) with autophagy-related genes, we identified 36 autophagy-related DEGs and seven hub genes. Previous studies and quantitative reverse transcription-polymerase chain reaction results confirmed the increased expression of phosphatidylinositol 3-kinase catalytic subunit type 3 (Pik3c3), AKT serine/threonine kinase 1 (Akt1), and unc-51 like autophagy activating kinase 2 (Ulk2) in astrocytes after ICH. Transcription factors and target miRNAs were identified for the final three DEGs, and 3-methyladenine and leupeptin were identified as potential therapeutic agents for ICH. Conclusion Our findings suggest that astrocyte autophagy plays a critical role in ICH complexity, and that Pik3c3, Akt1, and Ulk2 may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Haoyun Yu
- Soochow Medical College of Soochow University, Suzhou, China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiaohan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, Wang TJ, Wang J, Wang M, Cheng N, Yuan X, Chen X, Jiang B, Wang J. Nanozymes: Potential Therapies for Reactive Oxygen Species Overproduction and Inflammation in Ischemic Stroke and Traumatic Brain Injury. ACS NANO 2024; 18:16450-16467. [PMID: 38897929 DOI: 10.1021/acsnano.4c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanozymes, which can selectively scavenge reactive oxygen species (ROS), have recently emerged as promising candidates for treating ischemic stroke and traumatic brain injury (TBI) in preclinical models. ROS overproduction during the early phase of these diseases leads to oxidative brain damage, which has been a major cause of mortality worldwide. However, the clinical application of ROS-scavenging enzymes is limited by their short in vivo half-life and inability to cross the blood-brain barrier. Nanozymes, which mimic the catalytic function of natural enzymes, have several advantages, including cost-effectiveness, high stability, and easy storage. These advantages render them superior to natural enzymes for disease diagnosis and therapeutic interventions. This review highlights recent advancements in nanozyme applications for ischemic stroke and TBI, emphasizing their potential to mitigate the detrimental effect of ROS overproduction, oxidative brain damage, inflammation, and blood-brain barrier compromise. Therefore, nanozymes represent a promising treatment modality for ROS overproduction conditions in future medical practices.
Collapse
Affiliation(s)
- Yunfan Yang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zixiang Li
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
- School of International Education, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Tom J Wang
- Program in Behavioral Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiqian Yuan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
25
|
Jia P, Peng Q, Fan X, Zhang Y, Xu H, Li J, Sonita H, Liu S, Le A, Hu Q, Zhao T, Zhang S, Wang J, Zille M, Jiang C, Chen X, Wang J. Immune-mediated disruption of the blood-brain barrier after intracerebral hemorrhage: Insights and potential therapeutic targets. CNS Neurosci Ther 2024; 30:e14853. [PMID: 39034473 PMCID: PMC11260770 DOI: 10.1111/cns.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
AIMS Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.
Collapse
Affiliation(s)
- Peijun Jia
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qinfeng Peng
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yumeng Zhang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Hanxiao Xu
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Houn Sonita
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Simon Liu
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Anh Le
- George Washington School of Medicine and Health SciencesWashingtonDCUSA
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouHenanChina
| | - Ting Zhao
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shijie Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
26
|
Wang Y, Chen L. Identification of Senescence-Related Biomarkers and Regulatory Networks in Intracerebral Hemorrhage. Neurologist 2024; 29:225-232. [PMID: 38251721 DOI: 10.1097/nrl.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Intracerebral hemorrhage (ICH) is a severe neurological disorder with substantial societal implications. Cellular senescence plays a critical role in ICH pathogenesis. This study aims to identify senescence-related biomarkers in ICH for diagnostic and therapeutic purposes. METHODS Raw data from GSE24265 in Gene Expression Omnibus was downloaded. Senescence-related genes were acquired from CellAge. Differential gene analysis was done between patients with ICH and controls. The intersection of ICH differentially expressed genes and senescence-related genes for senescence-related ICH genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network was constructed through the Search Tool for the Retrieval of Interacting Genes. Single sample gene set enrichment analysis was done for immune cell infiltration and function evaluation in control and ICH groups. miRWalk2.0 database was used for microRNA predictions targeting ICH biomarkers. Transcriptional regulatory relationships unraveled by sentence-based text mining database was employed to predict transcription factors regulating identified biomarkers. RESULTS Thirteen senescence-related ICH genes were identified. They were primarily enriched in the positive regulation of angiogenesis and the Advanced Glycation End Product -Receptor for AGE signaling pathway in diabetic complications. Validation in the GSE149317 data set and receiver operating characteristic analysis highlighted Caveolin 1, C-X-C Motif Chemokine Ligand 1, ETS proto-oncogene 1, transcription factor, and Serpin Family E Member 1 as potential ICH biomarkers. Single sample gene set enrichment analysis revealed increased Type 2 T helper cell 2_cells, Treg cells, and immune functions like Antigen-presenting cells_co_stimulation in patients with ICH. Fourteen microRNA, including has-miR-6728-3p, were predicted to regulate these biomarkers. transcription factors such as PPARG, RARA, HMGA1, and NFKB1 were identified as potential regulators of the ICH biomarkers. CONCLUSION Caveolin 1, C-X-C Motif Chemokine Ligand 1, ETS proto-oncogene 1, transcription factor, and Serpin Family E Member 1 may serve as valuable biomarkers in ICH. Targeting these genes could contribute to ICH prevention and treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of Basic Medicine, Cangzhou Medical College
| | - Ling Chen
- Department of Gynaecology, People's Hospital Affiliated to Cangzhou Medical College, Cangzhou, China
| |
Collapse
|
27
|
Niazi SK, Mariam Z, Magoola M. Engineered Antibodies to Improve Efficacy against Neurodegenerative Disorders. Int J Mol Sci 2024; 25:6683. [PMID: 38928395 PMCID: PMC11203520 DOI: 10.3390/ijms25126683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antibodies that can selectively remove rogue proteins in the brain are an obvious choice to treat neurodegenerative disorders (NDs), but after decades of efforts, only two antibodies to treat Alzheimer's disease are approved, dozens are in the testing phase, and one was withdrawn, and the other halted, likely due to efficacy issues. However, these outcomes should have been evident since these antibodies cannot enter the brain sufficiently due to the blood-brain barrier (BBB) protectant. However, all products can be rejuvenated by binding them with transferrin, preferably as smaller fragments. This model can be tested quickly and at a low cost and should be applied to bapineuzumab, solanezumab, crenezumab, gantenerumab, aducanumab, lecanemab, donanemab, cinpanemab, and gantenerumab, and their fragments. This paper demonstrates that conjugating with transferrin does not alter the binding to brain proteins such as amyloid-β (Aβ) and α-synuclein. We also present a selection of conjugate designs that will allow cleavage upon entering the brain to prevent their exocytosis while keeping the fragments connected to enable optimal binding to proteins. The identified products can be readily tested and returned to patients with the lowest regulatory cost and delays. These engineered antibodies can be manufactured by recombinant engineering, preferably by mRNA technology, as a more affordable solution to meet the dire need to treat neurodegenerative disorders effectively.
