1
|
Li Q, Li W, Hu K, Wang Y, Li Y, Xu J. A de novo variant in RERE causes autistic behavior by disrupting related genes and signaling pathway. Clin Genet 2024; 105:273-282. [PMID: 38018232 DOI: 10.1111/cge.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Autism spectrum disorder (ASD) is a highly variable neurodevelopmental disorder that typically manifests childhood, characterized by a triad of symptoms: impaired social interaction, communication difficulties, and restricted interests with repetitive behaviors. De novo variants in related genes can cause ASD. We present the case of a 6-year-old Chinese boy with autistic behavior, including language communication impairments, intellectual disabilities, stunted development, and irritability in social interactions. Using Sanger sequencing, we confirmed a pathogenic in the RERE gene (NM_012102.4) (c.3732delC, p.Tyr1245Thrfs*12; EX21; Het). Subsequently, we generated an RERE point mutation cell line (ReMut) using CRISPR/Cas9 Targeted Genome Editing. Immunofluorescence was conducted to determine the location of the mutant RERE. RNA-sequencing and mass spectrometry analyses were performed to elucidate the ASD-related genes and signaling pathways disrupted by this variant in RERE. We identified 3790 differentially expressed genes and 684 differentially expressed proteins. The SHH signaling pathway was found to be downregulated, and the Hippo pathway was upregulated in ReMut. Genes implicated in autism, such as CNTNAP2, STX1A, FARP2, and GPC1, were significantly downregulated. Simultaneously, we noted alterations in HDAC1 and HDAC2, which are members of the WHHERE complex, suggesting their role in the pathogenesis of this patient. In conclusion, we report a de novo variant in RERE associated with autistic behavior. The finding that ASD is associated with RERE variants underscore the role of genetic factors in ASD and provides insights regarding the mechanisms underlying RERE variants in disease onset.
Collapse
Affiliation(s)
- Qian Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
- Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Wenbo Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Kaiyue Hu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Yaqian Wang
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Yang Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Baris RO, Sahin N, Bilgic AD, Ozdemir C, Edgunlu TG. Molecular and in silico analyses of SYN III gene variants in autism spectrum disorder. Ir J Med Sci 2023; 192:2887-2895. [PMID: 37166614 DOI: 10.1007/s11845-023-03402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Defects in neurotransmission and synaptogenesis are noteworthy in the pathogenesis of ASD. Synapsin III (SYN III) is defined as a synaptic vesicle protein that plays an important role in synaptogenesis and regulation of neurotransmitter release and neurite outgrowth. Therefore, SYN III may associate with many neurodevelopmental diseases, including ASD. AIM The aim of this study was to investigate whether the SYN III gene -631 C > G (rs133946) and -196 G > A (rs133945) polymorphisms are associated with susceptibility to ASD. METHODS SYN III variants and the risk of ASD were investigated in 26 healthy children and 24 ASD children. SYN III gene variants were genotyped by PCR-RFLP methods. The differences in genotype and allele frequencies between the ASD and control groups were calculated using the chi-square (χ2). We analysed the SYN III gene using web-based tools. RESULTS Our results suggest that the presence of the AA genotype of the SYN III -196 G > A (rs133945) polymorphism affects the characteristics and development of ASD in children (p = 0.012). SYN III -631 C > G (rs133946) polymorphism was not associated with ASD (p = 0.524). We have shown the prediction of gene-gene interaction that SYN III is co-expressed with 17 genes, physical interaction with 3 genes, and co-localization with 12 genes. The importance of different genes (SYN I, II, III, GABRD, NOS1AP, GNAO1) for ASD pathogenesis was revealed by GO analysis. CONCLUSION Considering the role of SYN III and related genes, especially in the synaptic vesicle pathway and neurotransmission, its effect on ASD can be further investigated.
Collapse
Affiliation(s)
- Remzi Oguz Baris
- Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nilfer Sahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Ayşegül Demirtas Bilgic
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Cilem Ozdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey.
| | - Tuba Gokdogan Edgunlu
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Mugla, 48000, Turkey
| |
Collapse
|
3
|
Villavicencio Gonzalez E, Dhindsa RS. Studying ultra-rare variants in STX1A uncovers a novel neurodevelopmental disorder. Eur J Hum Genet 2023; 31:973-974. [PMID: 37029317 PMCID: PMC10474260 DOI: 10.1038/s41431-023-01348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Affiliation(s)
- Esmeralda Villavicencio Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurologic Research Institute at Texas Children's Hospital, Houston, TX, USA.
