1
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
3
|
Furtado A, Duarte AC, Costa AR, Gonçalves I, Santos CRA, Gallardo E, Quintela T. Circadian ABCG2 Expression Influences the Brain Uptake of Donepezil across the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2024; 25:5014. [PMID: 38732233 PMCID: PMC11084460 DOI: 10.3390/ijms25095014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer's disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood-CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Ana R. Costa
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
| | - Eugenia Gallardo
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, Universityof Beira Interior, Avenida Infante Dom Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
4
|
Castellazzi M, Candeloro R, Trevisan C, Permunian S, Buscemi G, Ghisellini S, Negri G, Gilli G, Ferri C, Bellini T, Pizzicotti S, Pugliatti M. Sex Differences in Albumin Quotient and Cerebrospinal Fluid Total Protein Content Do Not Depend on Anthropometric Factors. J Pers Med 2024; 14:362. [PMID: 38672989 PMCID: PMC11051272 DOI: 10.3390/jpm14040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Cerebrospinal fluid (CSF)/serum albumin quotient (QAlb) and CSF total protein (TP) are more elevated in males than females, and this has been hypothesised to be due to anthropometric differences between the sexes. This study aimed to investigate QAlb and CSF TP as a function of body height, weight, and body mass index (BMI). (2) Methods: A total of 207 patients were included in the study and analysed blinded to clinical diagnosis. (3) Results: Multivariable linear regressions were run to predict log-transformed Qalb and log-transformed CSF TP value from age, sex, weight, and height (first model) or from age, sex, and BMI (second model). In both models, age (β = 0.004, 95% CI = 0.002 to 0.006) and sex (β = -0.095, 95% CI = -0.169 to -0.021, and β = -0.135, 95% CI = -0.191 to -0.079) were significant predictors for QAlb, but weight, height, and BMI were not. Similarly, age (β = 0.004, 95% CI = 0.003 to 0.006) and sex (β = -0.077, 95% CI = -0.142 to -0.013, and β = -0.109, 95% CI = -0.157 to -0.060) were significant predictors for CSF TP, while anthropometric characteristics were not. No differences in QAlb and CSF TP were found when grouping males and females by BMI status. (4) Conclusions: Our data suggest that anthropometric characteristics could not explain the sex-related differences in QAlb and CSF TP.
Collapse
Affiliation(s)
- Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Raffaella Candeloro
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Caterina Trevisan
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Samantha Permunian
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Gaia Buscemi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Sara Ghisellini
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.); (S.P.)
| | - Giovanna Negri
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.); (S.P.)
| | - Giada Gilli
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Caterina Ferri
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy;
| | - Tiziana Bellini
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Pizzicotti
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.); (S.P.)
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| |
Collapse
|
5
|
Alves VC, Figueiro-Silva J, Trullas R, Ferrer I, Carro E. Olfactory Receptor OR2K2 Expression in Human Choroid Plexus as a Potential Marker in Early Sporadic Alzheimer's Disease. Genes (Basel) 2024; 15:385. [PMID: 38540444 PMCID: PMC10970182 DOI: 10.3390/genes15030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
Epithelial cells comprising the choroid plexus (CP) form a crucial barrier between the blood and the cerebrospinal fluid, thereby assuming a central position in brain homeostasis and signaling. Mounting evidence suggests that the impairment of CP function may be a significant contributor to Alzheimer's disease (AD) pathogenesis. CP function relies on the expression of specific receptors, and the potential involvement of olfactory receptors (ORs) and taste receptors (TASRs) in chemical surveillance within the CP is being investigated. Previous studies have implicated ORs and TASRs in neurodegenerative disorders like AD, although the direct evidence of their expression in the human CP remains to be established. In this study, we conducted a transcriptomic analysis encompassing eleven ORs and TASRs in the CP, comparing samples from healthy age-matched controls to those from patients with AD spanning Braak stages I to VI. Among these receptors, a striking finding emerged-OR2K2 exhibited robust expression, with a statistically significant upregulation noted at Braak stage I. Surprisingly, at the protein level, OR2K2 showed a significant decrease in both Braak stage I and VI. Additionally, we identified CP epithelial cells as the source of OR2K2 expression, where it colocalized with autophagy markers LC3 and p62. We postulate that OR2K2 could be subjected to degradation by autophagy in the early stages of AD, triggering a compensatory mechanism that leads to increased OR2K2 mRNA transcription. This study uncovers a potential role for OR2K2 in AD pathogenesis, offering a novel perspective on the intricate dynamics at play in this neurodegenerative disorder.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, 8952 Zurich, Switzerland;