Collapse
Affiliation(s)
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK;
| | | |
Collapse
|
28
|
Jiang ST, Lian SY, Sun YH, Pan MB, Wang B, Wang H, Hua J, Wang YC, Wang QL, Dong YF. The oxytocin receptor is essential for the protective effect of pair housing on post-stroke depression in mice. Exp Gerontol 2024; 190:112432. [PMID: 38614224 DOI: 10.1016/j.exger.2024.112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The beneficial effect of social interaction in mitigating the incidence of post-stroke depression (PSD) and ameliorating depressive symptoms has been consistently demonstrated through preclinical and clinical studies. However, the underlying relationship with oxytocin requires further investigation. In light of this, the present study aimed to explore the protective effect of pair housing on the development of PSD and the potential relationship with oxytocin receptors. The PSD model was induced by middle cerebral artery occlusion (MCAO) for 50 min, followed by 4-week isolated housing and restrained stress. Subsequently, each mouse in the pair-housing group (PH) was pair-housed with an isosexual healthy partner. Another group was continuously administrated fluoxetine (10 mg/Kg, i.p, once a day) for 3 weeks. To elucidate the potential role of oxytocin, we subjected pair-housed PSD mice to treatment with an oxytocin receptor (OXTR) antagonist (L368,889) (5 mg/Kg, i.p, once a day) for 3 weeks. At 31 to 32 days after MCAO, anxiety- and depressive-like behaviors were assessed using sucrose consumption, forced swim test, and tail-suspension test. The results showed that pair housing significantly improved post-stroke depression to an extent comparable to that of fluoxetine treatment. Furthermore, pair housing significantly decreased corticosterone in serum, increasing OXT mRNA expression in the hypothalamus. Treatment with L368,889 essentially reversed the effect of pair housing, with no discernible sex differences apart from changes in body weight. Pair housing increased hippocampal serotonin (5-HT), but treatment with L368,889 had no significant impact. Additionally, pair housing effectively reduced the number of reactive astrocytes and increased Nissl's body in the cortex and hippocampal CA3 regions. Correspondingly, treatment with L368,889 significantly reversed the changes in the Nissl's body and reactive astrocytes. Moreover, pair housing downregulated mRNA levels of TNF-α, IL-1β, and IL-6 in the cortex caused by PSD, which was also reversed by treatment with L368,889. In conclusion, pair housing protects against the development of PSD depending on OXT and OXTR in the brain, with no significant divergence based on sex. These findings provide valuable insights into the potential of social interaction and oxytocin as therapeutic targets for PSD. Further research into the underlying mechanisms of these effects may contribute to the development of novel treatments for PSD.
Collapse
Affiliation(s)
- Su-Ting Jiang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Ying Lian
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao-Huan Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei-Bo Pan
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Hua
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi-Chen Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiu-Ling Wang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
29
|
Xu Y, Wang K, Dai Y, Yang W, Ru X, Li W, Feng H, Zhu G, Hu Q, Chen Y. Peripheral cytokine interleukin-10 alleviates perihematomal edema after intracerebral hemorrhage via interleukin-10 receptor/JAK1/STAT3 signaling. CNS Neurosci Ther 2024; 30:e14796. [PMID: 38867395 PMCID: PMC11168964 DOI: 10.1111/cns.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS The extent of perihematomal edema following intracerebral hemorrhage (ICH) significantly impacts patient prognosis, and disruption of the blood-brain barrier (BBB) exacerbates perihematomal edema. However, the role of peripheral IL-10 in mitigating BBB disruption through pathways that link peripheral and central nervous system signals remains poorly understood. METHODS Recombinant IL-10 was administered to ICH model mice via caudal vein injection, an IL-10-inhibiting adeno-associated virus and an IL-10 receptor knockout plasmid were delivered intraventricularly, and neurobehavioral deficits, perihematomal edema, BBB disruption, and the expression of JAK1 and STAT3 were evaluated. RESULTS Our study demonstrated that the peripheral cytokine IL-10 mitigated BBB breakdown, perihematomal edema, and neurobehavioral deficits after ICH and that IL-10 deficiency reversed these effects, likely through the IL-10R/JAK1/STAT3 signaling pathway. CONCLUSIONS Peripheral IL-10 has the potential to reduce BBB damage and perihematomal edema following ICH and improve patient prognosis.
