1
|
Song X, Fan Y, Li J, Zhang Y, Liu X, Hussain Q, Zhang J, Cui D. Insight in the characteristics of humic substances with cotton straw derived organic materials amendments. BMC Chem 2025; 19:53. [PMID: 40022230 PMCID: PMC11871824 DOI: 10.1186/s13065-025-01418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
Carbon sequestration by application of organic materials and biochar in soil is an important strategy to increase soil organic carbon (SOC), but the stability of SOC, particularly humic substances (HS) vary with the types of organic material. In this study, cotton straw and its derived compost and biochar were added with equivalent carbon content to soil and incubated for 180 days. The structural characteristics of humic acid (HA), fulvic acid (FA) and humin (Hu) were investigated using solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. The results showed that biochar treatment increased the aryl C of HA, FA, and Hu by 1.38%, 1.68%, and 10.46% compared to straw treatment and increased the aryl C of HA, FA, and Hu by 1.46%, 1.99% and 2.01% compared to compost treatment. The O-alkyl C of HA was 10.59% and 10.65% in high biochar/straw and biochar/compost ratios respectively, while it was 9.81% and 9.61% in low biochar/straw and biochar/compost ratios. In addition, the O-alkyl C of FA was 62.83% and 58.48% in high ratios of biochar/straw and biochar/compost, respectively, while it was 55.85% and 55.94% in low ratios of biochar/straw and biochar/compost. These results suggest that biochar is advantageous for aryl C formation of FA and Hu due to its high aryl C content, whereas straw or compost is advantageous for alkyl C formation of HA. The stability of aryl C and O-alkyl C of HA, FA, and Hu can be improved in soils by incorporating biochar in combination with straw or compost.
Collapse
Affiliation(s)
- Xiangyun Song
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257345, P.R. China.
| | - Yihe Fan
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Jianwei Li
- Shandong Agricultural Technology Promotion Center, Jinan, 250014, P. R. China
| | - Yan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Xinwei Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Qaiser Hussain
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Jinjing Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Dejie Cui
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| |
Collapse
|
2
|
Norris KE, Pignatello JJ, Vialykh EA, Sander M, McNeill K, Rosario-Ortiz FL. Recent Developments on the Three-Dimensional Structure of Dissolved Organic Matter: Toward a Unified Description. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2928-2936. [PMID: 39927813 DOI: 10.1021/acs.est.4c09627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Advancing a common understanding about the chemical composition, size, and three-dimensional (3D) structure of dissolved organic matter (DOM) is paramount to deciphering its impact on and involvement in environmental processes, such as the fate and transport of contaminants and carbon cycling. Traditionally, DOM has been described as a collection of solvent-separated molecules or macromolecules. More recently, DOM has been depicted as a "supramolecular assembly", a collection of individual molecules and associations of molecules held together by non-covalent interactions. The supramolecular assembly model has been broadly invoked to rationalize certain behaviors and properties of DOM, yet the complexity of DOM has made it difficult to fully unravel the nature and contributions of its intermolecular interactions. Discussed in this perspective is evidence regarding thermodynamic drivers of intermolecular associations, DOM molecular size, sorption of organic contaminants to DOM, and optical properties of DOM. While single observations may be rationalized by former structural models, such as the supramolecular assembly model, combined evidence shows that the 3D structure of DOM is best described by a mixed dynamic assembly model (MDAM). The MDAM depicts DOM as a collection of solvent-separated molecules and small, tightly knit assemblies held together by strong hydrogen bonds, which may form large assemblies through weak intermolecular interactions only at specific pH values, high ionic strength, or high DOM concentration.
Collapse
Affiliation(s)
- Kari E Norris
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - Elena A Vialykh
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Perm National Research Polytechnic University, Perm 614990, Russia
| | - Michael Sander
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Fernando L Rosario-Ortiz
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Zhao W, Thomas EC, Debnath D, Scott FJ, Mentink-Vigier F, White JR, Cook RL, Wang T. Enriched Molecular-Level View of Saline Wetland Soil Carbon by Sensitivity-Enhanced Solid-State NMR. J Am Chem Soc 2025; 147:519-531. [PMID: 39700415 PMCID: PMC11726556 DOI: 10.1021/jacs.4c11830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Soil organic matter (SOM) plays a major role in mitigating greenhouse gas emission and regulating earth's climate, carbon cycle, and biodiversity. Wetland soils account for one-third of all SOM; however, globally, coastal wetland soils are eroding faster due to increasing sea-level rise. Our understanding of carbon sequestration dynamics in wetlands lags behind that of upland soils. Here, we employ solid-state nuclear magnetic resonance (ssNMR) to investigate the molecular-level structure of biopolymers in wetland soils spanning 11 centuries. High-resolution multidimensional spectra, enabled by dynamic nuclear polarization (DNP), demonstrate enduring preservation of molecular structures within herbaceous plant cores, notably condensing aromatic motifs and carbohydrates, even over a millennium, with the preserved cores constituting a decreasing minority among molecules from decomposition and repolymerization with depth and age. Such preserved cores occur alongside molecules from the decomposition of loosely packed parent biopolymers. These findings emphasize the relative vulnerability of coastal wetland SOM when exposed to oxygenated water due to geological and anthropogenic changes.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elizabeth C. Thomas
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Debkumar Debnath
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Faith J. Scott
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 23310, United States
| | - Frederic Mentink-Vigier
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 23310, United States
| | - John R. White
- Department
of Oceanography & Coastal Sciences, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
- Coastal
Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Robert L. Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tuo Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Sánchez-Román M, Chandra V, Mulder S, Areias C, Reijmer J, Vahrenkamp V. The hidden role of heterotrophic bacteria in early carbonate diagenesis. Sci Rep 2025; 15:561. [PMID: 39747618 PMCID: PMC11696100 DOI: 10.1038/s41598-024-84407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS). We observed a significant carbon isotope fractionation (average δ13C = 11.3‰) and notable changes in Mg/Ca ratios throughout the experiments. Initial medium δ13C was - 18‰, sterile sediments were at 2‰ (n = 12), bacterial-altered sediments were - 6.8‰ (n = 12), and final medium δ13C was - 4.7‰. These results highlight the role of bacteria in driving organic carbon sequestration into Mg-rich carbonates and demonstrate the utility of NMR as a tool for detecting microbial biosignatures. This has significant implications for understanding carbonate diagenesis (dissolution and reprecipitation), climate science, and extraterrestrial research.
Collapse
Affiliation(s)
- Mónica Sánchez-Román
- Geobiology Laboratory, Earth Sciences Department, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Viswasanthi Chandra
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Saudi Aramco, Dhahran, Saudi Arabia
| | - Sebastian Mulder
- Geobiology Laboratory, Earth Sciences Department, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
- Geo-Energy, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Camila Areias
- Geobiology Laboratory, Earth Sciences Department, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - John Reijmer
- Geobiology Laboratory, Earth Sciences Department, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Volker Vahrenkamp
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Dia M, Farjon J, Raveleau C, Simpson A, Peyneau PE, Béchet B, Courtier-Murias D. Understanding the Interactions of Nanoparticles and Dissolved Organic Matter at the Molecular Level by 1H 2D Multi-Exponential Transverse Relaxation NMR Spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415470 DOI: 10.1002/mrc.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
The interaction between humic acid (HA) and engineered nanoparticles (NPs) is critical in environmental sciences, especially for understanding the behavior of NPs in natural waters. This study employs 1H 2D Multi-Exponential Transverse Relaxation (METR) NMR spectroscopy to examine the molecular-level interactions between Pahokee Peat humic acid (HA) and carboxyl-functionalized iron oxide nanoparticles (NPCOs). First, 1H 2D METR NMR spectroscopy allowed not only the identification of HA in terms of its chemical composition but also the separation of molecules with the same chemical shift values but different rates of molecular tumbling. Then, using solutions with varying NPCO concentrations (0, 10, 40, and 100 μM), we observed significant changes in the T2 relaxation times of HA components, indicating interactions between HA and NPCO. Analysis showed the biggest effect on two chemical shift regions, corresponding to lipids and carbohydrates, revealing that smaller molecules within these regions exhibit the most significant changes in T2 values upon the addition of NPCO. This suggests that these molecules are the initial sites of interaction, with the entire HA system being affected at higher NPCO concentrations. These findings highlight the utility of METR NMR spectroscopy in studying complex environmental mixtures and provide insights into the behavior of HA and NPs, essential for understanding the fate of NPs in the environment.
