1
|
Das M, Kulandai F, Kumar H, Kuppuswamy P, Subba B, Hazra S, Nimje R, Gupta A, Bagadi M, Mathur A, Roy A, Duche S. Effect of Solvent on the Optical Rotation of Azatryptophan Derivatives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:850-860. [PMID: 39315940 DOI: 10.1002/mrc.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Chirally pure enantiomers of differently protected 7-azatryptophan derivatives (R-3c, S-3c, R-3i, S-3i, R-3m, S-3m, R-3aa, and S-3aa) were synthesized, which showed solvent-dependent optical rotation. The obtained results not only exhibited changes in the values but also showed the variation in sign (- or +) with the different solvents studied. The change in optical rotation value was essentially attributed to the electron-donating property, which can be correlated to the donor number of the solvents. There are two types of hydrogen bonds, intramolecular (i.e., form within the structure) and intermolecular (i.e., form with external groups such as solvents). These hydrogen bonds are responsible for the value and sign variations, and 1H NMR experiments were used to further characterize them. The NMR data suggested that hydrogen bond formation is occurring between the Fmoc NH group vicinal to the chiral center and donor group of the corresponding solvent.
Collapse
Affiliation(s)
- Mitalee Das
- Discovery Analytical Sciences, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Felix Kulandai
- Discovery Analytical Sciences, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Hemantha Kumar
- Discovery Analytical Sciences, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Prakasam Kuppuswamy
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Bandreddy Subba
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Sunit Hazra
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Roshan Nimje
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Muralidhararao Bagadi
- Discovery Analytical Sciences, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Arvind Mathur
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Amrita Roy
- Discovery Analytical Sciences, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| | - Sharad Duche
- Discovery Analytical Sciences, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India
| |
Collapse
|
2
|
Elsing D, Luy B, Kozlowska M. Enantiomer Differentiation by Interaction-Specific Prediction of Residual Dipolar Couplings in Spherical-like Molecules. J Chem Theory Comput 2024. [PMID: 39099221 DOI: 10.1021/acs.jctc.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Residual Dipolar Couplings (RDCs) are averaged dipolar couplings between nuclear spins of atoms in a molecule that can be measured by nuclear magnetic resonance (NMR) spectroscopy upon partial alignment by a chiral alignment medium. The estimation of differences in alignment of enantiomers may, in principle, enable the determination of absolute configuration. Here, we use molecular dynamics (MD) simulations to mimic the alignment of chiral molecules (i.e., isopinocampheol, quinuclidin-3-ol, borneol, and camphor) to the chiral poly-γ-benzyl-L-glutamate (PBLG) polymer to predict RDCs in silico and compare calculated and experimentally measured residual dipolar couplings for the four enantiomeric pairs. The aim is to validate the computational scheme for the prediction of RDCs in chiral molecules and understand the interaction leading to the alignment in more detail. We determine the indispensable importance of hydrogen bonds between a chiral molecule and the alignment medium on the overall quality of the simulated alignment and interaction poses toward high agreement with experiments. A good correlation with experimental data is found for camphor and isopinocampheol, while the correlation for quinuclidin-3-ol and borneol is lower. We attribute this observation to the high difficulty of the RDC prediction for rather almost spherical molecules. The study reveals that the prediction of alignment with small enantiomeric differences is possible with an MD-based approach; however, extended simulation times (e.g., 50-100 μs) are required to sufficiently reduce the statistical uncertainty. This may be further used for the determination of the relative, as well as absolute, configuration of chiral molecules.
Collapse
Affiliation(s)
- David Elsing
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Burkhard Luy
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Tichotová M, Landovský T, Lang J, Jeziorowski S, Schmidts V, Kohout M, Babor M, Lhoták P, Thiele CM, Dvořáková H. Enantiodiscrimination of Inherently Chiral Thiacalixarenes by Residual Dipolar Couplings. J Org Chem 2024; 89:9711-9720. [PMID: 36655948 PMCID: PMC11267606 DOI: 10.1021/acs.joc.2c02594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 01/20/2023]
Abstract
Inherently chiral compounds, such as calixarenes, are chiral due to a nonplanar three-dimensional (3D) structure. Determining their conformation is essential to understand their properties, with nuclear magnetic resonance (NMR) spectroscopy being one applicable method. Using alignment media to measure residual dipolar couplings (RDCs) to obtain structural information is advantageous when classical NMR parameters like the nuclear Overhauser effect (NOE) or J-couplings fail. Besides providing more accurate structural information, the alignment media can induce different orientations of enantiomers. In this study, we examined the ability of polyglutamates with different side-chain moieties─poly-γ-benzyl-l-glutamate (PBLG) and poly-γ-p-biphenylmethyl-l-glutamate (PBPMLG) ─to enantiodifferentiate the inherently chiral phenoxathiin-based thiacalix[4]arenes. Both media, in combination with two solvents, allowed for enantiodiscrimination, which was, to the best of our knowledge, proved for the first time on inherently chiral compounds. Moreover, using the experimental RDCs, we investigated the calix[4]arenes conformational preferences in solution, quantitatively analyzed the differences in the alignment of the enantiomers, and discussed the pitfalls of the use of the RDC analysis.
Collapse
Affiliation(s)
- Markéta Tichotová
- Laboratory
of NMR Spectroscopy, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
- Department
of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 00Prague 2, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo náměstí 542, 160 00Prague 6, Czech Republic
| | - Tomáš Landovský
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Jan Lang
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16Prague 2, Czech Republic
| | - Sharon Jeziorowski
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 16, 64287Darmstadt, Germany
| | - Volker Schmidts
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 16, 64287Darmstadt, Germany
| | - Michal Kohout
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Martin Babor
- Department
of Solid State Chemistry, University of
Chemistry and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Pavel Lhoták
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| | - Christina M. Thiele
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 16, 64287Darmstadt, Germany
| | - Hana Dvořáková
- Laboratory
of NMR Spectroscopy, University of Chemistry
and Technology Prague (UCTP), Technická 5, 166 28Prague 6, Czech Republic
| |
Collapse
|
4
|
John M, Rüttger F. Multinuclear Residual Quadrupolar Couplings for Structure and Assignment. Chemphyschem 2024; 25:e202400068. [PMID: 38465709 DOI: 10.1002/cphc.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Most stable isotopes have a nuclear spin >1/2, but the quadrupole interaction poses challenge on their detection by nuclear magnetic resonance (NMR). On the other hand, the quadrupole interaction is a rich source of structural information that may be exploited for solution NMR in the form of residual quadrupolar couplings (RQCs) of weakly oriented samples. While 2H RQCs are now well established for structure verification and enantiomeric discrimination of organic molecules, we will in this article highlight some recent work on RQCs of other nuclei (especially 7Li and 11B).