Collapse
Affiliation(s)
- Yao Xu
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Kaishan Wang
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yalan Dai
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Wei Yang
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Gang Zhu
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qin Hu
- Department of Neurosurgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma and Chemical Poisoning, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Chongqing Clinical Research Center for Neurosurgery, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
30
|
Zhang M, Han X, Yan L, Fu Y, Kou H, Shang C, Wang J, Liu H, Jiang C, Wang J, Cheng T. Inflammatory response in traumatic brain and spinal cord injury: The role of XCL1-XCR1 axis and T cells. CNS Neurosci Ther 2024; 30:e14781. [PMID: 38887195 PMCID: PMC11183917 DOI: 10.1111/cns.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaonan Han
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liyan Yan
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yikun Fu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hongwei Kou
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chunfeng Shang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Hongjian Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tian Cheng
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
31
|
Li Y, Yu Q, Peng H, Mingjun X, Xu W, Zheng T, Zhao T, Xia M, Wu J, Stavrinou P, Goldbrunner R, Xie Y, Zhang G, Feng Y, Guan Y, Zheng F, Sun P. Jingfang granules protects against intracerebral hemorrhage by inhibiting neuroinflammation and protecting blood-brain barrier damage. Aging (Albany NY) 2024; 16:9023-9046. [PMID: 38809507 PMCID: PMC11164481 DOI: 10.18632/aging.205854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/10/2024] [Indexed: 05/30/2024]
Abstract
Intracerebral hemorrhage (ICH) can induce intensive oxidative stress, neuroinflammation, and brain cell apoptosis. However, conventional methods for ICH treatment have many disadvantages. There is an urgent need for alternative, effective therapies with minimal side effects. Pharmacodynamics experiment, molecular docking, network pharmacology, and metabolomics were adopted to investigate the treatment and its mechanism of Jingfang Granules (JFG) in ICH. In this study, we investigated the therapeutic effects of JFG on ICH using behavioral, brain water content and Magnetic resonance imaging experiments. However, the key active component and targets of JFG remain unknown. Here we verified that JFG was beneficial to improve brain injury after ICH. A network pharmacology analysis revealed that the anti-inflammatory effect of JFG is predominantly mediated by its activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway through Luteolin, (+)-Anomalin and Phaseol and their targeting of AKT1, tumor necrosis factorα (TNF-α), and interleukin-1β (IL-1β). Molecular docking analyses revealed an average affinity of -8.633 kcal/mol, indicating a binding strength of less than -5 kcal/mol. Metabolomic analysis showed that JFG exerted its therapeutic effect on ICH by regulating metabolic pathways, such as the metabolism of taurine and hypotaurine, biosynthesis of valine, leucine, and isoleucine. In conclusion, we demonstrated that JFG attenuated neuroinflammation and BBB injury subsequent to ICH by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yanling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Qingying Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyuan Peng
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Xie Mingjun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - WenHua Xu
- Prevention and Treatment Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Tingting Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Tingting Zhao
- Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Mengyao Xia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Jibiao Wu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Yicheng Xie
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| |
Collapse
|
32
|
林 容, 樊 朝, 崔 文, 冷 静, 贺 民, 王 焱. [Relationship Between the Migration of Endogenous Neural Stem Cells and the Pattern of Change in Immune Cell Phenotypes in the Microenvironment After Intracerebral Hemorrhage in Rats]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:635-640. [PMID: 38948290 PMCID: PMC11211791 DOI: 10.12182/20240560402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 07/02/2024]
Abstract
Objective Intracerebral hemorrhage (ICH), the second most common type of stroke, can cause long-lasting disability in the afflicted patients. The study was conducted to examine the patterns of change in endogenous neural stem cells (eNSCs) and in the regenerative microenvironment after ICH, to observe the relationship between the migration of eNSCs and the pattern of change in the polarization state of immune cells in the microenvironment, and provide a research basis for research on clinical nerve repair. Methods The collagenase injection method was used for modeling. The ICH model was induced in adult female Sprague-Dawley (SD) rats by injecting type VII collagenase (2 U) into the brain tissue of rats. All the experimental rats weighed 280-300 g. In order to simulate the ICU at different time points, including the acute phase (within 1 week), subacute phase (1-3 weeks), and the chronic phase (over 3 weeks), brain tissues were harvested at 3 day post injection (3 DPI), 10 DPI, 20 DPI, and 30 DPI to evaluate the modeling effect. Immunofluorescence staining of the brain tissue sections was performed with DCX antibody to observe the pattern of change in the migration of eNSCs in the brain tissue at different time points. Immunofluorescence staining of brain tissue sections was performed with CD206 antibody and CD86 antibody for respective observation of the pattern of change in pro-inflammatory (M1-type) and anti-inflammatory (M2-type) immune cells in the regenerative microenvironment of the brain tissue after ICM. Results Spontaneous ICH was successfully induced by injecting type Ⅶ collagenase into the brain tissue of SD rats. The volume of the hematoma formed started to gradually increase at 3 DPI and reached its maximum at 10 DPI. After that, the hematoma was gradually absorbed and was completely absorbed by 30 DPI. Analysis of the pattern of changes in eNSCs in the brain tissue showed that a small number of eNSCs were activated at 3 DPI, but very soon their number started to decrease. By 10 DPI, eNSCs gradually began to increase. A large number of eNSCs migrated to the hemorrhage site at 20 DPI. Then the number of eNSCs decreased significantly at 30 DPI (P<0.01). Analysis of the immune microenvironment of the brain tissue showed that pro-inflammatory (M1 type) immune cells increased significantly at 10 and 20 DPI (P<0.01) and decreased at 30 DPI. Anti-inflammatory (M2 type) immune cells began to increase gradually at 3 DPI, decreased significantly at 20 DPI (P<0.05), and then showed an increase at 30 DPI. Conclusion After ICH in rats, eNSCs migrating toward the site of ICH first increase and then decrease. The immune microenvironment demonstrates a pattern of change in which inflammation is suppressed at first, then promoted, and finally suppressed again. Inflammation may have a stimulatory effect on the migration of eNSCs, but excessive inflammatory activation has an inhibitory effect on the differentiation and further activation of eNSCs. After ICH, the early stage of repair and protection (10 d) and the subacute phase (20 d) may provide the best opportunities for intervention.
