1
|
Lavalle S, Scapaticci R, Masiello E, Messina C, Aliprandi A, Mario Salerno V, Russo A, Pegreffi F. Advancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessments. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1467155. [PMID: 39445171 PMCID: PMC11496100 DOI: 10.3389/fmedt.2024.1467155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sarcopenia is a prevalent condition with significant clinical implications, and it is expected to escalate globally, demanding for effective diagnostic strategies, possibly at an early stage of the disease. Imaging techniques play a pivotal role in comprehensively evaluating sarcopenia, offering insights into both muscle quantity and quality. Among all the imaging techniques currently used for the diagnosis and follow up of sarcopenia, it is possible to distinguish two classes: Rx based techniques, using ionizing radiations, and non-invasive techniques, which are based on the use of safe and low risk diagnostic procedures. Dual-energy x-ray Absorptiometry and Computed Tomography, while widely utilized, entail radiation exposure concerns. Ultrasound imaging offers portability, real-time imaging, and absence of ionizing radiation, making it a promising tool Magnetic Resonance Imaging, particularly T1-weighted and Dixon sequences, provides cross- sectional and high-resolution images and fat-water separation capabilities, facilitating precise sarcopenia quantification. Bioelectrical Impedance Analysis (BIA), a non-invasive technique, estimates body composition, including muscle mass, albeit influenced by hydration status. Standardized protocols, such as those proposed by the Sarcopenia through Ultrasound (SARCUS) Working Group, are imperative for ensuring consistency across assessments. Future research should focus on refining these techniques and harnessing the potential of radiomics and artificial intelligence to enhance diagnostic accuracy and prognostic capabilities in sarcopenia.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Rosa Scapaticci
- Institute for the Electromagnetic Sensing of the Environment, National Research Council of Italy, Naples, Italy
| | - Edoardo Masiello
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Messina
- Department of Radiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - Arcangelo Russo
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| |
Collapse
|
2
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Boussida S, François Y, Heintz A, Saidak Z, Dakpé S, Coutte A, Chauffert B, Devauchelle B, Galmiche A, Testelin S, Goudot P, Constans JM. Evaluation of Proton MR Spectroscopy for the Study of the Tongue Tissue in Healthy Subjects and Patients With Tongue Squamous Cell Carcinoma: Preliminary Findings. FRONTIERS IN ORAL HEALTH 2022; 3:912803. [PMID: 35924279 PMCID: PMC9339644 DOI: 10.3389/froh.2022.912803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
PurposeTo noninvasively assess spectroscopic and metabolic profiles of healthy tongue tissue and in an exploratory objective in nontreated and treated patients with tongue squamous cell carcinoma (SCC).MethodsFourteen healthy subjects (HSs), one patient with nontreated tongue SCC (NT-SCC), and two patients with treated tongue SCC (T-SCC) underwent MRI and single-voxel proton magnetic resonance spectroscopy (1H-MRS) evaluations (3 and 1.5T). Multi-echo-times 1H-MRS was performed at the medial superior part (MSP) and the anterior inferior part (AIP) of the tongue in HS, while 1H-MRS voxel was placed at the most aggressive part of the tumor for patients with tongue SCC. 1H-MRS data analysis yielded spectroscopic metabolite ratios quantified to total creatine.ResultsIn HS, compared to MSP and AIP, 1H-MRS spectra revealed higher levels of creatine, a more prominent and well-identified trimethylamine-choline (TMA-Cho) peak. However, larger prominent lipid peaks were better differentiated in the tongue MSP. Compared to HS, patients with NT-SCC exhibited very high levels of lipids and relatively higher values of TMA-Cho peak. Interestingly, patients with T-SCC showed almost nonproliferation activity. However, high lipids levels were measured, although they were relatively lower than lipids levels measured in patients with NT-SCC.ConclusionThe present study demonstrated the potential use of in-vivo1H-MRS to noninvasively assess spectroscopic and metabolic profiles of the healthy tongue tissue in a spatial location-dependent manner. Preliminary results revealed differences between HS and patients with tongue NT-SCC as well as tongue T-SCC, which should be confirmed with more patients. 1H-MRS could be included, in the future, in the arsenal of tools for treatment response evaluation and noninvasive monitoring of patients with tongue SCC.