Collapse
Affiliation(s)
- Michael John
- Fakultät für Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077, Göttingen
| | - Franziska Rüttger
- Fakultät für Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077, Göttingen
| |
Collapse
|
5
|
Gouilleux B, Moussallieh FM, Lesot P. Potential and performance of anisotropic 19F NMR for the enantiomeric analysis of fluorinated chiral active pharmaceutical ingredients. Analyst 2024; 149:3204-3213. [PMID: 38655746 DOI: 10.1039/d4an00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Controlling the enantiomeric purity of chiral drugs is of paramount importance in pharmaceutical chemistry. Isotropic 1H NMR spectroscopy involving chiral agents is a widely used method for discriminating enantiomers and quantifying their relative proportions. However, the relatively weak spectral separation of enantiomers (1H Δδiso(R, S)) in frequency units at low and moderate magnetic fields, as well as the lack of versatility of a majority of those agents with respect to different chemical functions, may limit the general use of this approach. In this article, we investigate the analytical potential of 19F NMR in anisotropic chiral media for the enantiomeric analysis of fluorinated active pharmaceutical ingredients (API) via two residual anisotropic NMR interactions: the chemical shift anisotropy (19F-RCSA) and dipolar coupling ((19F-19F)-RDC). Lyotropic chiral liquid crystals (CLC) based on poly-γ-benzyl-L-glutamate (PBLG) show an interesting versatility and adaptability to enantiodiscrimination as illustrated for two chiral drugs, Flurbiprofen® (FLU) and Efavirenz® (EFA), which have very different chemical functions. The approach has been tested on a routine 300 MHz NMR spectrometer equipped with a standard probe (5 mm BBFO probe) in a high-throughput context (i.e., ≈10 s of NMR experiments) while the performance for enantiomeric excess (ee) measurement is evaluated in terms of trueness and precision. The limits of detection (LOD) determined were 0.17 and 0.16 μmol ml-1 for FLU and EFA, respectively, allow working in dilute conditions even with such a short experimental duration. The enantiodiscrimination capabilities are also discussed with respect to experimental features such as CLC composition and temperature.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. HM1, 17-19, Avenue des Sciences, 91400, Orsay, France
| | - François-Marie Moussallieh
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. HM1, 17-19, Avenue des Sciences, 91400, Orsay, France
| | - Philippe Lesot
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. HM1, 17-19, Avenue des Sciences, 91400, Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3, Rue Michel Ange, F-75016 Paris, France.
| |
Collapse
|
6
|
Spiaggia F, Uccello Barretta G, Iuliano A, Baldassari C, Aiello F, Balzano F. A Squaramide-Based Organocatalyst as a Novel Versatile Chiral Solvating Agent for Carboxylic Acids. Molecules 2024; 29:2389. [PMID: 38792248 PMCID: PMC11123912 DOI: 10.3390/molecules29102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A squaramide-based organocatalyst for asymmetric Michael reactions has been tested as a chiral solvating agent (CSA) for 26 carboxylic acids and camphorsulfonic acid, encompassing amino acid derivatives, mandelic acid, as well as some of its analogs, propionic acids like profens (ketoprofen and ibuprofen), butanoic acids and others. In many cases remarkably high enantiodifferentiations at 1H, 13C and 19F nuclei were observed. The interaction likely involves a proton transfer from the acidic substrates to the tertiary amine sites of the organocatalyst, thus allowing for pre-solubilization of the organocatalyst (when a chloroform solution of the substrate is employed) or the simultaneous solubilization of both the catalyst and the substrate. DOSY experiments were employed to evaluate whether the catalyst-substrate ionic adduct was a tight one or not. ROESY experiments were employed to investigate the role of the squaramide unit in the adduct formation. A mechanism of interaction was proposed in accordance with the literature data.
Collapse
Affiliation(s)
- Fabio Spiaggia
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Gloria Uccello Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Anna Iuliano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Carlo Baldassari
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Federica Aiello
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| |
Collapse
|
7
|
Wang Y, Zhao H, Yang C, Fang L, Zheng L, Lv H, Stavropoulos P, Ai L, Zhang J. Chiral Recognition of Chiral (Hetero)Cyclic Derivatives Probed by Tetraaza Macrocyclic Chiral Solvating Agents via 1H NMR Spectroscopy. Anal Chem 2024; 96:5188-5194. [PMID: 38506628 PMCID: PMC11492768 DOI: 10.1021/acs.analchem.3c05395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In the field of chiral recognition, chiral cyclic organic compounds, especially heterocyclic organic compounds, have attracted little attention and have been rarely studied as chiral substrates by means of 1H NMR spectroscopy. In this paper, enantiomers of thiohydantoin derivatives, representing typical five-membered N,N-heterocycles, have been synthesized and utilized for assignment of absolute configuration and analysis of enantiomeric excess. All enantiomers have been successfully differentiated with the assistance of novel tetraaza macrocyclic chiral solvating agents (TAMCSAs) by 1H NMR spectroscopy. Surprisingly, unprecedented nonequivalent chemical shift values (up to 2.052 ppm) of the NH proton of substrates have been observed, a new milestone in the evaluation of enantiomers. To better understand the intermolecular interactions between host and guest, Job plots and theoretical calculations of (S)-G1 and (R)-G1 with TAMCSA 1a were investigated and revealed significant geometric differentiation between the diastereomers. In order to evaluate practical applications of the present systems in analyzing optical purity of chiral substrates, enantiomeric excesses of a typical substrate (G1) with different optical compositions in the presence of a representative TAMCSA (1a) can be accurately calculated based on the integration of the NH proton's signal peaks. Importantly, this work provides a significant breakthrough in exploring and developing the chiral recognition of chiral heterocyclic organic compounds by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Chunxia Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lixia Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hehua Lv
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiaxin Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Julien T, Gouilleux B, Rousseau B, Immel S, Reggelin M, Lesot P. Spatially Resolved Anisotropic Natural Abundance Deuterium 2D-NMR Spectroscopy Using Bimesophasic Lyotropic Chiral Systems. J Phys Chem Lett 2024; 15:2089-2095. [PMID: 38358651 DOI: 10.1021/acs.jpclett.3c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In this paper, we describe, for the first time, the combined and original use of spatially resolved anisotropic natural abundance deuterium (ANAD) 2D-NMR experiments and bimesophasic lyotropic chiral systems to extract two independent sets of anisotropic parameters such as 2H-RQCs from a single NMR sample. As a pioneering example, we focus on a mixture of immiscible polypeptides (PBLG) and polyacetylene helical polymers (L-MSP) dissolved in weakly polar organic solvents (chloroform). Nondeuterated (D)-(+)-camphor is used as a model chiral solute. By providing two series of 2H-RQCs, this new analytical approach paves the way for applications in 3D structure elucidation with increased reliability and also opens up original investigations in terms of spectral enantiomeric discriminations and mixing of helical polymers.