Collapse
Affiliation(s)
- 容旭 林
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 朝凤 樊
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 文耀 崔
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 静思 冷
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 民 贺
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 焱超 王
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+材料”中心 (成都 610044)Med-X Center of Materials, Sichuan University, Chengdu 610044, China
| |
Collapse
|
33
|
Zhao J, Chen C, Ge L, Jiang Z, Hu Z, Yin L. TAK1 inhibition mitigates intracerebral hemorrhage-induced brain injury through reduction of oxidative stress and neuronal pyroptosis via the NRF2 signaling pathway. Front Immunol 2024; 15:1386780. [PMID: 38756773 PMCID: PMC11096530 DOI: 10.3389/fimmu.2024.1386780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-β-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihong Yin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Li C, Jiang M, Fang Z, Chen Z, Li L, Liu Z, Wang J, Yin X, Wang J, Wu M. Current evidence of synaptic dysfunction after stroke: Cellular and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14744. [PMID: 38727249 PMCID: PMC11084978 DOI: 10.1111/cns.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhi‐Ting Fang
- Department of Pathophysiology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Li Li
- Department of Intensive Care UnitThe Affiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
35
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Zheng S, Banerji R, LeBourdais R, Zhang S, DuBois E, O’Shea T, Nia HT. Alteration of mechanical stresses in the murine brain by age and hemorrhagic stroke. PNAS NEXUS 2024; 3:pgae141. [PMID: 38659974 PMCID: PMC11042661 DOI: 10.1093/pnasnexus/pgae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Residual mechanical stresses, also known as solid stresses, emerge during rapid differential growth or remodeling of tissues, as observed in morphogenesis and tumor growth. While residual stresses typically dissipate in most healthy adult organs, as the growth rate decreases, high residual stresses have been reported in mature, healthy brains. However, the origins and consequences of residual mechanical stresses in the brain across health, aging, and disease remain poorly understood. Here, we utilized and validated a previously developed method to map residual mechanical stresses in the brains of mice across three age groups: 5-7 days, 8-12 weeks, and 22 months. We found that residual solid stress rapidly increases from 5-7 days to 8-12 weeks and remains high in mature 22 months mice brains. Three-dimensional mapping revealed unevenly distributed residual stresses from the anterior to posterior coronal brain sections. Since the brain is rich in negatively charged hyaluronic acid, we evaluated the contribution of charged extracellular matrix (ECM) constituents in maintaining solid stress levels. We found that lower ionic strength leads to elevated solid stresses, consistent with its unshielding effect and the subsequent expansion of charged ECM components. Lastly, we demonstrated that hemorrhagic stroke, accompanied by loss of cellular density, resulted in decreased residual stress in the murine brain. Our findings contribute to a better understanding of spatiotemporal alterations of residual solid stresses in healthy and diseased brains, a crucial step toward uncovering the biological and immunological consequences of this understudied mechanical phenotype in the brain.
Collapse
Affiliation(s)
- Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rob LeBourdais
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric DuBois
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Timothy O’Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
37
|
Li W, Wang J, Tang C, Lv X, Zhu S. A Prospective Cohort Study of Elevated Serum NLRP1 Levels to Prognosticate Neurological Outcome After Acute Intracerebral Hemorrhage at a Single Academic Institution. Neuropsychiatr Dis Treat 2024; 20:737-753. [PMID: 38566883 PMCID: PMC10986417 DOI: 10.2147/ndt.s455049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 1 (NLRP1) participates in neuroinflammation. This study aimed to identify serum NLRP as a potential prognostic biomarker of acute intracerebral hemorrhage (ICH). Methods This prospective cohort study enrolled 145 patients with supratentorial ICH and 51 healthy controls. Serum NLRP1 levels were quantified on admission of all 145 patients, on days 1, 3, 5, 7, and 10 after stroke in 51 of 145 patients and at entry into the study of controls. Poststroke 6-month modified Rankin Scale (mRS) scores of 3-6 signified a poor prognosis. Results Compared to controls, patients had prominently increased serum NLRP1 levels until day 10 after ICH, with the highest levels at days 1 and 3. Serum NLRP1 levels were independently correlated with National Institutes of Health Stroke Scale (NIHSS) scores, hematoma volume and six-month mRS scores, and independently predicted six-month bad prognosis. A linear relationship was observed between serum NLRP1 levels and the risk of poor prognosis in a restricted cubic spline. Under the receiver operating characteristic (ROC) curve, serum NLRP levels efficiently discriminated poor prognosis. Serum NLRP1, NIHSS, and hematoma volume were merged into a prognosis prediction model, which was portrayed using a nomogram. Good performance of the model was verified using calibration curve, decision curve, and ROC curve. Conclusion Serum NLRP1 levels are elevated during the early period following ICH and are independently related to hemorrhagic severity and poor prognosis, suggesting that serum NLRP1 may represent a promising prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jun Wang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chao Tang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xuan Lv
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Suijun Zhu
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, People’s Republic of China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
38
|
Chen S, Tan S, Hou W, Chen X, Bai L, Zou Y, Sun W, Zhang Z, Zhang Y. Efficacy and safety of standardized Ginkgo biloba extract as adjuvant therapy for intracerebral hemorrhage in China: A systematic review and meta-analysis. Heliyon 2024; 10:e26861. [PMID: 38439880 PMCID: PMC10909711 DOI: 10.1016/j.heliyon.2024.e26861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Objective The aim of this study was to systematically review the clinical efficacy and safety of standardized Ginkgo biloba extract (GBE) in the adjuvant treatment of intracerebral hemorrhage (ICH). Methods Relevant RCTs on GBE as adjuvant therapy for ICH were searched in seven Chinese and English databases. Data extraction of the included literature was performed after duplicate checking and screening, and Stata 15.1 software was applied for data analysis. Results With a total of 19 RCTs, the meta-analysis results showed that: Compared with conventional treatment alone, GBE combined with conventional treatment had a higher effective rate; NIHSS score and CSS score were lower; The residual hematoma was less. The volume of cerebral edema was smaller. ADL score was higher. MoCA score was higher. The serum levels of hs-CRP, TNF-α and IL-6 were lower; No significant difference was observed in the incidence of adverse reactions between conventional treatment alone and GBE combined with conventional treatment. Conclusion This study suggests that GBE as adjuvant therapy for ICH has better efficacy and is relatively safe compared with conventional treatment alone. However, due to the quality and quantity of included studies, further validation by more methodologically rigorous and multi-center studies with larger sample sizes is needed.