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurologic Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Luppe J, Sticht H, Lecoquierre F, Goldenberg A, Gorman KM, Molloy B, Agolini E, Novelli A, Briuglia S, Kuismin O, Marcelis C, Vitobello A, Denommé-Pichon AS, Julia S, Lemke JR, Abou Jamra R, Platzer K. Heterozygous and homozygous variants in STX1A cause a neurodevelopmental disorder with or without epilepsy. Eur J Hum Genet 2023; 31:345-352. [PMID: 36564538 PMCID: PMC9995539 DOI: 10.1038/s41431-022-01269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The neuronal SNARE complex drives synaptic vesicle exocytosis. Therefore, one of its core proteins syntaxin 1A (STX1A) has long been suspected to play a role in neurodevelopmental disorders. We assembled eight individuals harboring ultra rare variants in STX1A who present with a spectrum of intellectual disability, autism and epilepsy. Causative variants comprise a homozygous splice variant, three de novo missense variants and two inframe deletions of a single amino acid. We observed a phenotype mainly driven by epilepsy in the individuals with missense variants in contrast to intellectual disability and autistic behavior in individuals with single amino acid deletions and the splicing variant. In silico modeling of missense variants and single amino acid deletions show different impaired protein-protein interactions. We hypothesize the two phenotypic courses of affected individuals to be dependent on two different pathogenic mechanisms: (1) a weakened inhibitory STX1A-STXBP1 interaction due to missense variants results in an STX1A-related developmental epileptic encephalopathy and (2) a hampered SNARE complex formation due to inframe deletions causes an STX1A-related intellectual disability and autism phenotype. Our description of a STX1A-related neurodevelopmental disorder with or without epilepsy thus expands the group of rare diseases called SNAREopathies.
Collapse
Affiliation(s)
- Johannes Luppe
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Outi Kuismin
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Carlo Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Antonio Vitobello
- Inserm UMR1231 GAD, University of Burgundy-Franche Comté, Dijon, France
| | | | - Sophie Julia
- Federative Institute of Biology, CHU de Toulouse, Toulouse, France
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
5
|
Shekar A, Mabry SJ, Cheng MH, Aguilar JI, Patel S, Zanella D, Saleeby DP, Zhu Y, Romanazzi T, Ulery-Reynolds P, Bahar I, Carter AM, Matthies HJG, Galli A. Syntaxin 1 Ser 14 phosphorylation is required for nonvesicular dopamine release. SCIENCE ADVANCES 2023; 9:eadd8417. [PMID: 36630507 PMCID: PMC9833662 DOI: 10.1126/sciadv.add8417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/14/2022] [Indexed: 05/30/2023]
Abstract
Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.
Collapse
Affiliation(s)
- Aparna Shekar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J. Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary H. Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny I. Aguilar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shalin Patel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P. Saleeby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Özdemir Ç, Şahin N, Edgünlü T. Vesicle trafficking with snares: a perspective for autism. Mol Biol Rep 2022; 49:12193-12202. [PMID: 36198849 DOI: 10.1007/s11033-022-07970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Vesicle-mediated membrane traffic is the mechanism fundamental to many biological events, especially the release of neurotransmitters. The main proteins of the mechanism that mediates membrane fusion in vesicle-mediated membrane traffic are N-ethylmaleimide sensitive factor (NSF) supplemental protein (SNAP) receptor (SNAREs) proteins. SNAREs are classified into vesicle-associated SNAREs (vesicle-SNAREs/v-SNAREs) and target membrane-associated SNAREs (target-SNARE/t-SNAREs). Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by many symptoms, especially complications in social communication and stereotypical behaviours. Defects in synaptogenesis and neurotransmission, oxidative stress, and developmental defects in the early stages of development are defined in the pathogenesis of the disease. SNARE proteins are on the basis of synaptogenesis and neurotransmission. Although the formation mechanisms and underlying causes of the SNARE complex are not fully understood, expression differences, polymorphisms, abnormal expressions or dysfunctions of the proteins that make up the SNARE complex have been associated with many neurodevelopmental diseases, including autism. Further understanding of SNARE mechanisms is crucial both for understanding ASD and for developing new treatments. In this review, the formation mechanisms of the SNARE complex and the roles of various factors involved in this process are explained. In addition, a brief evaluation of clinical and basic studies on the SNARE complex in autism spectrum disorders was made.