Collapse
Affiliation(s)
- Thomas Julien
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
| | - Boris Gouilleux
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
| | - Bernard Rousseau
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3, Rue Michel Ange, F-75016 Paris, France
| | - Stefan Immel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische, Universität Darmstadt, Peter Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische, Universität Darmstadt, Peter Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Philippe Lesot
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3, Rue Michel Ange, F-75016 Paris, France
| |
Collapse
|
9
|
Gu G, Zhao C, Zhang W, Weng J, Xu Z, Wu J, Xie Y, He X, Zhao Y. Chiral Discrimination of Acyclic Secondary Amines by 19F NMR. Anal Chem 2024; 96:730-736. [PMID: 38170838 DOI: 10.1021/acs.analchem.3c03846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chiral aliphatic amine compounds exhibit a range of physiological activities, making them highly sought-after in the pharmaceutical industry and biological research. One notable obstacle in studying these compounds stems from the pronounced steric hindrance surrounding the nitrogen atom. This characteristic often leads to a weak affinity of acyclic secondary amines for molecular probes, making their chiral discrimination intricate. In response to this challenge, our research has unveiled a novel 19F-labeled probe adept at recognizing and distinguishing between enantiomers of these acyclic secondary amines. By strategically incorporating a single fluorine atom as the 19F label, we have managed to diminish the steric hindrance at the binding site. This alteration bolsters the probe's affinity toward bulkier analytes. As a testament to its effectiveness, we have successfully employed our probe in the chiral analysis of relevant pharmaceuticals, accurately determining their enantiocomposition.
Collapse
Affiliation(s)
- Guangxing Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chong Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jiajin Weng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingbo Xie
- Shanghai Titan Scientific Co., Ltd, Shanghai, 89 Shilong Road, Xuhui District, Shanghai 200032, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Li GW, Wang XJ, Shi SH, Liu LT, Li JQ, Sun H, Wu ZQ, Lei X. Polyarylisocyanides Derived from an Alkyne-Pd(II) Catalyst as Robust Alignment Media with Excellent Enantiodiscimination. Anal Chem 2023; 95:18850-18858. [PMID: 38091507 DOI: 10.1021/acs.analchem.3c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The development of chiral alignment media for measuring anisotropic NMR parameters provides an opportunity to determine the absolute configuration of chiral molecules without the need for derivatization. However, chiral alignment media with a high and robust enantiodiscriminating property for a wide range of chiral molecules are still scarce. In this study, we synthesized cholesterol-end-functionalized helical polyisocyanides from a chiral monomer using a cholesterol-based alkyne-Pd(II) initiator. These stereoregular polyisocyanides form stable and weak anisotropic lyotropic liquid crystals (LLCs) in dichloromethane systems, exhibiting highly optical activities in both single left- and right-handed helices. The preparation process of the media was straightforward, and the aligning property of the LLCs could be controlled by adjusting the concentration and temperature. Using the chiral polyisocyanides, we extracted the residual dipolar coupling for an enantiomeric pair of isopinocampheol (IPC), as well as a number of pharmaceutical molecules, demonstrating excellent enantiodiscriminating properties for a broad range of chiral compounds.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Shuai-Hua Shi
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Lan-Tao Liu
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Jia-Qian Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Han Sun
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinxiang Lei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemi-cal Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
11
|
Fuentes-Monteverde JC, Noll M, Das A, Immel S, Reggelin M, Griesinger C, Nath N. Residual-Chemical-Shift-Anisotropy-Based Enantiodifferentiation in Lyotropic Liquid Crystalline Phases Based on Helically Chiral Polyacetylenes. Angew Chem Int Ed Engl 2023; 62:e202309981. [PMID: 37684219 DOI: 10.1002/anie.202309981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Anisotropic NMR spectroscopy, revealing residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) has emerged as a powerful tool to determine the configurations of synthetic and complex natural compounds. The deduction of the absolute in addition to the relative configuration is one of the primary goals in the field. Therefore, the investigation of the enantiodiscriminating capabilities of chiral alignment media becomes essential. While RDCs and RCSAs are now used for the determination of the relative configuration routinely, RCSAs have not been measured in chiral alignment media such as chiral liquid crystals. Herein, we present this application by measuring RCSAs for chiral analytes such as indanol and isopinocampheol in the lyotropic liquid crystalline phase of an L-valine derived helically chiral polyacetylenes. We have also demonstrated that a single 1D 13 C-{1 H} NMR spectrum suffices to get the RCSAs circumventing the necessity to acquire two spectra at two alignment conditions.
Collapse
Affiliation(s)
- Juan Carlos Fuentes-Monteverde
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-Based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Noll
- Department of Chemistry, Technical University of Darmstadt, Alarich Weiss Straße 4, 64287, Darmstadt, Germany
| | - Akhi Das
- Department of Chemistry, Gauhati University Guwahati, Jalukbari, 781014, India
| | - Stefan Immel
- Department of Chemistry, Technical University of Darmstadt, Alarich Weiss Straße 4, 64287, Darmstadt, Germany
| | - Michael Reggelin
- Department of Chemistry, Technical University of Darmstadt, Alarich Weiss Straße 4, 64287, Darmstadt, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-Based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Nilamoni Nath
- Department of Chemistry, Gauhati University Guwahati, Jalukbari, 781014, India
| |
Collapse
|
12
|
Liang J, Xu Z, Wu J, Zhao Y. Tailoring the Recognition Property of a 19F-Labeled Gallium-Based NMR Probe: The Influence of the Metal Center. Anal Chem 2023; 95:7569-7574. [PMID: 37129497 DOI: 10.1021/acs.analchem.3c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chirality is a fundamental property of nature and an essential element of the life process. As the biological activities, metabolic pathways, and toxicity of individual enantiomers are often varied, methods to rapidly and accurately discriminate chiral analytes are in great demand. Here, we report a 19F-labeled gallium-based probe for the enantiodifferentiation of chiral monoamines, diamines, amino alcohols, amino acids, and N-heterocycles. A comparison between the new gallium-based probe and the previously developed aluminum aminotrisphenolate complex was performed. It was revealed that the gallium metal center displays a much stronger affinity toward the amino group compared to the hydroxy group, thereby producing simplified 19F NMR signals for analytes with multiple Lewis basic sites. For sterically bulky analyte, the replacement of the aluminum with gallium is envisioned to expand the binding pocket of the probe to allow different binding models to interconvert rapidly. This feature is important to the creation of easily interpretable 19F signals corresponding to each enantiomer. It is further demonstrated that the gallium-based probe is suitable for the assessment of the enantiomeric excess values of the crude products obtained in asymmetric reactions without the need for purification.