Collapse
Affiliation(s)
- Malak Dia
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| | | | - Clotilde Raveleau
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- CNRS, CEISAM UMR 6230, Nantes Université, Nantes, France
| | - André Simpson
- Environmental NMR Center, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | | | - Béatrice Béchet
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| | - Denis Courtier-Murias
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| |
Collapse
|
6
|
Zheng Z, Su Y, Schmidt-Rohr K. Vinyl and methyl-ester groups in the insoluble polymer drug patiromer identified and quantified by solid-state NMR. J Pharm Biomed Anal 2024; 246:116228. [PMID: 38781726 DOI: 10.1016/j.jpba.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Patiromer (Veltassa®) is a crosslinked, insoluble co-polymer drug used as a nonabsorbent potassium binder, approved for treatment of hyperkalemia. Quantitative solid-state 13C nuclear magnetic resonance (NMR) analysis with comprehensive peak assignment, component quantification, and calculation of mole and weight fractions of monomer units was performed on three doses of patiromer. The workflow is documented in detail. Spectrally edited solid-state 13C NMR spectra of patiromer show =CHn peaks of matching intensity at 116 and 141 ppm, characteristic of -CH=CH2 vinyl groups. Similar spectral features can be observed in earlier studies but were previously ignored. In this study, the vinyl signals are well-resolved in a 2-s direct polarization (DP) spectrum without and with dipolar dephasing, which confirms that these sp2-hybridized carbons are bonded to hydrogen and partially mobile, consistent with vinyl side groups from incompletely reacted divinyl crosslinkers. The vinyl groups account for 1.6% of all carbon, 3% of the monomer units, and nearly 1/3 of the crosslinkers. Furthermore, an unexpected OCH3 moiety accounting for ∼1.2% of all carbons was identified by spectral editing; its chemical shift of 54 ppm is more consistent with a methyl ester than with a methyl ether. It can originate from incomplete hydrolysis of ∼6% of methyl-2-fluoroacrylate, the main monomer of patiromer. Characteristic cross peaks in two-dimensional 1H-13C heteronuclear correlation NMR confirm the presence of the vinyl and OCH3 groups. Trace amounts of xanthan gum are also detected. The quantitative 13C NMR spectrum of patiromer has been matched in a simulation using a model with five monomer units.
Collapse
Affiliation(s)
- Zhaoxi Zheng
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co. Inc., Rahway, NJ 07065, USA; Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., Rahway, NJ 07065, USA
| | | |
Collapse
|
7
|
Yao B, Kong X, Tian K, Zeng X, Lu W, Pang L, Sun S, Tian X. Initial Litter Chemistry and UV Radiation Drive Chemical Divergence in Litter during Decomposition. Microorganisms 2024; 12:1535. [PMID: 39203377 PMCID: PMC11356187 DOI: 10.3390/microorganisms12081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Litter's chemical complexity influences carbon (C) cycling during its decomposition. However, the chemical and microbial mechanisms underlying the divergence or convergence of chemical complexity under UV radiation remain poorly understood. Here, we conducted a 397-day field experiment using 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C-CPMAS NMR) to investigate the interactions among the initial chemistry, microbial communities, and UV radiation during decomposition. Our study found that the initial concentrations of O-substituted aromatic C, di-O-alkyl C, and O-alkyl C in Deschampsia caespitosa were higher than those in Kobresia tibetica. Litter's chemical composition exhibited divergent patterns based on the initial chemistry, UV radiation, and decay time. Specifically, D. caespitosa consistently displayed higher concentrations of di-O-alkyl C and O-alkyl C compared to K. tibetica, regardless of the UV exposure and decay time. Additionally, litter's chemical complexity was positively correlated with changes in the extracellular enzyme activities, particularly those involved in lignin, cellulose, and hemicellulose degradation, which accounted for 9%, 20%, and 4% of the variation in litter's chemical complexity, respectively. These findings highlighted the role of distinct microbial communities in decomposing different C components through catabolism, leading to chemical divergence in litter. During the early decomposition stages, oligotrophic Planctomycetes and Acidobacteria metabolized O-alkyl C and di-O-alkyl C under UV-blocking conditions. In contrast, copiotrophic Actinobacteria and Chytridiomycota utilized these components under UV radiation exposure, reflecting their ability to thrive under UV stress conditions due to their rapid growth strategies in environments rich in labile C. Our study revealed that the inherent differences in the initial O-alkyl C and di-O-alkyl C contributed to the chemical divergence, while UV radiation further influenced this divergence by shifting the microbial community composition from oligotrophic to copiotrophic species. Thus, differences in the initial litter chemistry, microbial community, and UV radiation affected the quantity and quality of plant-derived C during decomposition.
Collapse
Affiliation(s)
- Bei Yao
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Xiangshi Kong
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism, Jishou University, Jishou 416000, China;
| | - Kai Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Xiaoyi Zeng
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Wenshuo Lu
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Lu Pang
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Shucun Sun
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (B.Y.); (K.T.); (X.Z.); (W.L.); (L.P.); (S.S.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Vico A, Maestre-Lopez MI, Arán-Ais F, Orgilés-Calpena E, Bertazzo M, Marhuenda-Egea FC. Assessment of the Biodegradability and Compostability of Finished Leathers: Analysis Using Spectroscopy and Thermal Methods. Polymers (Basel) 2024; 16:1908. [PMID: 39000763 PMCID: PMC11243809 DOI: 10.3390/polym16131908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
In this study, the biodegradation properties of leather treated with various finishing chemicals were evaluated in order to enhance the sustainability of leather processing. We applied advanced analytical techniques, including FT-IR, thermogravimetric analysis (TGA), and solid-state NMR spectroscopy. Leather samples treated with different polymers, resins, bio-based materials, and traditional finishing agents were subjected to a composting process under controlled conditions to measure their biodegradability. The findings revealed that bio-based polyurethane finishes and acrylic wax exhibited biodegradability, while traditional chemical finishes like isocyanate and nitrocellulose lacquer showed moderate biodegradation levels. The results indicated significant differences in the biodegradation rates and the impact on plant germination and growth. Some materials, such as black pigment, nitrocellulose lacquer and wax, were beneficial for plant growth, while others, such as polyurethane materials, had adverse effects. These results support the use of eco-friendly finishes to reduce the environmental footprint of leather production. Overall, this study underscores the importance of selecting sustainable finishing chemicals to promote eco-friendly leather-manufacturing practices.
Collapse
Affiliation(s)
- Alberto Vico
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Maria I. Maestre-Lopez
- Department of Biochemistry and Molecular Biology and Agricultural Chemistry and Edafology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Francisca Arán-Ais
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Elena Orgilés-Calpena
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Marcelo Bertazzo
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Frutos C. Marhuenda-Egea
- Department of Biochemistry and Molecular Biology and Agricultural Chemistry and Edafology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| |
Collapse
|
9
|
Ghahri S, Park BD. Amination and crosslinking of acetone-fractionated hardwood kraft lignin using different amines and aldehydes for sustainable bio-based wood adhesives. BIORESOURCE TECHNOLOGY 2024; 399:130645. [PMID: 38554759 DOI: 10.1016/j.biortech.2024.130645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Hardwood kraft lignin from the pulping industry is burned or discarded. Its valorization was conducted by subjecting fractionation, amination with ethylenediamine, diethylenetriamine, and monoethanolamine, and crosslinking with formaldehyde or glyoxal to obtain bio-based wood adhesives. Acetone-soluble and insoluble hardwood kraft lignin were prepared and subjected to amination and then crosslinking. Fourier transform infrared, 13C NMR, 15N NMR, and X-ray photoelectron spectroscopy results revealed successful amination with amide, imine, and ether bonds and crosslinking of all samples. Hardwood kraft lignin aminated with diethylenetriamine/ethylenediamine and crosslinked using glyoxal exhibited excellent results in comparison with samples crosslinked using formaldehyde. Acetone-insoluble hardwood kraft lignin aminated and crosslinked using diethylenetriamine and formaldehyde, respectively, exhibited excellent adhesion strength with plywood, satisfying the requirements of the Korean standards. The amination and crosslinking of industrial waste hardwood kraft lignin constitute a beneficial valorization method.
Collapse
Affiliation(s)
- Saman Ghahri
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
10
|
Gamage J, Voroney P, Gillespie A, Lo A, Longstaffe J. Evidence for the formation of fused aromatic ring structures in an organic soil profile in the early diagenesis. Sci Rep 2023; 13:12378. [PMID: 37524728 PMCID: PMC10390584 DOI: 10.1038/s41598-023-39181-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The presence of fused aromatic ring (FAR) structures in soil define the stability of the recalcitrant soil organic matter (RSOM). FAR are important skeletal features in RSOM that contribute to its extended residence time. During the early diagenesis, FAR structures are formed through condensation and polymerization of biomolecules produced during plant residue and microbial product decay. Molecular level characterization of the RSOM extracted from an organic soil profile gives important insights into the formation of FAR. Advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, including recoupled long-range C-H dipolar dephasing experiments on extracted humic acids (HA) showed that they contain diagenetically formed FAR different from charcoal and lignin. Peaks characteristic of FAR are observed at all depths in the soil profile, with a greater prevalence observed in the HA extracts from the clay soil layer at the bottom. In the clay soil layer, 78% of the aromatic carbon was non-protonated, and this was 2.2-fold higher than the topsoil. These data further strengthen our understanding of the humification process that could occur in early diagenesis and help explain the importance of incorporating diagenesis as an important phenomenon for long-term carbon sequestration in soil.
Collapse
Affiliation(s)
- Jeewan Gamage
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Paul Voroney
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Adam Gillespie
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Andy Lo
- Advanced Analysis Centre, NMR Centre, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - James Longstaffe
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Feng H, Xu X, Peng P, Yang C, Zou H, Chen C, Zhang Y. Sorption and desorption of epiandrosterone and cortisol on sewage sludge: Comparison to aquatic sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121663. [PMID: 37085099 DOI: 10.1016/j.envpol.2023.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Steroids have aroused global concern due to their potent endocrine-disrupting effects. Androgens and glucocorticoids are the most abundant species in sewage; however, our understanding of their fate and risks from the source to environmental sinks remains elusive. This study compared the sorption-desorption characteristics of epiandrosterone (EADR) and cortisol (CRL) in sewage sludge and aquatic sediment, and the surface and molecular interactions were tentatively investigated through infrared spectroscopy and the fluorescence excitation-emission matrix. The results showed that the sorption capacities of EADR and CRL in the sludge were 4015 L/kg and 81.17 L/kg, respectively, which are much larger than those in the sediment (EADR: 78.77 L/kg, CRL: 6.39 L/kg); 0.02%-1.2% of EADR and 0.2%-14.5% of CRL could be desorbed from sludge, while the desorption ratios were even lower in the sediment. The high organic content in the sludge might contribute to the larger sorption capacities, while the weak interaction between steroids and organic matter could lead to larger desorption potential. The sediment contained more mineral content and featured a larger specific surface area, which could be responsible for the greater desorption hysteresis for EADR and CRL. These results will help to better understand the potential risk of sewage sludge-associated steroids and their distribution in sediment-water systems.