Collapse
Affiliation(s)
- Salem Boussida
- Radiology Department, University Hospital of Amiens Picardie, Amiens, France
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| | - Yvener François
- Faculty of Medicine, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne University, Paris, France
| | - Adrien Heintz
- Radiology Department, University Hospital of Amiens Picardie, Amiens, France
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| | - Zuzana Saidak
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Biochemistry, University Hospital of Amiens, Amiens, France
| | - Stéphanie Dakpé
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Maxillofacial Surgery and Stomatology, University Hospital of Amiens, Amiens, France
| | - Alexandre Coutte
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Radiotherapy, University Hospital of Amiens, Amiens, France
| | - Bruno Chauffert
- Department of Medical Oncology, University Hospital of Amiens, Amiens, France
| | - Bernard Devauchelle
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Maxillofacial Surgery and Stomatology, University Hospital of Amiens, Amiens, France
| | - Antoine Galmiche
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Biochemistry, University Hospital of Amiens, Amiens, France
| | - Sylvie Testelin
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Maxillofacial Surgery and Stomatology, University Hospital of Amiens, Amiens, France
| | - Patrick Goudot
- Faculty of Medicine, Assistance Publique - Hôpitaux de Paris (AP-HP), Sorbonne University, Paris, France
| | - Jean-Marc Constans
- Radiology Department, University Hospital of Amiens Picardie, Amiens, France
- CHIMERE UR 7516 Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Jean-Marc Constans
| |
Collapse
|
4
|
Krššák M, Lindeboom L, Schrauwen‐Hinderling V, Szczepaniak LS, Derave W, Lundbom J, Befroy D, Schick F, Machann J, Kreis R, Boesch C. Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4266. [PMID: 32022964 PMCID: PMC8244035 DOI: 10.1002/nbm.4266] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 05/02/2023]
Abstract
1 H-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of 1 H-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.
Collapse
Affiliation(s)
- Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III & High Field MR Centre, Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Lucas Lindeboom
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Vera Schrauwen‐Hinderling
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Lidia S. Szczepaniak
- Biomedical Research Consulting in Magnetic Resonance SpectroscopyAlbuquerqueNew Mexico
| | - Wim Derave
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Jesper Lundbom
- Department of Diagnostics and TherapeuticsUniversity of HelsinkiHelsinkiFinland
| | | | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of TübingenTübingenGermany
- German Center for Diabetes Research (DZD)TübingenGermany
| | - Roland Kreis
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| | - Chris Boesch
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| |
Collapse
|
5
|
Pasanta D, Tungjai M, Kothan S. The influence of leg positioning on the appearance and quantification of 1H magnetic resonance muscle spectra obtained from calf muscle. Pol J Radiol 2018; 83:e627-e633. [PMID: 30800202 PMCID: PMC6384406 DOI: 10.5114/pjr.2018.81147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To study proton magnetic resonance spectra (1H-MRS) of the muscle metabolite of a leg muscle in neutral (NEU), internal rotation (INT), and external rotation (EXT) leg positioning. MATERIAL AND METHODS The volunteers were selected for this study. The tibialis anterior (TA), soleus (SOL), and gastrocnemius (GAS) muscles of a non-dominate leg were determined by using single-voxel spectroscopy 8 × 8 × 20 mm3 in size. 1H-MRS measurements were performed on a 1.5-Tesla magnetic resonance imaging (MRI) scanner. RESULTS The results showed that metabolite spectrum of muscle in each NEU, INT, and EXT of leg positioning were not similar. Additionally, the quantification of IMCL (CH3) and EMCL (CH3) is significantly different in SOL. CONCLUSIONS Our study showed that leg positioning influences the appearance and quantification of 1H-MRS in the calf muscle. Hence, it is necessary to pay close attention to positioning because it interferes with spectral fitting and quantification.