Collapse
Affiliation(s)
- Çilem Özdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Nilfer Şahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tuba Edgünlü
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, 48000, Mugla, Turkey.
| |
Collapse
|
7
|
Lin J, Zhang K, Cao X, Zhao Y, Ullah Khan N, Liu X, Tang X, Chen M, Zhang H, Shen L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 2022; 13:648-663. [PMID: 35138800 DOI: 10.1021/acschemneuro.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social and communication difficulties. Valproic acid (VPA) injection during pregnancy elicits autism-like behavior in the offspring, making it a classic animal model of ASD. However, the mechanisms involved have not yet been determined. In this study, we used iTRAQ (isobaric tags for relative and absolute quantification) proteomics analysis of the cerebral cortex of a VPA rat model (VPA group) and controls (CON group). The results showed that 79 differentially expressed proteins (DEPs) were identified between the VPA group and the CON group. Based on bioinformatics analysis, the DEPs were mainly enriched at synapses, especially glutamatergic synapses and GABAergic synapses. Some DEPs were involved in energy metabolism, thyroid hormone synthesis pathway, and Na+-K+-ATPase. Cytoskeleton and endoplasmic reticulum (ER) stress-related proteins were also involved. Some DEPs matched either the ASD gene database or previous reports on cerebral cortical transcriptome studies in VPA rat models. Dysregulation of these DEPs in the cerebral cortex of VPA rats may be responsible for autism-like behavior in rats. We also found that some DEPs were associated with neuropsychiatric disorders, implying that these diseases share common signaling pathways and mechanisms. Moreover, increased expression of DEPs was associated with energy metabolism in the cerebral cortex of VPA rats, implying that ASD may be a distinct type of mitochondrial dysfunction that requires further investigation.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen 518071, P. R. China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, Georgia 30322, United States
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518071, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
8
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
9
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, Dominiak A, Polowy R, Filipkowski RK, Boguszewski PM, Gewartowska M, Frontczak-Baniewicz M, Sun GY, Beversdorf DQ, Adamczyk A. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci 2020; 21:E4097. [PMID: 32521803 PMCID: PMC7312084 DOI: 10.3390/ijms21114097] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Paweł M. Boguszewski
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland;
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65201, USA;
| | - David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, DC069.10, One Hospital Drive, University of Missouri, Columbia, MO 65211, USA;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| |
Collapse
|
11
|
Di Nanni N, Bersanelli M, Cupaioli FA, Milanesi L, Mezzelani A, Mosca E. Network-Based Integrative Analysis of Genomics, Epigenomics and Transcriptomics in Autism Spectrum Disorders. Int J Mol Sci 2019; 20:E3363. [PMID: 31323926 PMCID: PMC6651137 DOI: 10.3390/ijms20133363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/16/2023] Open
Abstract
Current studies suggest that autism spectrum disorders (ASDs) may be caused by many genetic factors. In fact, collectively considering multiple studies aimed at characterizing the basic pathophysiology of ASDs, a large number of genes has been proposed. Addressing the problem of molecular data interpretation using gene networks helps to explain genetic heterogeneity in terms of shared pathways. Besides, the integrative analysis of multiple omics has emerged as an approach to provide a more comprehensive view of a disease. In this work, we carry out a network-based meta-analysis of the genes reported as associated with ASDs by studies that involved genomics, epigenomics, and transcriptomics. Collectively, our analysis provides a prioritization of the large number of genes proposed to be associated with ASDs, based on genes' relevance within the intracellular circuits, the strength of the supporting evidence of association with ASDs, and the number of different molecular alterations affecting genes. We discuss the presence of the prioritized genes in the SFARI (Simons Foundation Autism Research Initiative) database and in gene networks associated with ASDs by other investigations. Lastly, we provide the full results of our analyses to encourage further studies on common targets amenable to therapy.