Collapse
Affiliation(s)
- Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Peng Peng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenghao Yang
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, 85281, Arizona, USA
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, 510535, China
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Rao NRH, Linge KL, Li X, Joll CA, Khan SJ, Henderson RK. Relating algal-derived extracellular and intracellular dissolved organic nitrogen with nitrogenous disinfection by-product formation. WATER RESEARCH 2023; 233:119695. [PMID: 36827767 DOI: 10.1016/j.watres.2023.119695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The dissolved organic nitrogen (DON) pool from algal-derived extracellular and intracellular organic matter (EOM and IOM) comprises proteins, peptides, free amino acids and carbohydrates, of which, proteins can contribute up to 100% of the DON. Previous reports of algal-derived DON character have focused on bulk properties including concentration, molecular weight and hydrophobicity. However, these can be similar between algal species and between the EOM and IOM even when the inherent molecular structures vary. A focus on bulk character presents challenges to the research on algal-derived nitrogenous-disinfection by-product (N-DBP) formation as N-DBP formation is sensitive to the changes in molecular structure. Hence, the main aim of this study was to characterize algal EOM and IOM-derived DON, specifically proteinaceous-DON, using a combination of bulk and molecular characterization techniques to enable a more detailed exploration of the relationship between the character of algal-derived proteins and the N-DBP formation potential. DON from the EOM and IOM of four commonly found algae and cyanobacteria in natural waters were evaluated, namely Chlorella vulgaris, Microcystis aeruginosa, Dolichospermum circinale, and Cylindrospermopsis raciborskii. It was observed that 77-96% of total DON in all EOM and IOM samples was of proteinaceous origin. In the proteins, DON concentrations were highest in the high molecular weight fraction of IOM-derived bulk proteins (0.13-0.75 mg N L-1) and low to medium molecular weight fraction of EOM-derived bulk proteins (0.15-0.63 mg N L-1) in all species. Similar observations were also made via sodium dodecyl sulphate polyacrylamide gel electrophoresis and liquid chromatography-high resolution mass spectrometry. Solid-state 15N nuclear magnetic resonance (NMR) spectroscopy of the EOM and IOM revealed the existence of common aliphatic and heterocyclic N-groups in all samples, including a dominant 2° amide peak. Species dependent variability was also observed in the spectra, particularly in the EOM; e.g. nitro signals were found only in the Cylindrospermopsis raciborskii EOM. Dichloroacetonitrile (DCAN) and N-nitrosamine concentrations from the EOM of the species evaluated in this study were lower than the guideline limits set by regulatory agencies. It is proposed that the dominant 2° amide in all samples decreased N-DBP formation upon chlorination. For chloramination, the presence of nitro groups and aliphatic and heterocyclic N-DBP precursors could cause variable N-nitrosamine formation. Compared to non-algal impacted waters, algae-laden waters are characterised by low organic carbon: organic nitrogen ratios of ∼7-14 and elevated DON and protein concentrations. Hence, relying only on bulk characterization increases the perceived risk of N-DBP formation from algae-laden waters.
Collapse
Affiliation(s)
- N R H Rao
- AOM Lab, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | - K L Linge
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, Perth, Australia; ChemCentre, Perth, Australia
| | - X Li
- AOM Lab, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | - C A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - S J Khan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
| | - R K Henderson
- AOM Lab, School of Chemical Engineering, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
13
|
Denis JP, Gagnon J. Determination of the degree of quaternization of N,N,N-trimethylchitosan by CP-MAS 13C NMR. Carbohydr Res 2023; 523:108736. [PMID: 36634516 DOI: 10.1016/j.carres.2022.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Chitosan is used in several fields such as medicine, environment and advanced functional materials. The N-alkylation of chitosan into N,N,N-trimethylchitosan (TMC) allows to improve some properties. The current quantification methods of the degree of quaternization (DQ) like titration and 1H NMR spectroscopy require the solubilization of TMC. In this study, a solid-state 13C NMR quantification method was developed for insoluble TMCs. For this purpose, four TMC derivatives acting as reference were synthesized and their degrees of quaternization, N,N-dimethylation (DD) and acetylation (DA) were determined in solution by 1H NMR. CP-MAS 13C NMR spectra of those derivatives were deconvolved with Lorentz functions. Several ratios of the 13C NMR peak areas were correlated with the degrees of substitution obtained in 1H NMR. The best quantification method of DQ involved the correlation of the carbon signal of methyl groups. The method was also applied for the determination of the DD and DA of TMCs.
Collapse
Affiliation(s)
- Jean-Philippe Denis
- Département de Biologie, chimie et géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| | - Jonathan Gagnon
- Département de Biologie, chimie et géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| |
Collapse
|
14
|
Kostryukov SG, Petrov PS, Masterova YY, Idris TD, Hamdamov SS, Yunusov IA, Kostryukov NS. CP MAS 13C NMR Spectroscopy in Determination of Species-Specific Differences in Wood Composition. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Sobolev AP, Ingallina C, Spano M, Di Matteo G, Mannina L. NMR-Based Approaches in the Study of Foods. Molecules 2022; 27:7906. [PMID: 36432006 PMCID: PMC9697393 DOI: 10.3390/molecules27227906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, the three different NMR-based approaches usually used to study foodstuffs are described, reporting specific examples. The first approach starts with the food of interest that can be investigated using different complementary NMR methodologies to obtain a comprehensive picture of food composition and structure; another approach starts with the specific problem related to a given food (frauds, safety, traceability, geographical and botanical origin, farming methods, food processing, maturation and ageing, etc.) that can be addressed by choosing the most suitable NMR methodology; finally, it is possible to start from a single NMR methodology, developing a broad range of applications to tackle common food-related challenges and different aspects related to foods.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Segre-Capitani”, Institute for Biological Systems, CNR, Via Salaria, Km 29.300, 00015 Monterotondo, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Yang M, Liu Z, Zhang J, Zhu X, Xie W, Lan H, Huang Y, Ye X, Yang J. Simultaneous quantification of cellulose and pectin in tobacco using a robust solid-state NMR method. Carbohydr Res 2022; 521:108676. [PMID: 36126413 DOI: 10.1016/j.carres.2022.108676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Cellulose and pectin are the important components of tobacco (Nicotiana tabacum L.) cell wall, which affect the formation of undesirable compounds. Their contents are closely related to the harmfulness of tobacco. But the simultaneous quantitative analysis of cellulose and pectin is hard to be achieved for traditional analytical methods. A solid-state 13C cross-polarization by multiple contact periods (multiCP) NMR method was developed for the simultaneous quantification of cellulose and pectin in tobacco. The multiCP spectrum at optimal parameters agreed well with the direct polarization (DP) spectrum within one-thirtieth of the measurement time and provided satisfactory signal to noise ratio (SNR). After three simple procedures of sample preparation and spectra deconvolution, simultaneous quantification of cellulose and pectin extracted from tobacco was effectively achieved. Compared with the chemical method, this interesting method was rapid, practicable, and very promising, which provided the technical support for the simultaneous quantification of cell wall substances in biological sample.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Zechun Liu
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China.
| | - Jianping Zhang
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Xiaolan Zhu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Wei Xie
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Hongqiao Lan
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Yanjun Huang
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Xin Ye
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Jun Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China.
| |
Collapse
|
17
|
Yao B, Zeng X, Pang L, Kong X, Tian K, Ji Y, Sun S, Tian X. The Photodegradation of Lignin Methoxyl C Promotes Fungal Decomposition of Lignin Aromatic C Measured with 13C-CPMAS NMR. J Fungi (Basel) 2022; 8:jof8090900. [PMID: 36135625 PMCID: PMC9504352 DOI: 10.3390/jof8090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Solar radiation has been regarded as a driver of litter decomposition in arid and semiarid ecosystems. Photodegradation of litter organic carbon (C) depends on chemical composition and water availability. However, the chemical changes in organic C that respond to solar radiation interacting with water pulses remain unknown. To explain changes in the chemical components of litter organic C exposed to UV-B, UV-A, and photosynthetically active radiation (PAR) mediated by water pulses, we measured the chemistry of marcescent Lindera glauca leaf litter by solid-state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) over 494 days of litter decomposition with a microcosm experiment. Abiotic and biotic factors regulated litter decomposition via three pathways: first, photochemical mineralization of lignin methoxyl C rather than aromatic C exposed to UV radiation; second, the biological oxidation and leaching of cellulose O-alkyl C exposed to PAR and UV radiation interacts with water pulses; and third, the photopriming effect of UV radiation on lignin aromatic C rather than cellulose O-alkyl C under the interaction between radiation and water pulses. The robust decomposition index that explained the changes in the mass loss was the ratio of aromatic C to O-alkyl C (AR/OA) under radiation, but the ratio of hydrophobic to hydrophilic C (hydrophobicity), the carbohydrate C to methoxyl C ratio (CC/MC), and the alkyl C to O-alkyl C ratio (A/OA) under radiation were mediated by water pulses. Moreover, the photopriming effect and water availability promoted the potential activities of peroxidase and phenol oxidase associated with lignin degradation secreted by fungi. Our results suggest that direct photodegradation of lignin methoxyl C increases microbial accessibility to lignin aromatic C. Photo-oxidized compounds might be an additional C pool to regulate the stability of the soil C pool derived from plant litter by degrading lignin methoxyl and aromatic C.