Collapse
|
6
|
Tan C, Cai S, Huang Y. Spatially Localized Two-Dimensional J-Resolved NMR Spectroscopy via Intermolecular Double-Quantum Coherences for Biological Samples at 7 T. PLoS One 2015. [PMID: 26207739 PMCID: PMC4514627 DOI: 10.1371/journal.pone.0134109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose Magnetic resonance spectroscopy (MRS) constitutes a mainstream technique for characterizing biological samples. Benefiting from the separation of chemical shifts and J couplings, spatially localized two-dimensional (2D) J-resolved spectroscopy (JPRESS) shows better identification of complex metabolite resonances than one-dimensional MRS does and facilitates the extraction of J coupling information. However, due to variations of macroscopic magnetic susceptibility in biological samples, conventional JPRESS spectra generally suffer from the influence of field inhomogeneity. In this paper, we investigated the implementation of the localized 2D J-resolved spectroscopy based on intermolecular double-quantum coherences (iDQCs) on a 7 T MRI scanner. Materials and Methods A γ-aminobutyric acid (GABA) aqueous solution, an intact pig brain tissue, and a whole fish (Harpadon nehereus) were explored by using the localized iDQC J-resolved spectroscopy (iDQCJRES) method, and the results were compared to those obtained by using the conventional 2D JPRESS method. Results Inhomogeneous line broadening, caused by the variations of macroscopic magnetic susceptibility in the detected biological samples (the intact pig brain tissue and the whole fish), degrades the quality of 2D JPRESS spectra, particularly when a large voxel is selected and some strongly structured components are included (such as the fish spinal cord). By contrast, high-resolution 2D J-resolved information satisfactory for metabolite analyses can be obtained from localized 2D iDQCJRES spectra without voxel size limitation and field shimming. From the contrastive experiments, it is obvious that the spectral information observed in the localized iDQCJRES spectra acquired from large voxels without field shimming procedure (i.e. in inhomogeneous fields) is similar to that provided by the JPRESS spectra acquired from small voxels after field shimming procedure (i.e. in relatively homogeneous fields). Conclusion The localized iDQCJRES method holds advantage for recovering high-resolution 2D J-resolved information from inhomogeneous fields caused by external non-ideal field condition or internal macroscopic magnetic susceptibility variations in biological samples, and it is free of voxel size limitation and time-consuming field shimming procedure. This method presents a complementary way to the conventional JPRESS method for MRS measurements on MRI systems equipped with broad inner bores, and may provide a promising tool for in vivo MRS applications.
Collapse
Affiliation(s)
- Chunhua Tan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
7
|
Pola A, Sadananthan SA, Gopalan V, Tan MLS, Keong TY, Zhou Z, Ishino S, Nakano Y, Watanabe M, Horiguchi T, Nishimoto T, Zhu B, Velan SS. Investigation of Fat Metabolism during Antiobesity Interventions by Magnetic Resonance Imaging and Spectroscopy. MAGNETIC RESONANCE INSIGHTS 2014; 7:33-40. [PMID: 25574137 PMCID: PMC4251539 DOI: 10.4137/mri.s19362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022]
Abstract
The focus of current treatments for obesity is to reduce the body weight or visceral fat, which requires longer duration to show effect. In this study, we investigated the short-term changes in fat metabolism in liver, abdomen, and skeletal muscle during antiobesity interventions including Sibutra mine treatment and diet restriction in obese rats using magnetic resonance imaging, magnetic resonance spectroscopy, and blood chemistry. Sibutramine is an antiobesity drug that results in weight loss by increasing satiety and energy expenditure. The Sibutramine-treated rats showed reduction of liver fat and intramyocellular lipids on day 3. The triglycerides (TG) decreased on day 1 and 3 compared to baseline (day 0). The early response/nonresponse in different fat depots will permit optimization of treatment for better clinical outcome rather than staying with a drug for longer periods.