Collapse
Affiliation(s)
- Noemi Di Nanni
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
- Department of Industrial and Information Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Matteo Bersanelli
- Department of Physics and Astronomy, University of Bologna, Via B. Pichat 6/2, 40127 Bologna, Italy
- National Institute of Nuclear Physics (INFN), 40127 Bologna, Italy
| | - Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy.
| |
Collapse
|
12
|
Sanfeliu A, Kaufmann WE, Gill M, Guasoni P, Tropea D. Transcriptomic Studies in Mouse Models of Rett Syndrome: A Review. Neuroscience 2019; 413:183-205. [PMID: 31229631 DOI: 10.1016/j.neuroscience.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Rett Syndrome (RTT) is a neurological disorder mainly associated with mutations in the X-linked gene coding for the methyl-CpG binding protein 2 (MECP2). To assist in studying MECP2's function, researchers have generated Mecp2 mouse mutants showing that MECP2's product (MeCP2) mostly functions as a transcriptional regulator. During the last two decades, these models have been used to determine the genes that are regulated by MeCP2, slowly dissecting the etiological mechanisms underlying RTT. In the present review, we describe the findings of these transcriptomic studies, and highlight differences between them, and discuss how studies on these genetic models can sharpen our understanding of the human disorder. We conclude that - while there's large variability regarding the number of differentially expressed genes identified - there are overlapping features that inform on the biology of RTT.
Collapse
Affiliation(s)
- Albert Sanfeliu
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine and Department of Neurology, University of California Davis School of Medicine, Atlanta, GA 30322, USA
| | - Michael Gill
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland
| | - Paolo Guasoni
- Department of Mathematical Sciences, Dublin City University, Glasnevin, D9, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland; Trinity College Institute of Neuroscience, Lloyd Building, D2, Dublin, Ireland.
| |
Collapse
|
13
|
Costa AS, Guerini FR, Arosio B, Galimberti D, Zanzottera M, Bianchi A, Nemni R, Clerici M. SNARE Complex Polymorphisms Associate with Alterations of Visual Selective Attention in Alzheimer’s Disease. J Alzheimers Dis 2019; 69:179-188. [DOI: 10.3233/jad-190147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Beatrice Arosio
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Geriatric Unit, Milan, Italy
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | | | - Anna Bianchi
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Raffaello Nemni
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| |
Collapse
|
14
|
Kocher SD, Mallarino R, Rubin BER, Yu DW, Hoekstra HE, Pierce NE. The genetic basis of a social polymorphism in halictid bees. Nat Commun 2018; 9:4338. [PMID: 30337532 PMCID: PMC6194137 DOI: 10.1038/s41467-018-06824-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022] Open
Abstract
The emergence of eusociality represents a major evolutionary transition from solitary to group reproduction. The most commonly studied eusocial species, honey bees and ants, represent the behavioral extremes of social evolution but lack close relatives that are non-social. Unlike these species, the halictid bee Lasioglossum albipes produces both solitary and eusocial nests and this intraspecific variation has a genetic basis. Here, we identify genetic variants associated with this polymorphism, including one located in the intron of syntaxin 1a (syx1a), a gene that mediates synaptic vesicle release. We show that this variant can alter gene expression in a pattern consistent with differences between social and solitary bees. Surprisingly, syx1a and several other genes associated with sociality in L. albipes have also been implicated in autism spectrum disorder in humans. Thus, genes underlying behavioral variation in L. albipes may also shape social behaviors across a wide range of taxa, including humans. The halictid bee Lasioglossum albipes has both solitary and eusocial individuals, making it a model for social evolution. Here, Kocher et al. identify a genetic variation associated with this social polymorphism, including a variant that can regulate the expression of an autism-associated gene, syntaxin 1a.