- Department of Molecular Life Science, University of Zurich, 8952 Zurich, Switzerland
| | - Ramon Trullas
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Isidre Ferrer
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Neuropathology, Bellvitge University Hospital-IDIBELL, 08908 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, 28222 Madrid, Spain
| |
Collapse
|
6
|
Li X, Pu X, Wang X, Wang J, Liao X, Huang Z, Yin G. A dual-targeting peptide for glioblastoma screened by phage display peptide library biopanning combined with affinity-adaptability analysis. Int J Pharm 2023; 644:123306. [PMID: 37572856 DOI: 10.1016/j.ijpharm.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The obstruction of blood-brain barrier (BBB) and the poor specific targeting are still the major obstacles and challenges of targeted nano-pharmaceutical therapy for glioblastoma (GBM) up to now. It is critical to find appropriate targeting ligands that can effectively mediate the nano-pharmaceuticals to penetrate brain capillary endothelial cells (BCECs) and then specifically bind to glioblastoma cells (GCs). Herein, a dual-targeting ligand for GBM was screened by the combination of phage display peptide library biopanning and affinity-adaptability analysis. Based on the acquisition of sub-library of peptide which exhibited the specific affinity to both BCECs and GCs, a comparison parameter of relative affinity was deliberately introduced to evaluate the relative affinity of candidate peptides to U251-MG cells and bEnd.3 cells. The optimized WTW peptide (sequenced as WTWEYTK) was provided with a high relative affinity (RU/B = 2.44), implying that its high affinity to U251-MG cells and moderate affinity to bEnd.3 cells might synergistically promote its receptor-mediated internalization and transport, the dissociation from bEnd.3, and the binding to U251-MG. The results of BBB model trials in vitro showed that the BBB penetration efficiency and GBM accumulation of WTW peptide were significantly higher than those of WSL peptide, GNH peptide, and REF peptide. Results of orthotopic GBM xenograft model assays in vivo also indicated that WTW peptide had successfully penetrated the BBB and improved accumulation in GBM. The screened WTW peptide might be the potential dual-targeting ligand to motivate the advancement of GBM targeted therapy.
Collapse
Affiliation(s)
- Xiaoxu Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Zhongbin Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
7
|
Mineiro R, Santos C, Gonçalves I, Lemos M, Cavaco JEB, Quintela T. Regulation of ABC transporters by sex steroids may explain differences in drug resistance between sexes. J Physiol Biochem 2023:10.1007/s13105-023-00957-1. [PMID: 36995571 DOI: 10.1007/s13105-023-00957-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Manuel Lemos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - José Eduardo B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação Para o Desenvolvimento Do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
8
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
10
|
Christensen J, Li C, Mychasiuk R. Choroid plexus function in neurological homeostasis and disorders: The awakening of the circadian clocks and orexins. J Cereb Blood Flow Metab 2022; 42:1163-1175. [PMID: 35296175 PMCID: PMC9207490 DOI: 10.1177/0271678x221082786] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
As research regarding the role of circadian rhythms, sleep, and the orexinergic system in neurodegenerative diseases is growing, it is surprising that the choroid plexus (CP) remains underappreciated in this realm. Despite its extensive role in the regulation of circadian rhythms and orexinergic signalling, as well as acting as the primary conduit between cerebrospinal fluid (CSF) and the circulatory system, providing a mechanism by which toxic waste molecules can be removed from the brain, the CP has been largely unexplored in neurodegeneration. In this review, we explore the role of the CP in maintaining brain homeostasis and circadian rhythms, regulating CSF dynamics, and how these functions change across the lifespan, from development to senescence. In addition, we examine the relationship between the CP, orexinergic