Collapse
Affiliation(s)
- Arunima Pola
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | | | - Venkatesh Gopalan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | | | - Terry Yew Keong
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | | | - Seigo Ishino
- Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | | | | | | | | | - Bin Zhu
- Takeda Singapore Pte. Ltd., Singapore
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Clinical Imaging Research Centre, NUS-A*STAR, Singapore
| |
Collapse
|
8
|
Khoo CM, Leow MKS, Sadananthan SA, Lim R, Venkataraman K, Khoo EYH, Velan SS, Ong YT, Kambadur R, McFarlane C, Gluckman PD, Lee YS, Chong YS, Tai ES. Body fat partitioning does not explain the interethnic variation in insulin sensitivity among Asian ethnicity: the Singapore adults metabolism study. Diabetes 2014; 63:1093-102. [PMID: 24353181 DOI: 10.2337/db13-1483] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously showed that ethnicity modifies the association between adiposity and insulin resistance. We sought to determine whether differential body fat partitioning or abnormalities in muscle insulin signaling associated with higher levels of adiposity might underlie this observation. We measured the insulin sensitivity index (ISI), percentage of body fat (%body fat), visceral (VAT) and subcutaneous (SAT) adipose tissue, liver fat, and intramyocellular lipids (IMCL) in 101 Chinese, 82 Malays, and 81 South Asians, as well as phosphorylated (p)-Akt levels in cultured myoblasts from Chinese and South Asians. Lean Chinese and Malays had higher ISI than South Asians. Although the ISI was lower in all ethnic groups when %body fat was higher, this association was stronger in Chinese and Malays, such that no ethnic differences were observed in overweight individuals. These ethnic differences were observed even when %body fat was replaced with fat in other depots. Myoblasts obtained from lean South Asians had lower p-Akt levels than those from lean Chinese. Higher adiposity was associated with lower p-Akt levels in Chinese but not in South Asians, and no ethnic differences were observed in overweight individuals. With higher %body fat, Chinese exhibited smaller increases in deep SAT and IMCL compared with Malays and South Asians, which did not explain the ethnic differences observed. Our study suggests that body fat partitioning does not explain interethnic differences in insulin sensitivity among Asian ethnic groups. Although higher adiposity had greater effect on skeletal muscle insulin sensitivity among Chinese, obesity-independent pathways may be more relevant in South Asians.
Collapse
Affiliation(s)
- Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nagarajan V, Gopalan V, Kaneko M, Angeli V, Gluckman P, Richards AM, Kuchel PW, Velan SS. Cardiac function and lipid distribution in rats fed a high-fat diet: in vivo magnetic resonance imaging and spectroscopy. Am J Physiol Heart Circ Physiol 2013; 304:H1495-504. [PMID: 23542917 DOI: 10.1152/ajpheart.00478.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Obesity is a major risk factor in the development of cardiovascular disease, type 2 diabetes, and its pathophysiological precondition insulin resistance. Very little is known about the metabolic changes that occur in the myocardium and consequent changes in cardiac function that are associated with high-fat accumulation. Therefore, cardiac function and metabolism were evaluated in control rats and those fed a high-fat diet, using magnetic resonance imaging, magnetic resonance spectroscopy, mRNA analysis, histology, and plasma biochemistry. Analysis of blood plasma from rats fed the high-fat diet showed that they were insulin resistant (P < 0.001). Our high-fat diet model had higher heart weight (P = 0.005) and also increasing trend in septal wall thickness (P = 0.07) compared with control diet rats. Our results from biochemistry, magnetic resonance imaging, and mRNA analysis confirmed that rats on the high-fat diet had moderate diabetes along with mild cardiac hypertrophy. The magnetic resonance spectroscopy results showed the extramyocellular lipid signal only in the spectra from high-fat diet rats, which was absent in the control diet rats. The intramyocellular lipids in high-fat diet rats was higher (8.7%) compared with rats on the control diet (6.1%). This was confirmed by electron microscope and light microscopy studies. Our results indicate that lipid accumulation in the myocardium might be an early indication of the cardiovascular pathophysiology associated with type 2 diabetes.
Collapse
|