Collapse
Affiliation(s)
- Sarah D Kocher
- Department of Ecology and Evoutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.
| | - Ricardo Mallarino
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.,Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 52 Oxford St, Cambridge, MA, 01238, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin E R Rubin
- Department of Ecology and Evoutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Douglas W Yu
- Kunming Institute for Zoology, 32 Jiaochang Donglu, Kunming, Yunnan, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan, 650223, China.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hopi E Hoekstra
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.,Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 52 Oxford St, Cambridge, MA, 01238, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
Abstract
Background The placenta is the central regulator of maternal and fetal interactions. Perturbations of placental structure and function have been associated with adverse neurodevelopmental outcomes later in life. Placental CpG methylation represents an epigenetic modification with the potential to impact placental function, fetal development and child health later in life. Study design Genome-wide placental CpG methylation levels were compared between spontaneous versus indicated deliveries from extremely preterm births (EPTBs) (n = 84). The association between the identified differentially methylated CpG sites and neurocognitive outcome at ten years of age was then evaluated. Results Spontaneous EPTB was associated with differential CpG methylation levels in 250 CpG sites (217 unique genes) with the majority displaying hypermethylation. The identified genes are known to play a role in neurodevelopment and are enriched for basic helix-loop-helix transcription factor binding sites. The placental CpG methylation levels for 17 of these sites predicted cognitive function at ten years of age. Conclusion A hypermethylation signature is present in DNA from placentas in infants with spontaneous EPTB. CpG methylation levels of critical neurodevelopment genes in the placenta predicted later life cognitive function, supporting the developmental origins of health and disease hypothesis (DOHaD).
Collapse
|
16
|
Fujiwara T, Kofuji T, Mishima T, Akagawa K. Syntaxin 1B contributes to regulation of the dopaminergic system through GABA transmission in the CNS. Eur J Neurosci 2017; 46:2867-2874. [PMID: 29139159 DOI: 10.1111/ejn.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
Abstract
In neuronal plasma membrane, two syntaxin isoforms, HPC-1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are predominantly expressed as soluble N-ethylmaleimide-sensitive fusion attachment protein receptors, also known as t-SNAREs. We previously reported that glutamatergic and GABAergic synaptic transmissions are impaired in Stx1b null mutant (Stx1b-/- ) mice but are almost normal in Stx1a null mutant (Stx1a-/- ) mice. These observations suggested that STX1A and STX1B have distinct functions in fast synaptic transmission in the central nervous system (CNS). Interestingly, recent studies indicated that Stx1a-/- or Stx1a+/- mice exhibit disruption in the monoaminergic system in the CNS, causing unusual behaviour that is similar to neuropsychological alterations observed in psychiatric patients. Here, we studied whether STX1B contributes to the regulation of monoaminergic system and if STX1B is related to neuropsychological properties in human neuropsychological disorders similar to STX1A. We found that monoamine release in vitro was normal in Stx1b+/- mice unlike Stx1a-/- or Stx1a+/- mice, but the basal extracellular dopamine (DA) concentration in the ventral striatum was increased. DA secretion in the ventral striatum is regulated by GABAergic neurons, and Stx1b+/- mice exhibited reduced GABA release both in vitro and in vivo, disrupting the DAergic system in the CNS of these mice. We also found that Stx1b+/- mice exhibited reduced pre-pulse inhibition (PPI), which is believed to represent one of the prominent schizotypal behavioural profiles of human psychiatric patients. The reduction in PPI was rescued by DA receptor antagonists. These observations indicated that STX1B contributes to excess activity of the DAergic system through regulation of GABAergic transmission.