signalling, and the glymphatic system, highlighting gaps in the literature and areas that require immediate exploration. Finally, we assess current knowledge, including possible therapeutic strategies, regarding the role of the CP in neurological disorders, such as traumatic brain injury, migraine, Alzheimer's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Furtado A, Mineiro R, Duarte AC, Gonçalves I, Santos CR, Quintela T. The Daily Expression of ABCC4 at the BCSFB Affects the Transport of Its Substrate Methotrexate. Int J Mol Sci 2022; 23:ijms23052443. [PMID: 35269592 PMCID: PMC8909972 DOI: 10.3390/ijms23052443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The choroid plexuses (CPs), located in the brain ventricles, form an interface between the blood and the cerebrospinal fluid named the blood-cerebrospinal barrier, which, by the presence of tight junctions, detoxification enzymes, and membrane transporters, limits the traffic of molecules into the central nervous system. It has already been shown that sex hormones regulate several CP functions, including the oscillations of its clock genes. However, it is less explored how the circadian rhythm regulates CP functions. This study aimed to evaluate the impact of sex hormones and circadian rhythms on the function of CP membrane transporters. The 24 h transcription profiles of the membrane transporters rAbca1, rAbcb1, rAbcc1, rAbcc4, rAbcg2, rAbcg4, and rOat3 were characterized in the CPs of intact male, intact female, sham-operated female, and gonadectomized rats. We found that rAbcc1 is expressed in a circadian way in the CPs of intact male rats, rAbcg2 in the CPs of intact female rats, and both rAbcc4 and rOat3 mRNA levels were expressed in a circadian way in the CPs of intact male and female rats. Next, using an in vitro model of the human blood–cerebrospinal fluid barrier, we also found that methotrexate (MTX) is transported in a circadian way across this barrier. The circadian pattern of Abcc4 found in the human CP epithelial papilloma cells might be partially responsible for MTX circadian transport across the basal membrane of CP epithelial cells.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Ana Catarina Duarte
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Isabel Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Cecília R. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Correspondence:
| |
Collapse
|
12
|
Catarina Duarte A, Raquel Costa A, Gonçalves I, Quintela T, Preissner R, R A Santos C. The druggability of bitter taste receptors for the treatment of neurodegenerative disorders. Biochem Pharmacol 2022; 197:114915. [PMID: 35051386 DOI: 10.1016/j.bcp.2022.114915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The delivery of therapeutic drugs to the brain remains a major pharmacology challenge. A complex system of chemical surveillance to protect the brain from endogenous and exogenous toxicants at brain barriers hinders the uptake of many compounds with significant in vitro and ex vivo therapeutic properties. Despite the advances in the field in recent years, the components of this system are not completely understood. Recently, a large group of chemo-sensing receptors, have been identified in the blood-cerebrospinal fluid barrier. Among these chemo-sensing receptors, bitter taste receptors (TAS2R) hold promise as potential drug targets, as many TAS2R bind compounds with recognized neuroprotective activity (quercetin, resveratrol, among others). Whether activation of TAS2R by their ligands contributes to their diverse biological actions described in other cells and tissues is still debatable. In this review, we discuss the potential role of TAS2R gene family as the mediators of the biological activity of their ligands for the treatment of central nervous system disorders and discuss their potential to counteract drug resistance by improving drug delivery to the brain.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-IPG- Centro de Potencial e Inovação de Recursos Naturais- Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559, Guarda, Portugal
| | - Ana Raquel Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
13
|
Hutton D, Fadelalla MG, Kanodia AK, Hossain-Ibrahim K. Choroid plexus and CSF: an updated review. Br J Neurosurg 2021; 36:307-315. [PMID: 33821737 DOI: 10.1080/02688697.2021.1903390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this article, we review the available literature about the functions of the choroid plexus (ChP), including its basic role in cerebrospinal fluid (CSF) secretion, renewal and absorption. We discuss more recently described, lesser-known functions of the ChP, such as its role in circadian rhythm regulation, chemical and immune surveillance and functional implications of ChP disruption, as occurs in neurodegenerative disorders.