Collapse
Affiliation(s)
- Jinhua Liang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanchuan Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
13
|
Hirschmann M, Soltwedel O, Ritzert P, von Klitzing R, Thiele CM. Light-Controlled Lyotropic Liquid Crystallinity of Polyaspartates Exploited as Photo-Switchable Alignment Medium. J Am Chem Soc 2023; 145:3615-3623. [PMID: 36749116 DOI: 10.1021/jacs.2c12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two polyaspartates bearing ortho-fluorinated azobenzenes (pFAB) as photo-responsive groups in the side chain were synthesized: PpFABLA (1) and co-polyaspartate PpFABLA-co-PBLA [11, 75%(n/n) PpFABLA content]. As a consequence of the E/Z-isomerization of the side chain, PpFABLA (1) undergoes a visible-light-induced reversible coil-helix transition in solution: Green light (525 nm) affords the coil, and violet light (400 nm) affords the helix. pFAB significantly increases the thermal stability of the Z-isomer at 20 °C (t1/2 = 66 d for the Z-isomer) and effectively counters the favored back formation of the helix. At 20%(w/w) polymer concentration, the helical polymer forms a lyotropic liquid crystal (LLC) that further orients unidirectionally inside a magnetic field, while the coil polymer results in an isotropic solution. The high viscosity of the polymer solution stabilizes the coexistence of liquid crystalline and isotropic domains, which were obtained with spatial control by partial light irradiation. When used as an alignment medium, PpFABLA (1) enables (i) the measurement of dipolar couplings without the need for a separate isotropic reference and (ii) the differentiation of enantiomers. PpFABLA-co-PBLA (11) preserves the helical structure, by intention, independently of the E/Z-isomerization of the side chain: Both photo-isomers of PpFABLA-co-PBLA (11) form a helix that─at a concentration of 16%(w/w)─form an LLC. Despite the absence of a change in the secondary structure, the E/Z-isomerization of the side chain changes the morphology of the liquid crystal and leads to different sets of dipolar coupling for the same probe molecule.
Collapse
Affiliation(s)
- Max Hirschmann
- Clemens-Schöpf-Institute, Technical University of Darmstadt (TUDa), Alarich-Weiss-Straße 4, DE 64287 Darmstadt, Germany
| | - Olaf Soltwedel
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Philipp Ritzert
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institute, Technical University of Darmstadt (TUDa), Alarich-Weiss-Straße 4, DE 64287 Darmstadt, Germany
| |
Collapse
|
14
|
Gouilleux B, Moussallieh FM, Lesot P. Anisotropic 1 H STD-NMR Spectroscopy: Exploration of Enantiomer-Polypeptide Interactions in Chiral Oriented Environments. Chemphyschem 2023; 24:e202200508. [PMID: 36196851 DOI: 10.1002/cphc.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Indexed: 11/07/2022]
Abstract
We explore and report for the first time the use of 1 H saturation transfer difference NMR experiments (STD-NMR) in weakly aligning chiral anisotropic media to identify the hydrogen sites of enantiomers of small chiral molecules interacting with the side-chain of poly-γ-benzyl-l-glutamate (PBLG), a helically chiral polypeptide polymer. The first experimental results obtained on three model mono-stereogenic compounds outcomes are highly promising and demonstrate the possibility to track down possible differences of spatial position of enantiomers at the vicinity of the polymer side-chain. Anisotropic STD experiments appear to be well suited for rapid screening of chiral analytes that bind favorably to orienting polymeric systems, while providing new insights into the mechanism of enantio-discrimination without resorting to the time-consuming determination of molecular order parameters.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Francois-Marie Moussallieh
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Philippe Lesot
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France.,Centre National de la Recherche Scientifique (CNRS), 3, rue Michel Ange, 75016, Paris, France
| |
Collapse
|
15
|
F-labeled molecular probes for NMR-based detection. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
McCalpin SD, Fu R, Ravula T, Wu G, Ramamoorthy A. Magnetically aligned nanodiscs enable direct measurement of 17O residual quadrupolar coupling for small molecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107341. [PMID: 36473327 DOI: 10.1016/j.jmr.2022.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The use of 17O in NMR spectroscopy for structural studies has been limited due to its low natural abundance, low gyromagnetic ratio, and quadrupolar relaxation. Previous solution 17O work has primarily focused on studies of liquids where the 17O quadrupolar coupling is averaged to zero by isotropic molecular tumbling, and therefore has ignored the structural information contained in this parameter. Here, we use magnetically aligned polymer nanodiscs as an alignment medium to measure residual quadrupolar couplings (RQCs) for 17O-labelled benzoic acid in the aqueous phase. We show that increasing the magnetic field strength improves spectral sensitivity and resolution and that each satellite peak of the expected pentet pattern resolves clearly at 18.8 T. We observed no significant dependence of the RQC magnitudes on the magnetic field strength. However, changing the orientation of the alignment medium alters the RQC by a consistent factor, suggesting that 17O RQCs measured in this way can provide reliable orientational information for elucidations of molecular structures.
Collapse
Affiliation(s)
- Samuel D McCalpin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Thirupathi Ravula
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Immel S, Köck M, Reggelin M. NMR-Based Configurational Assignments of Natural Products: How Floating Chirality Distance Geometry Calculations Simplify Gambling with 2 N-1 Diastereomers. JOURNAL OF NATURAL PRODUCTS 2022; 85:1837-1849. [PMID: 35820115 DOI: 10.1021/acs.jnatprod.2c00427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using NMR data, the assignment of the correct 3D configuration and conformation to unknown natural products is of pivotal importance in pharmaceutical and medicinal chemistry. In this report, we quantify the probability of configurational assignments to judge the quality of structural elucidations using Bayesian inference in combination with floating-chirality distance geometry simulations. Based on reference-free NOE/ROE data, residual dipolar couplings (RDCs), and residual quadrupolar couplings (RQCs) in various combinations, we demonstrate how the relative configurations of three natural compounds, namely, jatrohemiketal (1), artemisinin (2), and Taxol (3), can be unambiguously established without the necessity to carry out time-consuming DFT-based configurational and conformational analyses. Our results quantitatively describe how reliably molecular geometries can be inferred from experimental NMR data, thereby unequivocally unveiling remaining assignment ambiguities. The methodology presented here will dramatically reduce the risk of incorrect structural assignments based on the overinterpretation of incomplete data and DFT-based structure models in chemistry.
Collapse
Affiliation(s)
- Stefan Immel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Matthias Köck
- Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
18
|
Yu G, Wang G, Duan M, Jiang B, Zhang X, Li C, He L, Liu M. Self-Assembled Oligopeptide (FK) 4 as a Chiral Alignment Medium for the Anisotropic NMR Analysis of Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29223-29229. [PMID: 35712808 DOI: 10.1021/acsami.2c05506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anisotropic NMR parameters have been proven to be powerful for the structural elucidation of organic molecules. Herein, we present an alignment medium based on the self-assembled (FK)4 oligopeptide, showing excellent properties in measurements of anisotropic NMR parameters in both D2O and CD3OD. The preparation of the (FK)4-based alignment medium is simple and rapid. The low viscosity of the anisotropic phase makes it easy to be transferred to the NMR tube. The alignment of the oligopeptide is fast, stable, and homogeneous, with weak background signals, permitting the acquirement of high-quality NMR spectra. The performance of this alignment medium in residual dipolar coupling measurements and diastereomer discriminations is demonstrated by analyzing several different analytes. The enantiodiscrimination property of the (FK)4 oligopeptide is revealed by the difference of residual chemical shift anisotropy of the two enantiomers in the 1D 13C spectrum, granting its potential use for the quantification and identification of enantiomers of small molecules.