Collapse
Affiliation(s)
- Tomonori Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takefumi Kofuji
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.,Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tatsuya Mishima
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kimio Akagawa
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
17
|
Hamada N, Iwamoto I, Tabata H, Nagata KI. MUNC18-1 gene abnormalities are involved in neurodevelopmental disorders through defective cortical architecture during brain development. Acta Neuropathol Commun 2017; 5:92. [PMID: 29191246 PMCID: PMC5709915 DOI: 10.1186/s40478-017-0498-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/19/2017] [Indexed: 12/03/2022] Open
Abstract
While Munc18–1 interacts with Syntaxin1 and controls the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) complex to regulate presynaptic vesicle fusion in developed neurons, this molecule is likely to be involved in brain development since its gene abnormalities cause early infantile epileptic encephalopathy with suppression-burst (Ohtahara syndrome), neonatal epileptic encephalopathy and other neurodevelopmental disorders. We thus analyzed physiological significance of Munc18–1 during cortical development. Munc18–1-knockdown impaired cortical neuron positioning during mouse corticogenesis. Time-lapse imaging revealed that the mispositioning was attributable to defects in radial migration in the intermediate zone and cortical plate. Notably, Syntaxin1A was critical for radial migration downstream of Munc18–1. As for the underlying mechanism, Munc18–1-knockdown in cortical neurons hampered post-Golgi vesicle trafficking and subsequent vesicle fusion at the plasma membrane in vivo and in vitro, respectively. Notably, Syntaxin1A-silencing did not affect the post-Golgi vesicle trafficking. Taken together, Munc18–1 was suggested to regulate radial migration by modulating not only vesicle fusion at the plasma membrane to distribute various proteins on the cell surface for interaction with radial fibers, but also preceding vesicle transport from Golgi to the plasma membrane. Although knockdown experiments suggested that Syntaxin1A does not participate in the vesicle trafficking, it was supposed to regulate subsequent vesicle fusion under the control of Munc18–1. These observations may shed light on the mechanism governing radial migration of cortical neurons. Disruption of Munc18–1 function may result in the abnormal corticogenesis, leading to neurodevelopmental disorders with MUNC18–1 gene abnormalities.
Collapse
|
18
|
A part of patients with autism spectrum disorder has haploidy of HPC-1/syntaxin1A gene that possibly causes behavioral disturbance as in experimentally gene ablated mice. Neurosci Lett 2017; 644:5-9. [DOI: 10.1016/j.neulet.2017.02.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
|
19
|
Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, Bau CHD, Mota NR. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm (Vienna) 2016; 123:867-83. [DOI: 10.1007/s00702-016-1514-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
20
|
Cartier E, Hamilton PJ, Belovich AN, Shekar A, Campbell NG, Saunders C, Andreassen TF, Gether U, Veenstra-Vanderweele J, Sutcliffe JS, Ulery-Reynolds PG, Erreger K, Matthies HJG, Galli A. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine 2015; 2:135-146. [PMID: 25774383 PMCID: PMC4353922 DOI: 10.1016/j.ebiom.2015.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. Methods We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Outcomes Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. Interpretation We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD. We report two independent autism-associated variants in syntaxin and the dopamine transporter. The variants in syntaxin and dopamine transporter each impair reverse transport of dopamine. Dysregulation of dopamine neurotransmission may represent a complication of autism spectrum disorder.
Collapse
Affiliation(s)
- Etienne Cartier
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Peter J Hamilton
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States ; Neuroscience Program in Substance Abuse, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Andrea N Belovich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Aparna Shekar
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Nicholas G Campbell
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Christine Saunders
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Thorvald F Andreassen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jeremy Veenstra-Vanderweele
- Department of Psychiatry and New York State Psychiatric Institute, Columbia University, New York, NY, 10032 USA
| | - James S Sutcliffe
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States ; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Paula G Ulery-Reynolds
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX 75390-8813, United States
| | - Kevin Erreger
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States ; Neuroscience Program in Substance Abuse, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Heinrich J G Matthies
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States ; Neuroscience Program in Substance Abuse, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| | - Aurelio Galli
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States ; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States ; Neuroscience Program in Substance Abuse, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States ; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, United States
| |
Collapse
|
21
|
Rakshit H, Rathi N, Roy D. Construction and analysis of the protein-protein interaction networks based on gene expression profiles of Parkinson's disease. PLoS One 2014; 9:e103047. [PMID: 25170921 PMCID: PMC4149362 DOI: 10.1371/journal.pone.0103047] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/26/2014] [Indexed: 11/29/2022] Open
Abstract
Background Parkinson's Disease (PD) is one of the most prevailing neurodegenerative diseases. Improving diagnoses and treatments of this disease is essential, as currently there exists no cure for this disease. Microarray and proteomics data have revealed abnormal expression of several genes and proteins responsible for PD. Nevertheless, few studies have been reported involving PD-specific protein-protein interactions. Results Microarray based gene expression data and protein-protein interaction (PPI) databases were combined to construct the PPI networks of differentially expressed (DE) genes in post mortem brain tissue samples of patients with Parkinson's disease. Samples were collected from the substantia nigra and the frontal cerebral cortex. From the microarray data, two sets of DE genes were selected by 2-tailed t-tests and Significance Analysis of Microarrays (SAM), run separately to construct two Query-Query PPI (QQPPI) networks. Several topological properties of these networks were studied. Nodes with High Connectivity (hubs) and High Betweenness Low Connectivity (bottlenecks) were identified to be the most significant nodes of the networks. Three and four-cliques were identified in the QQPPI networks. These cliques contain most of the topologically significant nodes of the networks which form core functional modules consisting of tightly knitted sub-networks. Hitherto unreported 37 PD disease markers were identified based on their topological significance in the networks. Of these 37 markers, eight were significantly involved in the core functional modules and showed significant change in co-expression levels. Four (ARRB2, STX1A, TFRC and MARCKS) out of the 37 markers were found to be associated with several neurotransmitters including dopamine. Conclusion This study represents a novel investigation of the PPI networks for PD, a complex disease. 37 proteins identified in our study can be considered as PD network biomarkers. These network biomarkers may provide as potential therapeutic targets for PD applications development.