Collapse
Affiliation(s)
- Bei Yao
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaoyi Zeng
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lu Pang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiangshi Kong
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kai Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yanli Ji
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shucun Sun
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1385-1857-867
| |
Collapse
|
18
|
de Aguiar TC, de Oliveira Torchia DF, van Tol de Castro TA, Tavares OCH, de Abreu Lopes S, de Souza da Silva L, Castro RN, Berbara RLL, Pereira MG, García AC. Spectroscopic-chemometric modeling of 80 humic acids confirms the structural pattern identity of humified organic matter despite different formation environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155133. [PMID: 35427620 DOI: 10.1016/j.scitotenv.2022.155133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The structure of humic substances (HSs) and the humification process are critical topics for understanding the dynamics of carbon on the planet. This study aimed to assess the structural patterns of 80 humic acid (HA) samples isolated from different soils, namely, Histosols, Ferralsols, Cambisols, Mollisols, Planosols and vermicompost, by spectroscopic characterization using solid-state 13C nuclear magnetic resonance cross-polarization/magic angle spinning combined with chemometric techniques. All 80 HAs had a similar structural pattern, regardless of their source of origin, but they had different relative quantities of organic C species. The different structural amounts of the various organic C fractions generated different properties in each of the HAs. This explains why there were similarities in the HS functions but why the intensities of these functions varied among the samples from the different soil types and environments, confirming that HSs are a group of compounds with a structural identity distinct from the molecules that give rise to them. There appears to be no single definition for the humification process; therefore, for the soils from each source of origin, a specific humification process occurs that depends on the characteristics of the local environment. Humification can be understood as a process that is similar to a chemical reaction, where the key factor that determines the formation of the products is the structural characteristics of the reactants (organic substrates deposited in the soil). The degree to which the reaction progresses is governed by the reaction conditions (chemical, physical, and biological properties of the soil). The structural patterns for HSs obtained in this study justify the existence of HSs structured as self-assembled, hydrophilic and hydrophobic domains that, under certain conditions, can undergo transformations, altering the balance of organic carbon in the environment.
Collapse
Affiliation(s)
- Tamiris Conceição de Aguiar
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | | | - Tadeu Augusto van Tol de Castro
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Orlando Carlos Huertas Tavares
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Samuel de Abreu Lopes
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Lucas de Souza da Silva
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Rosane Nora Castro
- Department of Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Marcos Gervasio Pereira
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Andrés Calderín García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil.
| |
Collapse
|
19
|
Romero CM, Redman AAPH, Owens J, Terry SA, Ribeiro GO, Gorzelak MA, Oldenburg TBP, Hazendonk P, Larney FJ, Hao X, Okine E, McAllister TA. Effects of feeding a pine-based biochar to beef cattle on subsequent manure nutrients, organic matter composition and greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152267. [PMID: 34902397 DOI: 10.1016/j.scitotenv.2021.152267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Biochar in ruminant diets is being assessed as a method for simultaneously improving animal production and reducing enteric CH4 emissions, but little is known about subsequent biochar-manure interactions post-excretion. We examined chemical properties, greenhouse gas (GHG) emissions and organic matter (OM) composition during farm scale stockpiling (SP) or composting (CP) of manure from cattle that either received a pine-based biochar in their diet (BM) or did not (RM). Manure piles were monitored hourly for temperature and weekly for top surface CO2, N2O and CH4 fluxes over 90 d in a semiarid location near Lethbridge, AB, Canada. Results indicate that cumulative CO2, N2O and CH4 emissions were not affected by biochar, implying that BM was as labile as RM. The pH, total C (TC), NO3-N and Olsen P were also not influenced by biochar, although it was observed that NH4-N and OM extractability were both 13% lower in BM than RM. Solid-state 13C nuclear magnetic resonance (NMR) showed that biochar increased stockpile/compost aromaticity, yet it did not alter the bulk C speciation of manure OM. Further analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that dissolved OM was enriched by strongly reduced chemical constituents, with BM providing more humic-like OM precursors than RM. Inclusion of a pine-based biochar in cattle diets to generate BM is consistent with current trends in the circular economy, "closing the loop" in agricultural supply chains by returning C-rich organic amendments to croplands. Stockpiling/composting the resulting BM, however, may not provide a clear advantage over directly mixing low levels of biochar with manure. Further research is required to validate BM as a tool to reduce the C footprint of livestock waste management.
Collapse
Affiliation(s)
- Carlos M Romero
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada.
| | - Abby-Ann P H Redman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Jen Owens
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Stephanie A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Gabriel O Ribeiro
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Monika A Gorzelak
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Thomas B P Oldenburg
- Petroleum Reservoir Group, Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Erasmus Okine
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
20
|
He C, Li S, Xiao Y, Xu J, Deng F. Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101772. [PMID: 35016011 DOI: 10.1016/j.ssnmr.2022.101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Solid-state NMR can afford the structural information about the chemical composition, local environment, and spatial coordination at the atomic level, which has been extensively applied to characterize the detailed structure and host-guest interactions in metal-organic frameworks (MOFs). In this review, recent advances for the structural characterizations of MOFs using versatile solid-state NMR techniques were briefly introduced. High-field sensitivity-enhanced solid-state NMR method enabled the direct observation of metal centers in MOFs containing low-γ nuclei. Two-dimensional (2D) homo- and hetero-nuclear correlation MAS NMR experiments provided the spatial proximity among linkers, metal clusters and the introduced guest molecules. Moreover, quantitative measurement of inter-nuclear distances using solid-state NMR provided valuable structural information about the connectivity geometry as well as the host-guest interactions within MOFs. Furthermore, solid-state NMR has exhibited great potential for unraveling the structure property of MOFs containing paramagnetic metal centers.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
21
|
Khuda F, Anjum M, Khan S, Khan H, Umar Khayam Sahibzada M, Khusro A, Jan A, Ullah N, Shah Y, Zakiullah, Abbas M, Iftikhar T, Idris AM, Uddin Khandaker M, Bin Emran T. Antimicrobial, anti-inflammatory and antioxidant activities of natural organic matter extracted from cretaceous shales in district Nowshera-Pakistan. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Quantitative analysis of polymer-grafted cellulose nanocrystals using a ssNMR method on the basis of cross polarization reciprocity relation. Carbohydr Res 2022; 513:108519. [DOI: 10.1016/j.carres.2022.108519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
|
23
|
Trifiró G, York R, Bell NGA. High-Resolution Molecular-Level Characterization of a Blanket Bog Peat Profile. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:660-671. [PMID: 34932324 DOI: 10.1021/acs.est.1c05837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To understand peatland carbon-cycling processes ultimately requires the ability to track changes occurring on the molecular-level. In this study, we profile a peat core taken from the world's largest blanket bog, Flow Country, Scotland, using physicochemical properties, ATR-FTIR, solid/liquid-state NMR, and solid/liquid-state FT-ICR-MS. Air-dried peat and labile and recalcitrant peat extracts, including pore water dissolved organic matter (PW-DOM), are analyzed and the merits of each technique are discussed. Solid-state NMR demonstrated changing distribution of compound classes with core depth and water table, the latter not picked up by IR. Liquid-state NMR and MS both demonstrated variations in molecular composition along the core depth in all phases and extracts. Contrary to previous reports, the composition of PW-DOM varied with depth. Major compounds, some previously unreported, identified by 1D/2D NMR occurred throughout the core, suggesting the existence of hot spots of microbial activity/compound accumulation. Offering complementary views, the techniques provided evidence of gradual molecular level changes with age, zonation due to the water table, and hot spots due to microbial activity. This study provides new insights into the molecular signatures of peat layers and establishes the foundation for examining peat function and health at the molecular-level.
Collapse
Affiliation(s)
- Gianluca Trifiró
- University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Richard York
- University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Nicholle G A Bell
- University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
24
|
Integrative measurement analysis via machine learning descriptor selection for investigating physical properties of biopolymers in hairs. Sci Rep 2021; 11:24359. [PMID: 34934112 PMCID: PMC8692616 DOI: 10.1038/s41598-021-03793-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Integrative measurement analysis of complex subjects, such as polymers is a major challenge to obtain comprehensive understanding of the properties. In this study, we describe analytical strategies to extract and selectively associate compositional information measured by multiple analytical techniques, aiming to reveal their relationships with physical properties of biopolymers derived from hair. Hair samples were analyzed by multiple techniques, including solid-state nuclear magnetic resonance (NMR), time-domain NMR, Fourier transform infrared spectroscopy, and thermogravimetric and differential thermal analysis. The measured data were processed by different processing techniques, such as spectral differentiation and deconvolution, and then converted into a variety of “measurement descriptors” with different compositional information. The descriptors were associated with the mechanical properties of hair by constructing prediction models using machine learning algorithms. Herein, the stepwise model refinement via selection of adopted descriptors based on importance evaluation identified the most contributive descriptors, which provided an integrative interpretation about the compositional factors, such as α-helix keratins in cortex; and bounded water and thermal resistant components in cuticle. These results demonstrated the efficacy of the present strategy to generate and select descriptors from manifold measured data for investigating the nature of sophisticated subjects, such as hair.