Collapse
Affiliation(s)
- Shikai Chen
- Shanghai University of Traditional Chinese Medicine, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Shufa Tan
- Shaanxi University of Chinese Medicine, China
| | - Wen Hou
- Affiliated Hospital of Shaanxi University of Chinese Medicine, China
| | - Xu Chen
- Xinjiang Medical University, China
| | - Lei Bai
- Shaanxi University of Chinese Medicine, China
| | | | - Weitong Sun
- Shaanxi University of Chinese Medicine, China
| | - Zhao Zhang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, China
| | - Yi Zhang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, China
| |
Collapse
|
39
|
Han X, Zhang M, Yan L, Fu Y, Kou H, Shang C, Wang J, Liu H, Jiang C, Wang J, Cheng T. Role of dendritic cells in spinal cord injury. CNS Neurosci Ther 2024; 30:e14593. [PMID: 38528832 PMCID: PMC10964036 DOI: 10.1111/cns.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Inflammation can worsen spinal cord injury (SCI), with dendritic cells (DCs) playing a crucial role in the inflammatory response. They mediate T lymphocyte differentiation, activate microglia, and release cytokines like NT-3. Moreover, DCs can promote neural stem cell survival and guide them toward neuron differentiation, positively impacting SCI outcomes. OBJECTIVE This review aims to summarize the role of DCs in SCI-related inflammation and identify potential therapeutic targets for treating SCI. METHODS Literature in PubMed and Web of Science was reviewed using critical terms related to DCs and SCI. RESULTS The study indicates that DCs can activate microglia and astrocytes, promote T-cell differentiation, increase neurotrophin release at the injury site, and subsequently reduce secondary brain injury and enhance functional recovery in the spinal cord. CONCLUSIONS This review highlights the repair mechanisms of DCs and their potential therapeutic potential for SCI.
Collapse
Affiliation(s)
- Xiaonan Han
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Mingkang Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liyan Yan
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yikun Fu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hongwei Kou
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chunfeng Shang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Hongjian Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chao Jiang
- Department of NeurologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jian Wang
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tian Cheng
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
40
|
Shen J, Xue X, Yuan H, Song Y, Wang J, Cui R, Ke K. Deubiquitylating Enzyme OTUB1 Facilitates Neuronal Survival After Intracerebral Hemorrhage Via Inhibiting NF-κB-triggered Apoptotic Cascades. Mol Neurobiol 2024; 61:1726-1736. [PMID: 37775718 DOI: 10.1007/s12035-023-03676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The deubiquitylase OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) has been implicated in the pathogenesis of various human diseases. However, the molecular mechanism by which OTUB1 participates in the pathogenesis of intracerebral hemorrhage (ICH) remains elusive. In the present study, we established an autologous whole blood fusion-induced ICH model in C57BL/6 J mice. We showed that the upregulation of OTUB1 contributes to the attenuation of Nuclear factor kappa B (NF-κB) and its downstream apoptotic signaling after ICH. OTUB1 directly associates with NF-κB precursors p105 and p100 after ICH, leading to attenuated polyubiquitylation of p105 and p100. Moreover, we revealed that NF-κB signaling was modestly activated both in ICH tissues and hemin-exposed HT-22 neuronal cells, accompanied with the activation of NF-κB downstream pro-apoptotic signaling. Notably, overexpression of OTUB1 strongly inhibited hemin-induced NF-κB activation, whereas interference of OTUB1 led to the opposite effect. Finally, we revealed that lentiviral transduction of OTUB1 markedly ameliorated hemin-induced apoptotic signaling and HT-22 neuronal death. Collectively, these findings suggest that the upregulation of OTUB1 serves as a neuroprotective mechanism in antagonizing neuroinflammation-induced NF-κB signaling and neuronal death, shed new light on manipulating intracellular deubiquitylating pathways as novel interventive approaches against ICH-induced secondary neuronal damage and death.