Collapse
Affiliation(s)
- Gangjin Yu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
19
|
Knoll K, Herold D, Hirschmann M, Thiele CM. A supramolecular and liquid crystalline water-based alignment medium based on azobenzene-substituted 1,3,5-benzenetricarboxamides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:563-571. [PMID: 35266585 DOI: 10.1002/mrc.5266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A supramolecular, lyotropic liquid crystalline alignment medium based on an azobenzene-containing 1,3,5-benzenetricarboxamide (BTA) building block is described and investigated. As we demonstrate, this water-based system is suitable for the investigation of various water-soluble analytes and allows for a scaling of alignment strength through variation of temperature. Additionally, alignment is shown to reversibly collapse above a certain temperature, yielding an isotropic solution. This collapse allows for isotropic reference measurements, which are typically needed in addition to those in an anisotropic environment, to be performed using the same sample just by varying the temperature. The medium described thus provides easy access to anisotropic NMR observables and simplifies structure elucidation techniques based thereon.
Collapse
Affiliation(s)
- Kevin Knoll
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dominik Herold
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max Hirschmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
20
|
Lhoste C, Lorandel B, Praud C, Marchand A, Mishra R, Dey A, Bernard A, Dumez JN, Giraudeau P. Ultrafast 2D NMR for the analysis of complex mixtures. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:1-46. [PMID: 36113916 DOI: 10.1016/j.pnmrs.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 06/15/2023]
Abstract
2D NMR is extensively used in many different fields, and its potential for the study of complex biochemical or chemical mixtures has been widely demonstrated. 2D NMR gives the ability to resolve peaks that overlap in 1D spectra, while providing both structural and quantitative information. However, complex mixtures are often analysed in situations where the data acquisition time is a crucial limitation, due to an ongoing chemical reaction or a moving sample from a hyphenated technique, or to the high-throughput requirement associated with large sample collections. Among the great diversity of available fast 2D methods, ultrafast (or single-scan) 2D NMR is probably the most general and versatile approach for complex mixture analysis. Indeed, ultrafast NMR has undergone an impressive number of methodological developments that have helped turn it into an efficient analytical tool, and numerous applications to the analysis of mixtures have been reported. This review first summarizes the main concepts, features and practical limitations of ultrafast 2D NMR, as well as the methodological developments that improved its analytical potential. Then, a detailed description of the main applications of ultrafast 2D NMR to mixture analysis is given. The two major application fields of ultrafast 2D NMR are first covered, i.e., reaction/process monitoring and metabolomics. Then, the potential of ultrafast 2D NMR for the analysis of hyperpolarized mixtures is described, as well as recent developments in oriented media. This review focuses on high-resolution liquid-state 2D experiments (including benchtop NMR) that include at least one spectroscopic dimension (i.e., 2D spectroscopy and DOSY) but does not cover in depth applications without spectral resolution and/or in inhomogeneous fields.
Collapse
Affiliation(s)
- Célia Lhoste
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | | | - Clément Praud
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | - Achille Marchand
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | - Rituraj Mishra
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | - Arnab Dey
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | - Aurélie Bernard
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | | | | |
Collapse
|
21
|
Chen YT, Li B, Chen JL, Su XC. Simultaneous Discrimination and Quantification of Enantiomeric Amino Acids under Physiological Conditions by Chiral 19F NMR Tag. Anal Chem 2022; 94:7853-7860. [PMID: 35617740 DOI: 10.1021/acs.analchem.2c00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enantiomeric analysis is of great significance in chemistry, chemical biology and pharmaceutical research. We herein propose a chiral 19F NMR tag containing an amino reactive NHS group to discriminate the enantiomeric amino acids under physiological conditions by NMR spectroscopy. The chiral 19F NMR tag readily forms stable amide products with the amino acids in aqueous solution. The stereospecific chemistry of enantiomeric amino acids is discriminated by a stereogenic carbon bonded with a 19F atom and is therefore decoded by the 19F reporter and manifested in the distinct 19F chemical shift. The chemical shift difference (ΔΔδ) of the chiral 19F NMR tag derived enantiomeric amino acids variants has a broad chemical shift range between -1.13 to 1.68 ppm, indicating the high sensitivity of the chiral 19F NMR tag to the stereospecific environment surrounding the individual amino acids. The distinguishable chemical shift produced by the chiral 19F NMR tag permits simultaneous discrimination and quantification of the enantiomeric amino acids in a mixture. The high fidelity of the chiral 19F NMR tag affords high-accuracy determination of the enantiomeric composition of amino acids by simple 1D NMR under physiological conditions.
Collapse
Affiliation(s)
- Ya-Ting Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Schirra DS, Jeziorowski S, Lehmann M, Thiele CM. Thermoreversible Gelation of Homopolyglutamates PBPMLG, PBPELG, and PBPHLG: Another Step toward de Novo RDC-Based Structure Elucidation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dominic S. Schirra
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sharon Jeziorowski
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Matthias Lehmann
- Institute for Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Christina M. Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
23
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
24
|
Salvino RA, De Luca G, Celebre G. Assessing the chirality-dependent conformational distribution of small flexible opposite enantiomers dissolved in weakly ordering enantiopure media by means of liquid crystal NMR techniques. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Knoll K, Kostner T, Lorenz C, Thiele C. Investigations into Supramolecular Lyotropic Liquid Crystals based on 1,3,5‐Benzenetricarboxaramides by NMR‐spectroscopy. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Knoll
- Technische Universität Darmstadt: Technische Universitat Darmstadt Chemistry GERMANY
| | - Tobias Kostner
- Technische Universität Darmstadt: Technische Universitat Darmstadt Chemistry GERMANY
| | - Christian Lorenz
- Technische Universität Darmstadt: Technische Universitat Darmstadt Chemistry GERMANY
| | - Christina Thiele
- Technische Universität Darmstadt: Technische Universitat Darmstadt Chemistry Alarich Weiss Strasse 16 64287 Darmstadt GERMANY
| |
Collapse
|
26
|
Li GW, Wang XJ, Lei X, Liu N, Wu ZQ. Self-assembly of Helical Polymers and Oligomers to Create Liquid Crystalline Alignment for Anisotropic NMR Parameters. Macromol Rapid Commun 2022; 43:e2100898. [PMID: 35076973 DOI: 10.1002/marc.202100898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Indexed: 11/07/2022]
Abstract
The measurement of anisotropic residual dipolar couplings (RDCs) parameters for the structure elucidation of organic molecules relies on suitable alignment media. Employment of self-assembled liquid crystalline systems to create anisotropic alignment can be an effective way to realize aligned samples and acquire RDCs. This Mini-review highlights the recent advances on amino acid-based helical polymers and supramolecular oligomers forming rigid, rod-like structures that aggregate into ordered liquid crystalline phases, including amino acid-based helical polyisocyanides, polyacetylenes, polypeptides, and oligopeptides assembled alignment media. The methodology for the determination of anisotropic liquid crystals was briefly discussed, and a summary of recent research progress in the enantiodifferentiation of helical polymers aligned media was followed. In addition, the self-assembled mechanism of oligopeptides and their RDCs structural analysis were also described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
27
|
Li H, Xu Z, Zhang S, Jia Y, Zhao Y. Construction of Lewis Pairs for Optimal Enantioresolution via Recognition-Enabled “Chromatographic” 19F NMR Spectroscopy. Anal Chem 2022; 94:2023-2031. [DOI: 10.1021/acs.analchem.1c03783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huanhuan Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siquan Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yushu Jia
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
28
|
Berdagué P, Gouilleux B, Noll M, Immel S, Reggelin M, Lesot P. Study and quantification of enantiodiscrimination power of four polymeric chiral LLCs using NAD 2D-NMR. Phys Chem Chem Phys 2022; 24:7338-7348. [DOI: 10.1039/d1cp04915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identifying and understanding the role of key molecular factors involved in the orientation/discrimination phenomena of analytes in polymer-based chiral liquid crystals (CLCs) are essential tasks for optimizing computational predictions (molecular...