Collapse
|
25
|
Cunha GKG, Faria BGDE, Nascimento CWADO, Silva AJDA, Cunha KPVDA. Effects of riparian land use changes on soil attributes and concentrations of potentially toxic elements. AN ACAD BRAS CIENC 2021; 93:e20210455. [PMID: 34909828 DOI: 10.1590/0001-3765202120210455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Riparian zones are intrinsically sensitive habitats to anthropogenic disturbances. Knowledge about how riparian soil attributes respond to anthropogenic changes remains limited. This information would allow the prediction of degradation and contamination soil scenarios that threaten water quality for supply. Here, we studied the impact on soil quality and concentration that potentially toxic elements caused through changes in land use in riparian soils in northeastern Brazil. A total of thirty riparian soil composite samples were collected from areas with different land use and evaluated for physical and chemical attributes, in addition to potentially toxic elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). The results showed that replacing the natural vegetation in the riparian zone led to degradation gradient: pasture < agricultural < urban < industrial use. Soil attributes were sensitive in distinguishing the degree of degradation of each land use. Concentrations of the potentially toxic elements Cd and Zn are above the background soil concentrations and may pose a risk to the environment and human health. Our data can be helpful to understand better the complex relationship between land use and environmental impacts in riparian zones in northeastern Brazil and similar settings worldwide.
Collapse
Affiliation(s)
- Giulliana Karine G Cunha
- Federal University of Rio Grande do Norte, Postgraduate Program in Environmental and Sanitary Engineering, Department of Civil Engineering, Av. Salgado Filho, 3000, 59078-970 Natal, RN, Brazil
| | - Bruno G DE Faria
- Federal University of Rio Grande do Norte, Postgraduate Program in Environmental and Sanitary Engineering, Department of Civil Engineering, Av. Salgado Filho, 3000, 59078-970 Natal, RN, Brazil
| | | | - Airon José DA Silva
- Federal University of Sergipe, Department of Agronomy, Cidade Universitária Prof. Aloísio de Campos Jardim Rosa Elze, 49060-108 São Cristóvão, SE, Brazil
| | - Karina Patrícia V DA Cunha
- Federal University of Rio Grande do Norte, Postgraduate Program in Environmental and Sanitary Engineering, Department of Civil Engineering, Av. Salgado Filho, 3000, 59078-970 Natal, RN, Brazil
| |
Collapse
|
26
|
Vione D, Minero C, Carena L. Fluorophores in surface freshwaters: importance, likely structures, and possible impacts of climate change. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1429-1442. [PMID: 34490433 DOI: 10.1039/d1em00273b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescence spectroscopy is one of the most useful techniques currently available for the characterisation of organic matter in natural water samples, because it combines easy availability of instrumentation, high sensitivity and limited requirements for sample treatment. The main fluorophores that can be found in natural waters are usually proteins (and/or free amino acids) and humic substances (humic and fulvic acids). The identification of these fluorescent compounds in water samples helps to obtain information about, among others, biological activity in the water body, possible transport of organic matter from soil, and the phenomenon of photobleaching that decreases both the absorbance and (usually) the fluorescence of natural organic matter. Interestingly, all these phenomena can be affected by climate change, which could alter to different extents the ratio between aquagenic and pedogenic fluorophores. Several events induced by warming in natural waters (and especially lake water) could enhance algal growth, thereby also enhancing the production of aquagenic organic matter. Intense precipitation events could increase the export of pedogenic material to surface waters, while photobleaching would be enhanced in the epilimnion of lakes when summer stratification becomes longer and more stable because of higher temperatures. Interestingly, photobleaching affects humic substances to a higher extent compared to protein-like material, thus protein fluorescence signals could be more preserved in stratified waters.
Collapse
Affiliation(s)
- Davide Vione
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| | - Luca Carena
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125 Torino, Italy.
| |
Collapse
|
27
|
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Adv 2021; 11:30426-30447. [PMID: 35480260 PMCID: PMC9041152 DOI: 10.1039/d1ra03008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.
Collapse
Affiliation(s)
- Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Shunji Yamada
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Prediction Science Laboratory, RIKEN Cluster for Pioneering Research 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
- Data Assimilation Research Team, RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
28
|
Millour M, Gagné JP, Doiron K, Marcotte I, Arnold AA, Pelletier É. Effects of concentration and chemical composition of natural organic matter on the aggregative behavior of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Venel F, Nagashima H, Rankin AGM, Anquetil C, Klimavicius V, Gutmann T, Buntkowsky G, Derenne S, Lafon O, Huguet A, Pourpoint F. Characterization of Functional Groups in Estuarine Dissolved Organic Matter by DNP-enhanced 15 N and 13 C Solid-State NMR. Chemphyschem 2021; 22:1907-1913. [PMID: 34250708 DOI: 10.1002/cphc.202100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Indexed: 11/12/2022]
Abstract
Estuaries are key ecosystems with unique biodiversity and are of high economic importance. Along the estuaries, variations in environmental parameters, such as salinity and light penetration, can modify the characteristics of dissolved organic matter (DOM). Nevertheless, there is still limited information about the atomic-level transformations of DOM in this ecosystem. Solid-state NMR spectroscopy provides unique insights into the nature of functional groups in DOM. A major limitation of this technique is its lack of sensivity, which results in experimental time of tens of hours for the acquisition of 13 C NMR spectra and generally precludes the observation of 15 N nuclei for DOM. We show here how the sensitivity of solid-state NMR experiments on DOM of Seine estuary can be enhanced using dynamic nuclear polarization (DNP) under magic-angle spinning. This technique allows the acquisition of 13 C NMR spectra of these samples in few minutes, instead of hours for conventional solid-state NMR. Both conventional and DNP-enhanced 13 C NMR spectra indicate that the 13 C local environments in DOM are not strongly modified along the Seine estuary. Furthermore, the sensitivity gain provided by the DNP allows the detection of 15 N NMR signal of DOM, in spite of the low nitrogen content. These spectra reveal that the majority of nitrogen is in the amide form in these DOM samples and show an increased disorder around these amide groups near the mouth of the Seine.
Collapse
Affiliation(s)
- Florian Venel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Hiroki Nagashima
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France.,Sorbonne Univ., LCMCP UMR 7475, CNRS, CdF, 4 place Jussieu, 75252, Paris 05, France
| | - Christelle Anquetil
- Sorbonne Univ, UMR 7619 Metis, CNRS, EPHE, PSL, 4 Place Jussieu, 75252, Paris 05, France
| | - Vytautas Klimavicius
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.,Institute of Chemical Physics, Vilnius University, Sauletekio av. 3, 10257, Vilnius, Lithuania
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Sylvie Derenne
- Sorbonne Univ, UMR 7619 Metis, CNRS, EPHE, PSL, 4 Place Jussieu, 75252, Paris 05, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| | - Arnaud Huguet
- Sorbonne Univ, UMR 7619 Metis, CNRS, EPHE, PSL, 4 Place Jussieu, 75252, Paris 05, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| |
Collapse
|
30
|
Audette Y, Congreves KA, Schneider K, Zaro GC, Nunes ALP, Zhang H, Voroney RP. The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review. BIOLOGY AND FERTILITY OF SOILS 2021; 57:881-894. [PMID: 34759437 PMCID: PMC8570350 DOI: 10.1007/s00374-021-01580-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management-and should be a focus of future research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00374-021-01580-2.
Collapse
Affiliation(s)
- Yuki Audette
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Katelyn A. Congreves
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Kimberley Schneider
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Geovanna C. Zaro
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Amanda L. P. Nunes
- Department of Agronomy, University Pitagoras Unopar, Arapongas, PR Brazil
| | - Hongjie Zhang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1 Canada
| | - R. Paul Voroney
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
31
|
Daley SK, Cordell GA. Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211003029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The profound interconnectedness of the sciences and technologies embodied in the Fourth Industrial Revolution is discussed in terms of the global role of natural products, and how that interplays with the development of sustainable and climate-conscious practices of cyberecoethnopharmacolomics within the Quintuple Helix for the promotion of a healthier planet and society.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Romero CM, Redman AAPH, Terry SA, Hazendonk P, Hao X, McAllister TA, Okine E. Molecular speciation and aromaticity of biochar-manure: Insights from elemental, stable isotope and solid-state DPMAS 13C NMR analyses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111705. [PMID: 33298390 DOI: 10.1016/j.jenvman.2020.111705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The use of biochar (BC) in feedlot cattle diets has recently been explored as an approach to simultaneously improving animal production and reducing enteric methane (CH4) emissions. This study examines the impact of BC on manure properties and whether BC affects manure composition and carbon (C) and nitrogen (N) outputs from feedlot steers offered a barley-based diet with BC at 0.0, 0.5, 1.0 and 2.0% (BC0, BC0.5, BC1 and BC2) of diet dry matter. Manure was sampled three times over a 235 day feeding trial conducted in southern Alberta, Canada. Results showed that BC2 increased total C and the C/N ratio by 5.7 and 6.6% relative to BC0, respectively (P < 0.05), while total N exhibited a quadratic response from BC0 to BC2 (P = 0.005). Manure 15δN signatures, ranging from +3.83 to +7.34‰, were not affected (P > 0.05) by BC treatment. DPMAS 13C NMR revealed similar structural features among BC0 and BC2; indigestible BC had a minor impact on the bulk-C speciation of manure organic matter (OM). Compositional changes were limited to the aromatic-C region of the 13C NMR spectra. Fused-ring domains, mainly pyrogenic-C, were increased by 1.56-fold at BC2 relative to BC0. Overall, results demonstrated that BC stabilizes recalcitrant-C in manure OM, potentially sequestering soil-C when applied to croplands. This approach provides an added value to its use in ruminant diets, mainly from a nutrient cycling perspective. However, whole-farm studies are further required to validate the incorporation of BC into beef production systems.