Collapse
Affiliation(s)
- Jiabing Shen
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaoli Xue
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Huimin Yuan
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Yan Song
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Affiliated Hai'an Hospital of Nantong University and Hai'an People's Hospital, Hai'an, People's Republic of China
| | - Ronghui Cui
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
41
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
42
|
Shirzad S, Tayaranian Marvian M, Abroumand Gholami A, Ghrehbaghi M, Marefati N, Salmani H, Mahdavizade V, Hosseini M, Vafaee F. Unveiling the Effects of Left Hemispheric Intracerebral Hemorrhage on Long-term Potentiation and Inflammation in the Bilateral Hippocampus: A Preclinical Study. J Stroke Cerebrovasc Dis 2024; 33:107523. [PMID: 38198945 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Changes in cognition and memory are common complications of intracerebral hemorrhage (ICH), although the exact cause of this phenomenon is still unknown. The objectives of our project were to assess the changes in long-term potentiation, inflammation, and cell damage in the bilateral hippocampus following striatal intracerebral hemorrhage at different time points. MATERIALS AND METHODS Unilateral ICH was induced in the striatum of 96 Wistar rats (6 control groups and 6 ICH groups). We measured changes in synaptic inputs in the bilateral hippocampus using the field potential recording method on days 3, 7, and 14 after ICH. After staining the section with hematoxylin, the volume and number of hippocampal cells were measured. The number of NF-κB positive cells was evaluated using the immunohistochemistry method. RESULTS There was a significant change in the amplitude and slope of the hippocampal excitatory potential in the ICH group compared to the sham group, but only on the 7th day after surgery. Specifically, the ipsilateral hippocampus in the ICH-7 group showed an increase in stimulation recording in 90 minutes compared to the sham-7 group (p<0.0001), while the contralateral hippocampus in the ICH-7 group exhibited a decrease in potential recording compared to the sham-7 group (p<0.0001). By day 14, the ICH group had a lower cell density in both the ipsilateral (p<0.05) and contralateral hippocampus (p<0.05) compared to the sham group, but there was no significant change in the hippocampal volume between the groups at any time interval. Furthermore, our immunohistochemical analysis revealed that the number of NF-kB-positive cells in both hemispheres of the ICH groups was significantly greater than that of the sham groups across all time intervals. CONCLUSIONS These findings suggest that striatal injury may lead to inflammation and cell death in the bilateral hippocampus, which can impair cognitive function after ICH.
Collapse
Affiliation(s)
- Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arman Abroumand Gholami
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cellular Biology and Anatomical Sciences, School of Medicine Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Ghrehbaghi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Salmani
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Vahid Mahdavizade
- Student Research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Xu S, Wu Q, Tang Z, Li P. Identification and Analysis of DNA Methylation Inflammation-Related Key Genes in Intracerebral Hemorrhage. Biochem Genet 2024; 62:395-412. [PMID: 37354351 DOI: 10.1007/s10528-023-10430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Inflammation and DNA methylation have been reported to play key roles in intracerebral hemorrhage (ICH). This study aimed to investigate new diagnostic biomarkers associated with inflammation and DNA methylation using a comprehensive bioinformatics approaches. GSE179759 and GSE125512 were collected from the Gene Expression Omnibus database, and 3222 inflammation-related genes (IFRGs) were downloaded from the Molecular Signatures Database. Key differentially expressed methylation-regulated and inflammation-related genes (DE-MIRGs) were identified by overlapping methylation-regulated differentially expressed genes (MeDEGs) between patients with ICH and control samples, module genes from weighted correlation network analysis, and IFRGs. Functional annotation of DE-MIRGs was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) network was constructed to clarify the interrelationships between different DE-MIRGs. The key genes were categorized by least absolute shrinkage selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), and gene set enrichment analysis (GSEA). A total of 22 DE-MIRGs were acquired from 451 MeDEGs, 3222 IFRGs, and 302 module genes, and were mainly enriched in the GO terms of wound healing, blood coagulation, and hemostasis; and the KEGG pathways of PI3K/Akt signaling, focal adhesion, and regulation of actin cytoskeleton. A PPI network with 22 nodes and 87 edges was constructed based on the 22 DE-MIRGs, 11 of which were selected for key gene selection. Two 2 key genes (SELP and S100A4) were identified using LASSO and SVM-RFE. Finally, SELP was mainly enriched in cell morphogenesis involved in differentiation, cytoplasmic translation, and actin binding of GO terms, and the KEGG pathway including endocytosis, focal adhesion, and platelet activation. S100A4 was mainly enriched in GO terms including mitochondrial inner membrane; mitochondrial respirasome and lysosomal membrane; and the KEGG pathway of oxidative phosphorylation, regulation of actin cytoskeleton, and chemical carcinogenesis-reactive oxygen species. Twenty-two DE-MIRGs-associated inflammation and DNA methylation were identified between patients with ICH and normal controls, and two key genes (SELP and S100A4) were identified and regarded as biomarkers for ICH, which could provide the research foundation for further investigation of the pathological mechanism of ICH.
Collapse
Affiliation(s)
- Sanpeng Xu
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Qiong Wu
- Xin Yang Central Hospital, Xinyang, China
| | - Zhe Tang
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ping Li
- Changchun University of Traditional Chinese Medicine, Changchun, China.