Collapse
|
29
|
Aroulanda C, Lesot P. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications. Chirality 2021; 34:182-244. [PMID: 34936130 DOI: 10.1002/chir.23386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
The study of enantiodiscriminations in relation to various facets of enantiomorphism (chirality/prochirality) and/or molecular symmetry is an exciting area of modern organic chemistry and an ongoing challenge for nuclear magnetic resonance (NMR) spectroscopists who have developed many useful analytical approaches to solve stereochemical problems. Among them, the anisotropic NMR using chiral aligning solvents has provided a set of new and original tools by making accessible all intramolecular, order-dependent NMR interactions (anisotropic interactions), such as residual chemical shift anisotropy (RCSA), residual dipolar coupling (RDC), and residual quadrupolar coupling (RQC) for spin I > 1/2, while preserving high spectral resolution. The force of NMR in enantiopure, oriented solvents lies on its ability to orient differently in average on the NMR timescale enantiomers of chiral molecules and enantiotopic elements of prochiral ones, leading distinct NMR spectra or signals to be detected. In this compendium mainly written for all chemists playing with (pro)chirality, we overview various key aspects of NMR in weakly aligning chiral solvents as the lyotropic liquid crystals (LLCs), in particular those developed in France to study (pro)chiral compounds in relation with chemists needs: study of enantiopurity of mixture, stereochemistry, natural isotopic fractionation, as well as molecular conformation and configuration. Key representative examples covering the diversity of enantiomorphism concept, and the main and most recent applications illustrating the analytical potential of this NMR in polypeptide-based chiral liquid crystals (CLCs) are examined. The latest analytical strategy developed to determine in-solution conformational distribution of flexibles solutes using NMR in polypeptide-based aligned solvents is also proposed.
Collapse
Affiliation(s)
- Christie Aroulanda
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| | - Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| |
Collapse
|
30
|
Immel S, Köck M, Reggelin M. NMR-Based Configurational Assignments of Natural Products: Gibbs Sampling and Bayesian Inference Using Floating Chirality Distance Geometry Calculations. Mar Drugs 2021; 20:14. [PMID: 35049868 PMCID: PMC8781118 DOI: 10.3390/md20010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Floating chirality restrained distance geometry (fc-rDG) calculations are used to directly evolve structures from NMR data such as NOE-derived intramolecular distances or anisotropic residual dipolar couplings (RDCs). In contrast to evaluating pre-calculated structures against NMR restraints, multiple configurations (diastereomers) and conformations are generated automatically within the experimental limits. In this report, we show that the "unphysical" rDG pseudo energies defined from NMR violations bear statistical significance, which allows assigning probabilities to configurational assignments made that are fully compatible with the method of Bayesian inference. These "diastereomeric differentiabilities" then even become almost independent of the actual values of the force constants used to model the restraints originating from NOE or RDC data.
Collapse
Affiliation(s)
- Stefan Immel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Matthias Köck
- Alfred-Wegener-Institut für Polar-und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
31
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil-Silva LF, Gil RR. Cross-Linked Poly-4-Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021; 60:26314-26319. [PMID: 34609778 DOI: 10.1002/anie.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Martin R M Koos
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Ye Che
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Reto Horst
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Chris Limberakis
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Justin Bellenger
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Ricardo Lira
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
32
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil‐Silva LF, Gil RR. Cross‐Linked Poly‐4‐Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Martin R. M. Koos
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Ye Che
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Reto Horst
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Chris Limberakis
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Justin Bellenger
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Ricardo Lira
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | | | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
33
|
Poveda A, Fittolani G, Seeberger PH, Delbianco M, Jiménez-Barbero J. The Flexibility of Oligosaccharides Unveiled Through Residual Dipolar Coupling Analysis. Front Mol Biosci 2021; 8:784318. [PMID: 34859057 PMCID: PMC8631391 DOI: 10.3389/fmolb.2021.784318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The intrinsic flexibility of glycans complicates the study of their structures and dynamics, which are often important for their biological function. NMR has provided insights into the conformational, dynamic and recognition features of glycans, but suffers from severe chemical shift degeneracy. We employed labelled glycans to explore the conformational behaviour of a β(1-6)-Glc hexasaccharide model through residual dipolar couplings (RDCs). RDC delivered information on the relative orientation of specific residues along the glycan chain and provided experimental clues for the existence of certain geometries. The use of two different aligning media demonstrated the adaptability of flexible oligosaccharide structures to different environments.