Collapse
Affiliation(s)
- Carlos M Romero
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB, T1J 4B1, Canada.
| | - Abby-Ann P H Redman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB, T1J 4B1, Canada
| | - Stephanie A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB, T1J 4B1, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB, T1J 4B1, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB, T1J 4B1, Canada
| | - Erasmus Okine
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
33
|
Current trends and advances in analytical techniques for the characterization and quantification of biologically recalcitrant organic species in sludge and wastewater: A review. Anal Chim Acta 2021; 1152:338284. [PMID: 33648641 DOI: 10.1016/j.aca.2021.338284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
The study of organic matter in wastewater is a major regulatory and environmental issue and requires new developments to identify non-biodegradable refractory compounds, produced mainly by thermal treatments. Recent advances linking physicochemical properties to spectroscopic analyzes (UV, Fluorescence, IR) have shown that the refractory property is favored by several physicochemical parameters: weight, hydrophobicity, aromaticity and chemical functions. Currently, the most effective developments for the quantification of refractory compounds are obtained with hyphenated methods, based on steric separation of the macromolecular species by steric exclusion chromatography (SEC)/PDA/Fluorescence systems. Hyphenated techniques using High Resolution Mass Spectrometry (HRMS), ultra-high-resolution mass spectrometry with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and NMR have been developed to analyze macromolecules in wastewater with minor sample preparation procedures. A particular class has been identified, the melanoidins, generated by Maillard reactions between sugars, amino acids, peptides and proteins present in wastewater and sludge, but low molecular weight compounds formed as intermediates, such as ketones, aldehydes, pyrazines, pyridines or furans, are also recalcitrant and are complex to identify in the complex matrices. The lack of available standards for the study of these compounds requires the use of specific techniques and data processing. Advances in chemometrics are obtained in the development of molecular or physicochemical indices resulting from the data generated by the analytical detectors, such as aromaticity calculated by SUVA254 and determined by UV, fluorescence, molar mass, H/C ratio or structural studies (measuring the amount of unsaturated carbon) given by hyphenated techniques with SEC. It is clear that nitrogen compounds are widely involved in refractoriness. New trends in nitrogen containing compounds characterization follow two axes: through SEC/PDA/Fluorescence and HRMS/NMR techniques with or without separation. Other techniques widely used in food or marine science are also being imported to this study, as it can be seen in the use of "omics" methods, high-performance thin layer chromatography (HPTLC) and chromatography at the critical condition, rounding out the important developments around SEC. While improving the performance of stationary phases is one of the challenges, it results in a fundamental understanding of the retention mechanisms that today provide us with more information on the structures identified. The main objective of this review is to present the spectroscopic and physicochemical techniques used to qualify and characterize refractoriness with a specific focus on chemometric approaches.
Collapse
|
34
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
35
|
Wang Q, Nielsen UG. Applications of solid-state NMR spectroscopy in environmental science. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 110:101698. [PMID: 33130521 DOI: 10.1016/j.ssnmr.2020.101698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental science is an interdisciplinary field, which integrates chemical, physical, and biological sciences to study environmental problems and human impact on the environment. This article highlights the use of solid-state NMR spectroscopy (SSNMR) in studies of environmental processes and remediation with examples from both laboratory studies and samples collected in the field. The contemporary topics presented include soil chemistry, environmental remediation (e.g., heavy metals and radionuclides removal, carbon dioxide mineralization), and phosphorus recovery. SSNMR is a powerful technique, which provides atomic-level information about speciation in complex environmental samples as well as the interactions between pollutants and minerals/organic matter on different environmental interfaces. The challenges in the application of SSNMR in environmental science (e.g., measurement of paramagnetic nuclei and low-gamma nuclei) are also discussed, and perspectives are provided for the future research efforts.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
36
|
Duan P, Zhi B, Coburn L, Haynes CL, Schmidt-Rohr K. A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solid-state nuclear magnetic resonance. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1130-1138. [PMID: 31880813 DOI: 10.1002/mrc.4985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13 C, 13 C{1 H}, 1 H─13 C, 13 C{14 N}, and 15 N solid-state nuclear magnetic resonance (NMR) experiments. 13 C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15 N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13 C NMR peaks, including an unusual ═CH signal at 84 ppm (1 H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15 N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1 H─13 C HETCOR spectrum with brief 1 H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13 C and 15 N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13 C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Bo Zhi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Luke Coburn
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
37
|
Dos Santos OAQ, Tavares OCH, García AC, Rossi CQ, de Moura OVT, Pereira W, da Silva Rodrigues Pinto LA, Berbara RLL, Pereira MG. Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140063. [PMID: 32758952 DOI: 10.1016/j.scitotenv.2020.140063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Sugarcane burning has been widely practiced in Brazil and worldwide. In the long term, this farming practice can cause soil erosion, reduction in organic carbon (OC) and consequently, changes in the structure of soil organic matter (SOM). Such changes may be difficult to reverse. This study aimed to assess the medium- and long-term effects of sugarcane burning on SOM characteristics, both in terms of quantity and structural quality and evaluate the application of vinasse as a strategy to attenuate fire-induced changes in burned soil. The experiment was conducted in a 50-year-old sugarcane field on soils classed as Cambissolo Háplico (Inceptisol). Four plots were sampled: a) burning of sugarcane for harvest for 37 years (SCB37); b) renewal of the sugarcane field and burning for harvest for 3 years (SCB3); c) renewal of the sugarcane field without burning for harvest for 3 years (SCWB), and d) renewal of the sugarcane field and burning for harvest with the application of vinasse for 3 years (SCV). Chemical and physical characterization of SOM was performed by solid-state spectroscopy (UV-vis, ATR-FTIR e 13C NMR CP/MAS) and chemometric techniques. The results showed that sugarcane burning drastically impacts SOM content and its chemical structure, however, the application of vinasse preserves and restores the soil from the fire effects. Content of soil OC, particulate OC, mineral-associated OC, humic acid, humin and light fraction OM that were affected by fire, had an increase and recovery of contents by the vinasse application. Solid state spectroscopy showed that labile structures were lost in humic acids (HA) by fire and recalcitrant structures were preserved. The application of vinasse incorporated fragments of lipids and carbohydrates in HA structure. Burning sugar cane straw affects the integrity of soil organic matter but can be restored by applying vinasse.
Collapse
Affiliation(s)
- Otavio Augusto Queiroz Dos Santos
- Laboratory of Soil Genesis and Classification, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Andrés Calderín García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Brazil
| | | | | | - William Pereira
- Federal Rural University of Rio de Janeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Brazil
| | - Marcos Gervasio Pereira
- Laboratory of Soil Genesis and Classification, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
38
|
Tang D, Qian J, Wang N, Shu J. Determining the degree of acetylation of chitin/chitosan using a SSNMR 13C method on the basis of cross polarization reciprocity relation. Carbohydr Res 2020; 498:108168. [PMID: 33049653 DOI: 10.1016/j.carres.2020.108168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
The degree of acetylation (DA) is an essential parameter for chitin and its derivatives, which determines the chemical and physical properties of the polymers. As a consequene, fast and accurate technique to determine DA is widely required when developing the relating materials. Herein, an improved quantitative SSNMR method of rQCPZRC, based on the cross polarization reciprocity relation, was discussed and employed for DA testing. Three chitin/chitosan samples were chosen to evaluate the performance of rQCPZRC. In comparison with quantitative DP and optimized contact time CP methods, rQCPZRC is revealed as an accurate and reliable DA testing method with relative percentage errors of less than 5%. Moreover, the experimental time of rQCPZRC for each sample is 5.5 h, notably shorter than DP of 36-85 h. Thus, our work suggests rQCPZRC as a tool for DA testing, which is capable to accomplish with high accuracy and efficiency.
Collapse
Affiliation(s)
- Dandan Tang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Jianying Qian
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Ning Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
39
|
Millour M, Gagné JP, Doiron K, Lemarchand K, Pelletier É. Silver nanoparticles aggregative behavior at low concentrations in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Bi Y, Cai S, Wang Y, Zhao X, Wang S, Xing G, Zhu Z. Structural and microbial evidence for different soil carbon sequestration after four-year successive biochar application in two different paddy soils. CHEMOSPHERE 2020; 254:126881. [PMID: 32957288 DOI: 10.1016/j.chemosphere.2020.126881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Application of biochar (BC) derived from rice straw has generated increasing interest in long-term storage of soil organic carbon (SOC), however its carbon (C) sequestration potential vary widely among agricultural soils despite the same BC dose used. These discrepancies in the ability of soils to sequester C after BC application are poorly understood. Metabolic quotient (qCO2) is a reflection of "microbial efficiency" and linked to SOC turnover across ecosystems. Therefore, we investigated the SOC sequestration and qCO2 in a Yellow River alluvium paddy soil (YP) and a quaternary red clay paddy soil (QP) under rice-wheat annual rotation following 4-year of BC application rate of 11.3 Mg ha-1 per cropping season. BC application consistently brought 65.3 Mg C ha-1 into the soils over 4-year experimental period but increased SOC by 57.6 Mg C ha-1 in YP and 64.5 Mg C ha-1 in QP. Calculating SOC mass balance showed 11.7% of BC-C losses from YP and only 1.16% from QP. BC application stimulated the G+ bacterial, fungi, and actinomycetes by increasing O-alkyl C content in YP, while decreased the same microorganisms by decreasing anomeric C-H content in QP. Importantly, higher clay and amorphous Fe (Feo) contents in QP after BC application protected SOC from further decomposition, which in turn decreased microorganisms and resulted in higher SOC sequestration than YP. Our results indicated that soil properties controlled the extent of SOC sequestration after BC application and site-specific soil properties must be carefully considered to maximize long-term SOC sequestration after BC application.