Collapse
Affiliation(s)
- Hindol Rakshit
- Integrated Science Education & Research Centre (ISERC), Visva-Bharati University, Shantiniketan, Birbhum, West Bengal, India
| | - Nitin Rathi
- Cognizant Technology Solutions India Pvt. Ltd., Rajiv Gandhi Infotech Park, MIDC, Hinjewadi, Pune, Maharashtra, India
| | - Debjani Roy
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
22
|
Iwata K, Matsuzaki H, Tachibana T, Ohno K, Yoshimura S, Takamura H, Yamada K, Matsuzaki S, Nakamura K, Tsuchiya KJ, Matsumoto K, Tsujii M, Sugiyama T, Katayama T, Mori N. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism. Mol Autism 2014; 5:33. [PMID: 24834316 PMCID: PMC4022412 DOI: 10.1186/2040-2392-5-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/24/2014] [Indexed: 01/23/2023] Open
Abstract
Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested.
Collapse
Affiliation(s)
- Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan ; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Koji Ohno
- Department of Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Saori Yoshimura
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Hironori Takamura
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Kohei Yamada
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Faculty of Contemporary Sociology, Chukyo University, Toyota, Japan
| | - Toshirou Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taiichi Katayama
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Norio Mori
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
23
|
Abstract
Background Autism spectrum conditions (ASC) are a group of conditions characterized by difficulties in communication and social interaction, alongside unusually narrow interests and repetitive, stereotyped behaviour. Genetic association and expression studies have suggested an important role for the GABAergic circuits in ASC. Syntaxin 1A (STX1A) encodes a protein involved in regulation of serotonergic and GABAergic systems and its expression is altered in autism. Methods In this study, the association between three single nucleotide polymorphisms (SNPs) (rs4717806, rs941298 and rs6951030) in STX1A gene and Asperger syndrome (AS) were tested in 650 controls and 479 individuals with AS, all of Caucasian ancestry. Results rs4717806 (P = 0.00334) and rs941298 (P = 0.01741) showed a significant association with AS, replicating previous results. Both SNPs putatively alter transcription factor binding sites both directly and through other variants in high linkage disequilibrium. Conclusions The current study confirms the role of STX1A as an important candidate gene in ASC. The exact molecular mechanisms through which STX1A contributes to the etiology remain to be elucidated.