Collapse
Affiliation(s)
- Ana Poveda
- CICbioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Spain.,Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
34
|
Schirra DS, Hirschmann M, Radulov IA, Lehmann M, Thiele CM. Investigations of the Alignment Process of PBPMLG:
2
H NMR Analysis Reveals a Thermoresponsive 90° Flip of the Polymer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dominic S. Schirra
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Straße 16 64287 Darmstadt Germany
| | - Max Hirschmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Straße 16 64287 Darmstadt Germany
| | - Iliya A. Radulov
- FB Materialwissenschaft Funktionale Materialien Technische Universität Darmstadt Alarich-Weiss-Straße 16 64287 Darmstadt Germany
| | - Matthias Lehmann
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Straße 16 64287 Darmstadt Germany
| |
Collapse
|
35
|
Schirra DS, Hirschmann M, Radulov IA, Lehmann M, Thiele CM. Investigations of the Alignment Process of PBPMLG: 2 H NMR Analysis Reveals a Thermoresponsive 90° Flip of the Polymer. Angew Chem Int Ed Engl 2021; 60:21040-21046. [PMID: 34259370 PMCID: PMC8518395 DOI: 10.1002/anie.202108814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/11/2022]
Abstract
The application of anisotropic parameters in NMR-spectroscopy enables the acquisition of spatial and angular information, complementary to those from conventional isotropic NMR-measurements. The use of alignment media is a well-established method for inducing anisotropy. PBPMLG is a recently discovered polyglutamate-based alignment medium, exhibiting thermoresponsive behavior in the lyotropic liquid crystalline (LLC) phase, thus offering potential for deeper understanding of the alignment process. We present one approach for investigating the thermoresponsive behavior by synthesizing specifically deuterated PBPMLG-isotopologues and their subsequent analyses using 2 H NMR-spectroscopy. It was possible to relate the observed thermoresponsive behavior to a flip of the polymer with respect to the external magnetic field-an effect never observed before in glutamate-based polymeric alignment media. Furthermore, a solvent-induced temperature dependent gelation was verified in THF, which might provide yet another opportunity to manipulate the properties of this alignment medium in the future.
Collapse
Affiliation(s)
- Dominic S. Schirra
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 1664287DarmstadtGermany
| | - Max Hirschmann
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 1664287DarmstadtGermany
| | - Iliya A. Radulov
- FB MaterialwissenschaftFunktionale MaterialienTechnische Universität DarmstadtAlarich-Weiss-Straße 1664287DarmstadtGermany
| | - Matthias Lehmann
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 1664287DarmstadtGermany
| |
Collapse
|
36
|
Exploring the enantiomeric 13C position-specific isotope fractionation: challenges and anisotropic NMR-based analytical strategy. Anal Bioanal Chem 2021; 413:6379-6392. [PMID: 34498104 DOI: 10.1007/s00216-021-03599-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Trying to answer the intriguing and fundamental question related to chiral induction/amplification at the origin of homochirality in Nature: "Is there a relationship between enantiomeric and isotopic fractionation of carbon 13 in chiral molecules?" is a difficult but stimulating challenge. Although isotropic 13C-PSIA NMR is a promising tool for the determination of (13C/12C) ratios capable of providing key 13C isotopic data for understanding the reaction mechanisms of biological processes or artificial transformations, this method does not provide access to any enantiomeric 13C isotopic data unless mirror-image isomers are first physically separated. Interestingly, 13C spectral enantiodiscriminations can be potentially performed in situ in the presence of enantiopure entities as chiral-europium complexes or chiral liquid crystals (CLCs). In this work, we explored for the first time the capabilities of the anisotropic 13C-{1H} NMR using PBLG-based lyotropic CLCs as enantiodiscriminating media in the context of the enantiomeric position-specific 13C isotope fractionation (EPSIF), within the requested precision of the order of the permil. As enantiomeric NMR signals are discriminated on the basis of a difference of 13C residual chemical shift anisotropy (13C-RCSA) prior to being deconvoluted, analysis of enantiomeric mixtures becomes possible. The analytical potential of this approach when using poly-γ-benzyl-L-glutamate (PBLG) is presented, and the preliminary quantitative results on small model chiral molecules obtained at 17.5 T with a cryogenic NMR probe are reported and discussed. A promising analytical approach based on anisotropic irm-13C-NMR spectrometry to potentially reveal the natural 13C/12C isotopic enantiofractionation effects in organic chiral molecules is proposed and discussed.
Collapse
|
37
|
Recchia MJJ, Cohen RD, Liu Y, Sherer EC, Harper JK, Martin GE, Williamson RT. "One-Shot" Measurement of Residual Chemical Shift Anisotropy Using Poly-γ-benzyl-l-glutamate as an Alignment Medium. Org Lett 2020; 22:8850-8854. [PMID: 33140974 DOI: 10.1021/acs.orglett.0c03225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A method for the measurement of residual chemical shift anisotropy in one experiment using a biphasic isotropic/anisotropic lyotropic liquid crystalline medium based on poly-γ-benzyl-l-glutamate as the alignment medium is presented. This approach is demonstrated on the model compound strychnine and neotricone, a depsidone natural product with a questionable structural assignment based on comparison with the closely related excelsione and in-depth density functional theory calculations.
Collapse
Affiliation(s)
- Michael J J Recchia
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Ryan D Cohen
- Analytical Research & Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Yizhou Liu
- Analytical Research & Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Edward C Sherer
- Analytical Research & Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Gary E Martin
- Department of Chemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - R Thomas Williamson
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| |
Collapse
|
38
|
Naret T, Lesot P, Puente AR, Polavarapu PL, Buisson DA, Crassous J, Pieters G, Feuillastre S. Chemical Synthesis of [ 2H]-Ethyl Tosylate and Exploration of Its Crypto-optically Active Character Combining Complementary Spectroscopic Tools. Org Lett 2020; 22:8846-8849. [PMID: 33141582 DOI: 10.1021/acs.orglett.0c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small chiral molecules are excellent candidates to push the boundaries of enantiodiscrimination analytical techniques. Here is reported the synthesis of two new deuterated chiral probes, (R)- and (S)-[2H]-ethyl tosylate, obtained with high enantiomeric excesses. Due to their crypto-optically active properties, the discrimination of each enantiomer is challenging. Whereas their enantiopurity is determined by 2H NMR in chiral anisotropic media, their identification was performed by combining quantum chemical calculations and vibrational circular dichroism analysis.