Collapse
Affiliation(s)
- Yucui Bi
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Shenqiang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangxi Xing
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaoliang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
41
|
Gagné KR, Ewers SC, Murphy CJ, Daanen R, Walter Anthony K, Guerard JJ. Composition and photo-reactivity of organic matter from permafrost soils and surface waters in interior Alaska. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1525-1539. [PMID: 32567618 DOI: 10.1039/d0em00097c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Yedoma permafrost soils are especially susceptible to abrupt thaw due to their exceptional thickness and high ice content. Compared to other mineral soils, yedoma has a high organic carbon content, which has shown to be particularly biolabile. The organic carbon in these deposits needs to be characterised to provide an identification toolkit for detecting and monitoring the thaw, mobilisation and mineralisation of yedoma permafrost. This study characterised organic carbon isolates from thermokarst lakes (either receiving inputs from thaw of original yedoma or refrozen-thermokarst deposits, or lacking recent thaw) during winter and summer seasons within the Goldstream Creek watershed, a discontinuous permafrost watershed in interior Alaska, to identify the extent to which thermokarst-lake environments are impacted by degradation of yedoma permafrost. Waters from lakes of varied age and thermokarst activity, as well as active layer and undisturbed yedoma permafrost soils were isolated and characterised by functional group abundance (multiCP-MAS 13C and SPR-W5-WATERGATE 1H NMR), absorbance and fluorescence, and photobleaching ability. DOM isolated from winter and summer seasons revealed differing composition and photoreactivity, suggesting varied active layer and permafrost influence under differing ground water flow regimes. Water extractable organic matter isolates from permafrost leachates revealed variation in terms of photoreactivity and photolability, with the youngest sampled permafrost isolate being the most photoreactive and photolabile. As temperatures increase, release of permafrost organic matter is inevitable. Obtaining a holistic understanding of DOM composition and photoreactivity will allow for a better prediction of permafrost thaw impacts in the coming decades.
Collapse
Affiliation(s)
- Kristin R Gagné
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Yuan S, Duan P, Berthier DL, León G, Sommer H, Saint-Laumer JYD, Schmidt-Rohr K. Multinuclear solid-state NMR of complex nitrogen-rich polymeric microcapsules: Weight fractions, spectral editing, component mixing, and persistent radicals. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 106:101650. [PMID: 32044558 DOI: 10.1016/j.ssnmr.2020.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The molecular structure of a crosslinked nitrogen-rich resin made from melamine, urea, and aldehydes, and of microcapsules made from the reactive resin with multiple polymeric components in aqueous dispersion, has been analyzed by 13C, 13C{1H}, 1H-13C, 1H, 13C{14N}, and 15N solid-state NMR without isotopic enrichment. Quantitative 13C NMR spectra of the microcapsules and three precursor materials enable determination of the fractions of different components. Spectral editing of non-protonated carbons by recoupled dipolar dephasing, of CH by dipolar DEPT, and of C-N by 13C{14N} SPIDER resolves peak overlap and helps with peak assignment. It reveals that the N- and O-rich resin "imitates" the spectrum of polysaccharides such as chitin, cellulose, or Ambergum to an astonishing degree. 15N NMR can distinguish melamine from urea and guanazole, NC=O from COO, and primary from secondary amines. Such a comprehensive and quantitative analysis enables prediction of the elemental composition of the resin, to be compared with combustion analysis for validation. It also provides a reliable reference for iterative simulations of 13C NMR spectra from structural models. The conversion from quantitative NMR peak areas of structural components to the weight fractions of interest in industrial practice is derived and demonstrated. Upon microcapsule formation, 15N and 13C NMR consistently show loss of urea and aldehyde and an increase in primary amines while melamine is retained. NMR also made unexpected findings, such as imbedded crystallites in one of the resins, as well as persistent radicals in the microcapsules. The crystallites produce distinct sharp lines and are distinguished from liquid-like components by their strong dipolar couplings, resulting in fast dipolar dephasing. Fast 1H spin-lattice relaxation on the 35-ms time scale and characteristically non-exponential 13C spin-lattice relaxation indicate persistent radicals, confirmed by EPR. Through 1H spin diffusion, the mixing of components on the 5-nm scale was documented.
Collapse
Affiliation(s)
- Shichen Yuan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Pu Duan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Damien L Berthier
- Firmenich SA, Corporate Research Division, 1 Routes des Jeunes, 1211, Genève 8, Switzerland
| | - Géraldine León
- Firmenich SA, Corporate Research Division, 1 Routes des Jeunes, 1211, Genève 8, Switzerland
| | - Horst Sommer
- Firmenich SA, Corporate Research Division, 1 Routes des Jeunes, 1211, Genève 8, Switzerland
| | | | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| |
Collapse
|
43
|
Liu X, He M, Calvani D, Qi H, Gupta KBSS, de Groot HJM, Sevink GJA, Buda F, Kaiser U, Schneider GF. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core-rim polycyclic aromatic hydrocarbons. NATURE NANOTECHNOLOGY 2020; 15:307-312. [PMID: 32152558 DOI: 10.1038/s41565-020-0641-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/13/2020] [Indexed: 05/27/2023]
Abstract
Nanoporous graphene and related atomically thin layered materials are promising candidates in reverse electrodialysis research owing to their remarkable ionic conductivity and high permselectivity. The synthesis of atomically thin nanoporous membranes with a narrow pore size distribution, however, remains challenging. Here, we report the fabrication of nanoporous carbon membranes via the thermal crosslinking of core-rim structured monomers, that is, polycyclic aromatic hydrocarbons. The mechanically robust, centimetre-sized membrane has a pore size of 3.6 ± 1.8 nm and a thickness of 2.0 ± 0.5 nm. When applied to reverse electrodialysis, the nanoporous carbon membrane offers a high short-circuit current with an output power density of 67 W m-2, which is about two orders of magnitude beyond that of the classic ion-exchange membranes and current prototype nanoporous membranes reported in the literature. Crosslinked and atomically thin porous polycyclic aromatic hydrocarbon membranes therefore represent new scaffolds that will revolutionize the rapidly developing fields of sustainable energy and membrane technology.
Collapse
Affiliation(s)
- Xue Liu
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Meng He
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Dario Calvani
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Ulm, Germany
| | | | - Huub J M de Groot
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - G J Agur Sevink
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Francesco Buda
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Ulm, Germany
| | - Grégory F Schneider
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
44
|
Aquatic Organic Matter in the Seine Basin: Sources, Spatio-Temporal Variability, Impact of Urban Discharges and Influence on Micro-pollutant Speciation. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThis research has been conducted over the last 10 years to characterise the spatio-temporal variability of aquatic organic matter (OM) composition in the Seine River watershed upstream and downstream of Paris Megacity and its effect on micro-pollutants. For this purpose, a large number of samples were collected under different hydrological conditions, and, over 1 year, three representative sites were monitored monthly. Furthermore, the evolution of the OM composition along an urbanisation gradient, from upstream to downstream of the Paris agglomeration, was characterised, highlighting the very strong impact of urban discharges, especially during low-water periods. Substantial differences in the chemical composition are emphasised relative to the urban or natural origin of the organic matter. Dissolved organic matter (DOM) interactions with metallic and organic micro-pollutants were studied, allowing us to (1) identify the key role of DOM on their speciation and bioavailability in aquatic systems and (2) demonstrate that these interactions depend on DOM composition and origin. The essential role of urban DOM on the speciation of trace metals in the Seine River downstream of the Paris agglomeration is also shown.
Collapse
|
45
|
Fathi Til R, Alizadeh-Khaledabad M, Mohammadi R, Pirsa S, Wilson LD. Molecular imprinted polymers for the controlled uptake of sinapic acid from aqueous media. Food Funct 2020; 11:895-906. [DOI: 10.1039/c9fo01598a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) were synthesized via a precipitation polymerization method using 4-vinylpyridine as a functional monomer and ethylene glycol dimethacrylate as a cross-linker for selective separation of sinapic acid from water.
Collapse
Affiliation(s)
- Roya Fathi Til
- Department of Food Science and Technology
- Faculty of Agriculture
- Urmia University
- Urmia
- Iran
| | | | - Reza Mohammadi
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Sajad Pirsa
- Department of Food Science and Technology
- Faculty of Agriculture
- Urmia University
- Urmia
- Iran
| | - Lee D. Wilson
- Department of Chemistry
- University of Saskatchewan
- Saskatoon
- Canada
| |
Collapse
|
46
|
Neilen AD, Carroll AR, Hawker DW, O'Brien KR, Burford MA. Effects of photochemical and microbiological changes in terrestrial dissolved organic matter on its chemical characteristics and phytotoxicity towards cyanobacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133901. [PMID: 31756858 DOI: 10.1016/j.scitotenv.2019.133901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that under laboratory conditions, dissolved organic matter (DOM) leached from plants can be differentially more phytotoxic to cyanobacteria, compared to green algae. This study examined how DOM source and transformation processes (microbial and photochemical) affect its chemical composition and phytotoxicity towards a cultured species of cyanobacteria (Raphidiopsis raciborskii) using a factorial experimental design. To complement cyanobacterial bioassays, the chemical composition and associated changes in DOM were determined using spectroscopic (nuclear magnetic resonance (NMR) and absorbance) and elemental analyses. Sunlight exposed DOM from leaves of the terrestrial plants, Casuarina cunninghamiana and Eucalyptus tereticornis had the most phytotoxic effect compared to DOM not exposed to sunlight. This phytotoxic DOM was characterised by relatively low nitrogen content, containing highly coloured and relatively high molecular mass constituents. Both mixed effect model and PCA approaches to predict inhibition of photosynthetic yield indicated phytotoxicity could be predicted (P < 0.001) based upon the following parameters: C: N ratio; gilvin, and lignin-derived phenol content of DOM. Parallel proton-detected 1D and 2D NMR techniques showed that glucose anomers were the major constituents of fresh leachate. With ageing, glucose anomers disappeared and products of microbial transformation appeared, but there was no indication of the appearance of additional phytotoxic compounds. This suggests that reactive oxygen species may be responsible, at least partially, for DOM phytotoxicity. This study provides important new information highlighting the characteristics of DOM that link with phytotoxic effects.