Collapse
|
24
|
Nguyen M, Roth A, Kyzar EJ, Poudel MK, Wong K, Stewart AM, Kalueff AV. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD). Neurochem Int 2014; 66:15-26. [PMID: 24412511 DOI: 10.1016/j.neuint.2014.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Andrew Roth
- School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Evan J Kyzar
- College of Medicine, University of Illinois at Chicago, 808 S. Wood Street, Room 165 CME, M/C 783, Chicago, IL 60612, USA
| | - Manoj K Poudel
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Keith Wong
- University of California San Diego (UCSD) School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
25
|
Chang S, Zhang W, Gao L, Wang J. Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources. Protein Cell 2012; 3:526-34. [PMID: 22773342 DOI: 10.1007/s13238-012-2931-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/15/2012] [Indexed: 01/24/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder characterized by hyperactivity, inattention and increased impulsivity. In recent years, a large number of genetic studies for ADHD have been published and related genetic data has been accumulated dramatically. To provide researchers a comprehensive ADHD genetic resource, we previously developed the first genetic database for ADHD (ADHDgene). The abundant genetic data provides novel candidates for further study. Meanwhile, it also brings new challenge for selecting promising candidate genes for replication and verification research. In this study, we surveyed the computational tools for candidate gene prioritization and selected five tools, which integrate multiple data sources for gene prioritization, to prioritize ADHD candidate genes in ADHDgene. The prioritization analysis resulted in 16 prioritized candidate genes, which are mainly involved in several major neurotransmitter systems or in nervous system development pathways. Among these genes, nervous system development related genes, especially SNAP25, STX1A and the gene-gene interactions related with each of them deserve further investigations. Our results may provide new insight for further verification study and facilitate the exploration of pathogenesis mechanism of ADHD.
Collapse
Affiliation(s)
- Suhua Chang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
26
|
Thomas MA, Klaper RD. Psychoactive pharmaceuticals induce fish gene expression profiles associated with human idiopathic autism. PLoS One 2012; 7:e32917. [PMID: 22701549 PMCID: PMC3368908 DOI: 10.1371/journal.pone.0032917] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/06/2012] [Indexed: 01/23/2023] Open
Abstract
Idiopathic autism, caused by genetic susceptibility interacting with unknown environmental triggers, has increased dramatically in the past 25 years. Identifying environmental triggers has been difficult due to poorly understood pathophysiology and subjective definitions of autism. The use of antidepressants by pregnant women has been associated with autism. These and other unmetabolized psychoactive pharmaceuticals (UPPs) have also been found in drinking water from surface sources, providing another possible exposure route and raising questions about human health consequences. Here, we examined gene expression patterns of fathead minnows treated with a mixture of three psychoactive pharmaceuticals (fluoxetine, venlafaxine & carbamazepine) in dosages intended to be similar to the highest observed conservative estimates of environmental concentrations. We conducted microarray experiments examining brain tissue of fish exposed to individual pharmaceuticals and a mixture of all three. We used gene-class analysis to test for enrichment of gene sets involved with ten human neurological disorders. Only sets associated with idiopathic autism were unambiguously enriched. We found that UPPs induce autism-like gene expression patterns in fish. Our findings suggest a new potential trigger for idiopathic autism in genetically susceptible individuals involving an overlooked source of environmental contamination.
Collapse
Affiliation(s)
- Michael A Thomas
- Department of Biological Sciences, Idaho State University School, Pocatello, Idaho, United States of America.
| | | |
Collapse
|
27
|
Thomas MA, Joshi PP, Klaper RD. Gene-class analysis of expression patterns induced by psychoactive pharmaceutical exposure in fathead minnow (Pimephales promelas) indicates induction of neuronal systems. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:109-20. [PMID: 21684349 PMCID: PMC3219835 DOI: 10.1016/j.cbpc.2011.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/24/2022]
Abstract
Psychoactive pharmaceuticals are among the most frequently prescribed drugs, contributing to persistent measurable concentrations in aquatic systems. Typically, it is assumed that such contaminants have no human health implications because they exist in extremely low concentrations. We exposed juvenile fathead minnows (Pimephales promelas) to three pharmaceuticals, fluoxetine, venlafaxine and carbamazepine, individually and in a mixture, and measured their effect on the induction of gene expression in fish brains using microarray analysis. Gene expression changes were accompanied by behavioral changes and validated by qPCR analysis. Gene Set Enrichment Analysis was used to perform gene-class analysis of gene expression, testing for enrichment of gene sets known to be involved in human neuronal development, regulation and growth. We found significant enrichment of gene sets for each of the treatments, with the largest induction of expression by the mixture treatment. These results suggest that the psychoactive pharmaceuticals are able to alter expression of fish genes associated with development, regulation and differentiation of synapses, neurons and neurotransmitters. The results provide a new perspective for the consideration of potential consequence for human health due to environmental exposure to unmetabolized psychoactive pharmaceuticals.
Collapse
Affiliation(s)
- Michael A Thomas
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007, USA.
| | | | | |
Collapse
|