Collapse
Affiliation(s)
- Timothée Naret
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Philippe Lesot
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, F-91405 Orsay cedex, France
| | - Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David-Alexandre Buisson
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Jeanne Crassous
- Univ. Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
39
|
Lesot P, Gil RR, Berdagué P, Navarro-Vázquez A. Deuterium Residual Quadrupolar Couplings: Crossing the Current Frontiers in the Relative Configuration Analysis of Natural Products. JOURNAL OF NATURAL PRODUCTS 2020; 83:3141-3148. [PMID: 32970418 DOI: 10.1021/acs.jnatprod.0c00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The determination of the 3D structure (configuration and preferred conformation) of complex natural and synthetic organic molecules is a long-standing but still challenging task for chemists, with various implications in pharmaceutical sciences whether or not these substances have specific bioactivities. Nuclear magnetic resonance (NMR) in aligning media, either lyotropic liquid crystals (LLCs) or polymer gels, in combination with molecular modeling is a unique framework for solving complex structural problems whose analytical wealth lies in the establishment of nonlocal structural correlations. As an alternative to the already well-established anisotropic NMR parameters, such as RDCs (residual dipolar couplings) and RCSAs (residual chemical shift anisotropies), it is shown here that deuterium residual quadrupolar couplings (2H-RQCs) can be extracted from 2H 2D-NMR spectra recorded at the natural abundance level in samples oriented in a homopolypeptide LLCs (poly-γ-benzyl-l-glutamate (PBLG)). These 2H-RQCs were successfully used to address nontrivial structural problems in organic molecules. The performance and scope of this new tool is examined for two natural chiral compounds of pharmaceutical interest (strychnine and artemisinin). This is the first report in which the 3D structure/relative configuration of complex bioactive molecules is unambiguously determined using only 2H-RQCs, which, in this case, are at 2H natural abundance.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15 rue du Doyen, Georges Poitou, F-91405 Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3 rue Michel Ange, F-75016 Paris, France
| | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Philippe Berdagué
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15 rue du Doyen, Georges Poitou, F-91405 Orsay, France
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, CEP 50.740-540 Recife, Pernambuco, Brazil
| |
Collapse
|
40
|
Akoka S, Remaud GS. NMR-based isotopic and isotopomic analysis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:1-24. [PMID: 33198965 DOI: 10.1016/j.pnmrs.2020.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Molecules exist in different isotopic compositions and most of the processes, physical or chemical, in living systems cause selection between heavy and light isotopes. Thus, knowing the isotopic fractionation of the common atoms, such as H, C, N, O or S, at each step during a metabolic pathway allows the construction of a unique isotope profile that reflects its past history. Having access to the isotope abundance gives valuable clues about the (bio)chemical origin of biological or synthetic molecules. Whereas the isotope ratio measured by mass spectrometry provides a global isotope composition, quantitative NMR measures isotope ratios at individual positions within a molecule. We present here the requirements and the corresponding experimental strategies to use quantitative NMR for measuring intramolecular isotope profiles. After an introduction showing the historical evolution of NMR for measuring isotope ratios, the vocabulary and symbols - for describing the isotope content and quantifying its change - are defined. Then, the theoretical framework of very accurate quantitative NMR is presented as the principle of Isotope Ratio Measurement by NMR spectroscopy, including the practical aspects with nuclei other than 2H, that have been developed and employed to date. Lastly, the most relevant applications covering three issues, tackling counterfeiting, authentication, and forensic investigation, are presented, before giving some perspectives combining technical improvements and methodological approaches.
Collapse
Affiliation(s)
- Serge Akoka
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Gérald S Remaud
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
41
|
Gouilleux B, Meddour A, Lesot P. 2 H QUOSY 2D-NMR Experiments in Weakly Aligning Systems: From the Conventional to the Ultrafast Approach. Chemphyschem 2020; 21:1548-1563. [PMID: 32633460 DOI: 10.1002/cphc.202000336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/03/2020] [Indexed: 11/08/2022]
Abstract
We describe three anisotropic ultrafast (UF) QUadrupolar Ordered SpectroscopY (QUOSY) 2D-NMR experiments (referred to as ADUF 2D NMR spectroscopy) designed for recording the 2 H homonuclear 2D spectra of weakly aligned (deuterated) solutes in sub-second experiment times. These new ADUF 2D experiments derive from the Q-COSY, Q-resolved and Q-DQ 2D pulse sequences (J. Am. Chem. Soc. 1999, 121, 5249) and allow the correlation between the two components of each quadrupolar doublet, and then their assignment on the basis of 2 H chemical shifts. The UF 2D pulse sequences are analyzed by using the Cartesian spin-operator formalism for spin I=1 nuclei with a small quadrupolar moment. The optimal experimental/practical conditions as well as the resolution, sensitivity and quantification issues of these ADUF 2D experiments are discussed on comparison to their conventional 2D counterparts and their analytical potentialities. Illustrative ADUF 2D experiments using deuterated achiral/prochiral/chiral solutes in poly-γ-benzyl-L-glutamate based chiral liquid crystals are presented, as well as the first examples of natural abundance deuterium (ANADUF) 2D spectrum using 14.1 T magnetic field and a basic gradient unit (53 G.cm-1 ) in oriented solvents.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| | - Philippe Lesot
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| |
Collapse
|
42
|
Köck M, Reggelin M, Immel S. The Advanced Floating Chirality Distance Geometry Approach-How Anisotropic NMR Parameters Can Support the Determination of the Relative Configuration of Natural Products. Mar Drugs 2020; 18:md18060330. [PMID: 32599876 PMCID: PMC7344786 DOI: 10.3390/md18060330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
The configurational analysis of complex natural products by NMR spectroscopy is still a challenging task. The assignment of the relative configuration is usually carried out by analysis of interproton distances from NOESY or ROESY spectra (qualitative or quantitative) and scalar (J) couplings. About 15 years ago, residual dipolar couplings (RDCs) were introduced as a tool for the configurational determination of small organic molecules. In contrast to NOEs/ROEs which are local parameters (distances up to 400 pm can be detected for small organic molecules), RDCs are global parameters which allow to obtain structural information also from long-range relationships. RDCs have the disadvantage that the sample needs a setup in an alignment medium in order to obtain the required anisotropic environment. Here, we will discuss the configurational analysis of five complex natural products: axinellamine A (1), tetrabromostyloguanidine (2), 3,7-epi-massadine chloride (3), tubocurarine (4), and vincristine (5). Compounds 1-3 are marine natural products whereas 4 and 5 are from terrestrial sources. The chosen examples will carefully work out the limitations of NOEs/ROEs in the configurational analysis of natural products and will also provide an outlook on the information obtained from RDCs.
Collapse
Affiliation(s)
- Matthias Köck
- Alfred-Wegener-Institut für Polar-und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Stefan Immel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
43
|
Alcaraz Janßen M, Thiele CM. Poly-γ-S-perillyl-l-glutamate and Poly-γ-S-perillyl-d-glutamate: Diastereomeric Alignment Media Used for the Investigation of the Alignment Process. Chemistry 2020; 26:7831-7839. [PMID: 32134524 PMCID: PMC7384199 DOI: 10.1002/chem.201905447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/09/2022]
Abstract
Residual dipolar couplings (RDCs) offer additional information for structure elucidation by NMR spectroscopy. They are measured in anisotropic media, such as lyotropic liquid crystalline phases of polypeptides. Today, some suitable polypeptides are known. Nevertheless, structural influences of these polypeptides on the alignment properties are not really understood. Thus, which influence a chiral side chain has on enantiodiscrimination and whether we can improve the enantiodifferentiation significantly by adding an additional chiral center in the side chain are questions of interest. Therefore, new diastereomeric polypeptide-based alignment media with an additional chiral center in the side chain derived from perillyl alcohol were synthesized and their properties were investigated (secondary structure, liquid crystallinity, etc.). The enantiomers of isopinocampheol and β-pinene were used as model analytes for the study of enantiodiscrimination. Additionally, the usage of 1 H-1 H-RDCs to improve the alignment tensor quality is demonstrated.
Collapse
Affiliation(s)
- Marcel Alcaraz Janßen
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| |
Collapse
|