Collapse
Affiliation(s)
- Amanda D Neilen
- Australian Rivers Institute & Griffith School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
| | - Anthony R Carroll
- Griffith School of Environment, Environmental Futures Research Institute, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Darryl W Hawker
- Griffith School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
| | - Katherine R O'Brien
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Michele A Burford
- Australian Rivers Institute & Griffith School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
47
|
Chmelka BF. Materializing opportunities for NMR of solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:91-97. [PMID: 31377152 DOI: 10.1016/j.jmr.2019.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 05/04/2023]
Abstract
Advancements in sensitivity and resolution of NMR of solids are opening a bonanza of fundamental and technological opportunities in materials science. Many of these are at the boundaries of related disciplines that provide creative inputs to motivate the development of new methodologies and possibilities for new applications. As Boltzmann limitations are surmounted by dynamic-nuclear-polarization- and laser-enhanced hyperpolarization techniques, the correlative benefits of multidimensional NMR are becoming more and more impactful. Nevertheless, there are limits, and the atomic-level information provided by solid-state NMR will be most useful in combination with state-of-the-art diffraction, microscopy, computational, and materials synthesis methods. Collectively these can be expected to lead to design criteria that will promote discovery of new materials, lead to novel or improved material properties, catalyze new applications, and motivate further methodological advancements.
Collapse
Affiliation(s)
- Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
48
|
Yao SH, Zhang YL, Han Y, Han XZ, Mao JD, Zhang B. Labile and recalcitrant components of organic matter of a Mollisol changed with land use and plant litter management: An advanced 13C NMR study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1-10. [PMID: 30634126 DOI: 10.1016/j.scitotenv.2018.12.403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Soil organic matter (SOM) changes with land use and soil management, yet the controlling factors over the chemical composition of SOM are not fully understood. We applied quantitative 13C nuclear magnetic resonance and spectral editing techniques to measure chemical structures of SOM from different land use types. The land use types included a native grassland (nGL), a crop land with straw burning in the field (bCL), a restored grassland (rGL) and a cropland with straw removed out of the field (rCL) for 28years. The abundances of OCH groups from carbohydrates were higher in the SOMs of the nGL and rGL than in those of the rCL and bCL, while the abundances of OCH3 and aromatic CO groups from lignin were higher in the SOMs of the three-ever cultivated lands (rGL, rCL and bCL) than in that of the nGL. Although aromatic CC groups were most dominant in the Mollisols, they did not consistently decrease after the burnings of straw were ceased in the fields of the rCL and rGL compared to the bCL with continuous burning. In addition, the COO groups were bound with the aromatic CC groups in all the land use types, and the sizes of the aromatic clusters were affected by the land use types. The labile and recalcitrant components were correlated with SOC contents the mineral-associated and particular SOM in a contrasting way. Our results suggested that the chemical composition of SOM in the Mollisol depended on land use types, and that labile and recalcitrant components might be protected through mineral associations and aggregation, respectively. The most abundant aromatics in the Mollisols might not just be pyrogenic and could be oxidized to different extents, depending on field drainage conditions.
Collapse
Affiliation(s)
- Shui-Hong Yao
- National Engineering Laboratory for Improving Fertility of Arable Soils, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yue-Ling Zhang
- National Engineering Laboratory for Improving Fertility of Arable Soils, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ya Han
- National Engineering Laboratory for Improving Fertility of Arable Soils, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiao-Zeng Han
- Key Laboratory of Mollisols Agroecology, National Field Observation and Research Station of Hailun Agroecosystems, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Jing-Dong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd, Norfolk, VA 23529, USA
| | - Bin Zhang
- National Engineering Laboratory for Improving Fertility of Arable Soils, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
49
|
Assunção SA, Pereira MG, Rosset JS, Berbara RLL, García AC. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:901-911. [PMID: 30583185 DOI: 10.1016/j.scitotenv.2018.12.271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Carbon (C) stabilization and the quality of soil organic matter (SOM) in a tropical climate are key aspects regulating carbon dioxide emissions and maintaining the C cycle. Soil management influences the accumulation of C, regulating the balance between mineralization and/or the humification of SOM. This study aimed to quantify inputs of different chemical forms of C into soil and to evaluate the structural chemical characteristics of humified SOM. Four management systems were established: Forest (F), Pasture (P), Conventional tillage (T), and No-tillage (NT). Total organic carbon (TOC) and nitrogen (TN) by depth, chemical forms of organic matter input, and spectroscopic characterization of SOM in the form of humic acids (HA) were analyzed. The results obtaining by PCA-13C NMR show that the forest accumulated a high amount of C on the surface (surpassing 20 Mg ha-1), favoring the formation of aliphatic HA (CAlkyl-H,R; CAlkyl-O,N; CAlkyl-O). In the NT management that increases biomass in the soil (14 Mg ha-1), the mineralization process occurred to a greater extent, allowing HA to form with a predominance of aromatic structures (CArm-H,R and CArm-O,N). The PCA-FTIR analysis showed that the P system contributed to the formation of similar HA to those under F management. The T management system incorporated the least TOC and TN, with different HA types being formed in these soils than what was found in other managements. Thus, minimally managed and more stabilized systems in tropical climates form HA of structural and compositional similarity, regardless of the nature of C (C3 or C4). In contrast, soils subjected to agricultural uses that promote higher or lower C inputs, form HA that are structurally different from P and F. This study demonstrates the need for developing experiments for model building to elucidate the relationships among C input, management type, and the formation of humic substances.
Collapse
Affiliation(s)
- Shirlei Almeida Assunção
- Federal Rural University of Rio de Janeiro, Institute of Agronomy, Department of Soil, Laboratory of Soil Genesis and Classification and Laboratory of Soil Biological Chemistry, Brazil.
| | - Marcos Gervasio Pereira
- Federal Rural University of Rio de Janeiro, Institute of Agronomy, Department of Soil, Laboratory of Soil Genesis and Classification and Laboratory of Soil Biological Chemistry, Brazil
| | - Jean Sérgio Rosset
- Sate University of Mato Grosso do Sul (UEMS), BR 163, Km 20,2, 79980-000 Mundo Novo, MS, Brazil
| | - Ricardo Luiz Louro Berbara
- Federal Rural University of Rio de Janeiro, Institute of Agronomy, Department of Soil, Chemical Biological Soil Laboratory, Brazil
| | - Andrés Calderín García
- Federal Rural University of Rio de Janeiro, Institute of Agronomy, Department of Soil, Chemical Biological Soil Laboratory, Brazil
| |
Collapse
|
50
|
Gebert J, Knoblauch C, Gröngröft A. Gas production from dredged sediment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:82-89. [PMID: 30803617 DOI: 10.1016/j.wasman.2018.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
The anaerobic degradation of sediment organic matter leads to considerable gas production in constructions made from sediments and in landfills where contaminated sediments are disposed of, inducing problems with the mechanical stability of constructions or necessitating extraction and treatment of gas. However, little is known about the magnitude of gas generation from dredged sediment, hence validated input parameters for gas production modelling are missing. On the occasion of drillings performed for the installation of inclinometers on a mono-landfill for contaminated dredged sediment, eleven waste layers of known were sampled. Samples were analysed for gas generation in a long-term laboratory incubation experiment carried out for 757 days. It was found that the residual gas potential of the deposited dredged material ranged between 2 and 12 m3 MgDW-1, relating to 3-11% of the organic matter being degraded. Correlation analyses with material properties suggest a strong role of nitrogen, either directly or as indicative parameter, with the gas potential increasing with total nitrogen content and the share of degradable carbon decreasing with increasing TOC/TN ratio. The by far greatest share of organic matter was bound in the heavy density fraction >1.4 g cm-3, suggesting that the readily available light organic matter pool had already been depleted during pre-treatment of the dredged sediment in dewatering fields and the subsequent years of landfilling. Consequently, the correlation of the remaining gas potential with heavy fraction nitrogen was even stronger than for bulk nitrogen. The gas potential as revealed from the long-term test correlated well with short-term values, but outreached the commonly applied potential measured for 21 days by the factor of four. The data improve the state of knowledge on gas production from the large mineral waste stream of dredged material and serve to improve gas production modelling for these types of wastes. The strong correlation of gas potential to TN suggests that TN may serve as a proxy to estimate total gas potential.
Collapse
Affiliation(s)
- Julia Gebert
- Delft University of Technology, Department of Geoscience & Engineering, Stevinweg 1, 2628 CN Delft, the Netherlands.
| | - Christian Knoblauch
- University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany.
| | - Alexander Gröngröft
- University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany.
| |
Collapse
|