Collapse
Affiliation(s)
- Dana Hutton
- Department of Neurosurgery, Ninewells Hospital, Dundee, UK
| | | | | | | |
Collapse
|
14
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
15
|
Stoyanov GS, Sapundzhiev NR, Tonchev AB. The vomeronasal organ: History, development, morphology, and functional neuroanatomy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:283-291. [PMID: 34266599 DOI: 10.1016/b978-0-12-819973-2.00020-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human vomeronasal organ (VNO) is an accessory olfactory organ located on the anteroinferior part of the nasal septum, 1.5-2.5cm from the nostrils. Its main role is pheromone reception and, through its anatomical connections with the central nervous system, especially parts of the hypothalamus, modulation of both social and sexual behavior, although these relations have been established only in nonprimates and very little is yet established for the structure and function of the human VNO. Morphologically, the human VNO is a pit or duct-shaped structure, comprised of three cellular layers-basal cells, neural cells with olfactory cell morphology and immunohistochemical phenotype, and ciliated respiratory epithelium. Medially and connected to the VNO, a small nerve fiber is found that runs longitudinally to the nasal septum and is considered by some to be a distant process of the Cranial Nerve 0 or terminal nerve. In addition to pheromone reception, the human VNO has also been associated with several pathological conditions, including sinus septi nasi, posttraumatic stress disorder, and ectopic olfactory esthesioblastoma.
Collapse
Affiliation(s)
- George S Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University, Varna, Bulgaria.
| | - Nikolay R Sapundzhiev
- Department of Neurosurgery and ENT Diseases, Division of ENT Diseases, Faculty of Medicine, Medical University, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, Varna, Bulgaria
| |
Collapse
|
16
|
Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183430. [PMID: 32750317 DOI: 10.1016/j.bbamem.2020.183430] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
The choroid plexus (CP) is located in the ventricular system of the brain (one in each ventricle), and the CP epithelial cells form an important barrier between the blood and the cerebrospinal fluid (CSF). Their main function comprises CSF secretion, maintenance of brain homeostasis, signalling, and forming a neuroprotective barrier against harmful external and internal compounds. The CPs mature early and demonstrate expressional changes of barrier-specific genes and proteins related to location and developmental stage of the CP. Important proteins for the barrier function include tight junction proteins, numerous transporters and enzymes. Natural senescence leads to structural changes in the CP cells and reduced or loss of function, while further loss of CP function and changes in immune status may be relevant in neurodegenerative diseases such as Alzheimer's disease and Multiple Sclerosis. Neuroprotective genes expressed at CPs may be unexplored targets for new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Kratzer
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CNRS UMR 5292, University Claude Bernard Lyon 1, 69008 Lyon, France; Friedensgasse 3, 8010 Graz, Austria.
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 40530 Göteborg, Sweden.
| | - Helen Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW0 1TU, UK.
| |
Collapse
|
17
|
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17:35. [PMID: 32375819 PMCID: PMC7201396 DOI: 10.1186/s12987-020-00196-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) forming the blood-cerebrospinal fluid (B-CSF) barrier is among the least studied structures of the central nervous system (CNS) despite its clinical importance. The CP is an epithelio-endothelial convolute comprising a highly vascularized stroma with fenestrated capillaries and a continuous lining of epithelial cells joined by apical tight junctions (TJs) that are crucial in forming the B-CSF barrier. Integrity of the CP is critical for maintaining brain homeostasis and B-CSF barrier permeability. Recent experimental and clinical research has uncovered the significance of the CP in the pathophysiology of various diseases affecting the CNS. The CP is involved in penetration of various pathogens into the CNS, as well as the development of neurodegenerative (e.g., Alzheimer´s disease) and autoimmune diseases (e.g., multiple sclerosis). Moreover, the CP was shown to be important for restoring brain homeostasis following stroke and trauma. In addition, new diagnostic methods and treatment of CP papilloma and carcinoma have recently been developed. This review describes and summarizes the current state of knowledge with regard to the roles of the CP and B-CSF barrier in the pathophysiology of various types of CNS diseases and sets up the foundation for further avenues of research.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital Brno, Pekařská 53, CZ-656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic.
| |
Collapse
|
18
|
Talhada D, Costa-Brito AR, Duarte AC, Costa AR, Quintela T, Tomás J, Gonçalves I, Santos CRA. The choroid plexus: Simple structure, complex functions. J Neurosci Res 2019; 98:751-753. [PMID: 31825126 DOI: 10.1002/jnr.24571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Talhada
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Sweden
| | - Ana Raquel Costa-Brito
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Raquel Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | | |
Collapse
|