| |
Collapse
|
44
|
Kocanci FG, Goksu AY. Anti-inflammatory and antioxidative actions of tacrolimus (FK506) on human microglial HMC3 cell line. Scand J Immunol 2024; 99:e13339. [PMID: 38441214 DOI: 10.1111/sji.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 03/07/2024]
Abstract
Microglial cells are indispensable for the normal development and functioning of neurons in the central nervous system, where they play a crucial role in maintaining brain homeostasis by surveilling the microenvironment for signs of injury or stress and responding accordingly. However, in neurodegenerative diseases, the density and phenotypes of microglial cells undergo changes, leading to chronic activation and inflammation. Shifting the focus from neurons to microglia in drug discovery for neurodegenerative diseases has become an important therapeutic target. This study was aimed to investigate the potential of Tacrolimus (FK506) an FDA-approved calcineurin inhibitor, to modulate the pathology of neurodegenerative diseases through anti-inflammatory and antioxidative effects on microglial activation. The human microglia clone 3 (HMC3) cells were exposed to 1 μg/mL LPS in the presence and absence of doses of FK506. Survival rates of cells were determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method. Morphological evaluation of cells showed that FK506 restored the normal morphology of activated microglia. Furthermore, FK506 treatment increases the total antioxidant capacity and reduces the total oxidative capacity, indicating its potential antioxidant effects. Data from ELISA and RT-PCR analyses showed that LPS abolished its promoting effects on the release of proinflammatory IL-1β and IL-6 cytokines in HMC3 cells, reflecting the anti-inflammatory effect of FK506. These findings support the idea that FK506 could be a promising therapeutic agent for neurodegenerative diseases by modulating microglial activation and reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Fatma Gonca Kocanci
- Department of Medical Laboratory Techniques, Vocational High School of Health Services, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
| | - Azize Yasemin Goksu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
45
|
Qu Y, Yang Y, Sun X, Ma HY, Zhang P, Abuduxukuer R, Zhu HJ, Liu J, Zhang PD, Guo ZN. Heart Rate Variability in Patients with Spontaneous Intracerebral Hemorrhage and its Relationship with Clinical Outcomes. Neurocrit Care 2024; 40:282-291. [PMID: 36991176 DOI: 10.1007/s12028-023-01704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/22/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Although abnormal heart rate variability (HRV) is frequently observed in patients with spontaneous intracerebral hemorrhage (ICH), its time course and presentation of different indices remain unclear, and few studies have focused on its association with clinical outcomes. METHODS We prospectively recruited consecutive patients with spontaneous ICH between June 2014 and June 2021. HRV was evaluated twice during hospitalization (within 7 days and 10-14 days after stroke). Time and frequency domain indices were calculated. A modified Rankin Scale score ≥ 3 at 3 months was defined as a poor outcome. RESULTS Finally, 122 patients with ICH and 122 age- and sex-matched volunteers were included. Compared with controls, time domain and absolute frequency domain HRV parameters (total power, low frequency [LF], and high frequency [HF]) in the ICH group were significantly decreased within 7 days and 10-14 days. For relative values, normalized LF (LF%) and LF/HF were significantly higher, whereas normalized HF (HF%) was significantly lower, in the patient group than in the control group. Furthermore, LF% and HF% measured at 10-14 days were independently associated with 3-month outcomes. CONCLUSIONS HRV values were impaired significantly within 14 days after ICH. Furthermore, HRV indices measured 10-14 days after ICH were independently associated with 3-month outcomes.
Collapse
Affiliation(s)
- Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Hong-Yin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan-Deng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
46
|
Cheng M, Li T, Hu E, Yan Q, Li H, Wang Y, Luo J, Tang T. A novel strategy of integrating network pharmacology and transcriptome reveals antiapoptotic mechanisms of Buyang Huanwu Decoction in treating intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117123. [PMID: 37673200 DOI: 10.1016/j.jep.2023.117123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), as a traditional Chinese medical prescription, has been used to treat intracerebral hemorrhage (ICH) for hundreds of years, but the antiapoptotic properties have not yet been studied. AIM OF THE STUDY This study aims to elucidate the antiapoptotic mechanism of BYHWD in ICH. MATERIALS AND METHODS The therapeutic effect of BYHWD on ICH was assessed by modified neurological severity scores (mNSS), foot fault, and histopathological staining. Then, we used a modified comprehensive strategy by integrating transcriptome and network pharmacology to reveal the underlying mechanism. TUNEL assay, qRT-PCR, and western blot were further applied to evaluate the antiapoptotic effect of BYHWD on ICH. Dual-luciferase reporter assay and plasmid transfections were implemented to validate the potential competing endogenous RNAs (ceRNA) mechanism of Sh2b3. RESULTS Network pharmacology analysis indicated that the regulation of the apoptotic process was the highest enriched GO term, and that MAP kinase activity, ERK1, and ERK2 cascade were strongly correlated. Transcriptome analysis screened 180 differentially expressed mRNAs, which were highly enriched in the immune system process and negative regulation of programmed cell death. By checking the literature, we found that Sh2b3 was of great importance to apoptosis by modulating MAPK cascades. TUNEL assay validated the anti-apoptotic effect of BYHWD. Moreover, BYHWD was proven to regulate the Sh2b3-mediated ERK1/2 signaling pathway in ICH mice by qRT-PCR and western blot. We further explored the lncRNA-miRNA-mRNA network underlying the therapeutic effect, among which 4933404O12Rik/miR-185-5p is the upstream regulatory mechanism of Sh2b3. CONCLUSIONS We explored the antiapoptotic mechanism of BYHWD in treating ICH by a novel integrated strategy, which involved the 4933404O12Rik/miR-185-5p/Sh2b3 ceRNAs axis.
Collapse
Affiliation(s)
- Menghan Cheng
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qiuju Yan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, 410219, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jiekun Luo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
47
|
Cui J, Wang H, Liu S, Zhao Y. New Insights into Roles of IL-7R Gene as a Therapeutic Target Following Intracerebral Hemorrhage. J Inflamm Res 2024; 17:399-415. [PMID: 38260810 PMCID: PMC10802176 DOI: 10.2147/jir.s438205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Background Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke leading to high rates of morbidity and mortality in adults. Recent studies showed that immune and inflammatory responses might play essential roles in secondary brain injury. The purpose of this article was to provide a reference for further therapeutic strategies for ICH patients. Methods GSE206971 and GSE216607 datasets from the gene expression omnibus (GEO) database were used to screen the highly immune-related differentally expressed genes (IRDEGs). We used the CIBERSORT algorithm to assess the level of immune signatures infiltration and got the possible function of IRDEGs which was analyzed through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) networks and six hub genes were identified in the Cytoscape plug-in. GSVA algorithm was performed to evaluate the potential pathways of six hub genes in ICH samples. The expression level of IL-7R chosen from six hub genes was further validated by Western blotting. The cell models of ICH were established for the research of IL-7/IL-7R signaling way. Results A total of six hub genes (ITGAX, ITGAM, CCR2, CD28, SELL, and IL-7R) were identified. IL-7R was highly expressed in the mice ICH group, as shown by immunoblotting. Next, we constructed ICH cell models in RAW264.7 cells and BV2 cells. After treatment with IL-7, iNOS expression (M1 marker) was greatly inhibited while Arg-1(M2 marker) was enhanced, and it might function via the JAK3/STAT5 signaling pathway. Conclusion The hypothesis is proposed that the IL-7/IL-7R signaling pathway might regulate the inflammatory process following ICH by regulating microglia polarization. Our study is limited and requires more in-depth experimental confirmation.
Collapse
Affiliation(s)
- Jie Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Hongbin Wang
- Department of Emergency, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, 214400, People’s Republic of China
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
| | - Shiyao Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| |
Collapse
|
48
|
Saleh AS, El-Newary SA, Mohamed WA, Elgamal AM, Farah MA. Pumpkin seeds (Cucurbita pepo subsp. ovifera) decoction promotes Trichinella spiralis expulsion during intestinal phase via "Weep and Sweep" mechanism. Sci Rep 2024; 14:1548. [PMID: 38233460 PMCID: PMC10794180 DOI: 10.1038/s41598-024-51616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024] Open
Abstract
Trichinosis is a zoonotic disease of communal health concern as it instigated human outbreaks in several countries. Besides, the development of resistance, traditional therapy has numerous antagonistic effects. Thereby, finding efficient natural alternatives is required. In comparison to albendazole, this study evaluated the impact of pumpkin decoction on Trichinella spiralis in experimentally infected mice. The anthelmintic action of pumpkin decoction (500 mg/kg) was determined using T. spiralis infected mice in enteric phase for 5 days. Pumpkin decoction anthelmintic activity fortified by mixing with honey (1:1). Pumpkin decoction and Pumpkin decoction-honey mixture were evaluated by comprising with reference drug, albendazole (50 mg/kg). The T. spiralis adult count was significantly lower in all treated groups, with the pumpkin decoction-honey mixture showing the largest reduction (83.2%) when compared to the infected group (P ≤ 0.001). The intestinal histological changes and the level of COX-2 expression in the intestinal tissue were both significantly reduced in the same group. The pumpkin decoction improved the immune response, as evidenced by a significant decrease in nitric oxide (NO) and tumor necrosis factor (TNF-α) and a significant increase in the expression of the transforming growth factor (TGF-1β) and interleukin-17 (IL-17). The pumpkin decoction's anthelmintic action was facilitated by the TGF-1β and IL-17-driven Weep and Sweep mechanism. Both administration of pumpkin decoction beside honey showed the best treatment group that resulted in high infection reduction besides amelioration of biochemical markers and restoration of histological to normal state. In conclusion, pumpkin decoction is highly effective against T. spiralis which could be a promising alternative herbal drug and the pumpkin decoction effect was higher in the case of combination with honey.
Collapse
Affiliation(s)
- Aml S Saleh
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Samah A El-Newary
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former EL Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Walaa A Mohamed
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Mona A Farah
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
Guo P, Zou W. Neutrophil-to-lymphocyte ratio, white blood cell, and C-reactive protein predicts poor outcome and increased mortality in intracerebral hemorrhage patients: a meta-analysis. Front Neurol 2024; 14:1288377. [PMID: 38288330 PMCID: PMC10824245 DOI: 10.3389/fneur.2023.1288377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Objective Inflammation participates in the pathology and progression of secondary brain injury after intracerebral hemorrhage (ICH). This meta-analysis intended to explore the prognostic role of inflammatory indexes, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), white blood cell (WBC), and C-reactive protein (CRP) in ICH patients. Methods Embase, PubMed, Web of Science, and Cochrane Library were searched until June 2023. Two outcomes, including poor outcome and mortality were extracted and measured. Odds ratio (OR) and 95% confidence interval (CI) were presented for outcome assessment. Results Forty-six studies with 25,928 patients were included in this meta-analysis. The high level of NLR [OR (95% CI): 1.20 (1.13-1.27), p < 0.001], WBC [OR (95% CI): 1.11 (1.02-1.21), p = 0.013], and CRP [OR (95% CI): 1.29 (1.08-1.54), p = 0.005] were related to poor outcome in ICH patients. Additionally, the high level of NLR [OR (95% CI): 1.06 (1.02-1.10), p = 0.001], WBC [OR (95% CI): 1.39 (1.16-1.66), p < 0.001], and CRP [OR (95% CI): 1.02 (1.01-1.04), p = 0.009] were correlated with increased mortality in ICH patients. Nevertheless, PLR was not associated with poor outcome [OR (95% CI): 1.00 (0.99-1.01), p = 0.749] or mortality [OR (95% CI): 1.00 (0.99-1.01), p = 0.750] in ICH patients. The total score of risk of bias assessed by Newcastle-Ottawa Scale criteria ranged from 7-9, which indicated the low risk of bias in the included studies. Publication bias was low, and stability assessed by sensitivity analysis was good. Conclusion This meta-analysis summarizes that the high level of NLR, WBC, and CRP estimates poor outcome and higher mortality in ICH patients.
Collapse
Affiliation(s)
- Peixin Guo
- Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Wei Zou
- Third Ward of Acupuncture Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
50
|
Almarghalani DA, Bahader GA, Ali M, Tillekeratne LMV, Shah ZA. Cofilin Inhibitor Improves Neurological and Cognitive Functions after Intracerebral Hemorrhage by Suppressing Endoplasmic Reticulum Stress Related-Neuroinflammation. Pharmaceuticals (Basel) 2024; 17:114. [PMID: 38256947 PMCID: PMC10818666 DOI: 10.3390/ph17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1β assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.
Collapse
Affiliation(s)
- Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - L. M. Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|