1
|
Lee KS, Ham BJ. Machine Learning on Early Diagnosis of Depression. Psychiatry Investig 2022; 19:597-605. [PMID: 36059048 PMCID: PMC9441463 DOI: 10.30773/pi.2022.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
To review the recent progress of machine learning for the early diagnosis of depression (major depressive disorder). The source of data was 32 original studies in the Web of Science. The search terms were "depression" (title) and "random forest" (abstract). The eligibility criteria were the dependent variable of depression, the interventions of machine learning (the decision tree, the naïve Bayesian, the random forest, the support vector machine and/or the artificial neural network), the outcomes of accuracy and/or the area under the receiver operating characteristic curve (AUC) for the early diagnosis of depression, the publication year of 2000 or later, the publication language of English and the publication journal of SCIE/SSCI. Different machine learning methods would be appropriate for different types of data for the early diagnosis of depression, e.g., logistic regression, the random forest, the support vector machine and/or the artificial neural network in the case of numeric data, the random forest in the case of genomic data. Their performance measures reported varied within 60.1-100.0 for accuracy and 64.0-96.0 for the AUC. Machine learning provides an effective, non-invasive decision support system for early diagnosis of depression.
Collapse
Affiliation(s)
- Kwang-Sig Lee
- AI Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Mental Health, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Lee KS, Kim G, Ham BJ. ORIGINAL ARTICLE: Associations of antidepressant medication with its various predictors including particulate matter: Machine learning analysis using national health insurance data. J Psychiatr Res 2022; 147:67-78. [PMID: 35026595 DOI: 10.1016/j.jpsychires.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
This study uses machine learning and population-based data to analyze major determinants of antidepressant medication including the concentration of particulate matter under 2.5 μm (PM2.5). Retrospective cohort data came from Korea National Health Insurance Service claims data for 43,251 participants, who were aged 15-79 years, lived in the same districts of Seoul and had no history of antidepressant medication during 2002-2012. The dependent variable was antidepressant-free months during 2013-2015 and the 30 independent variables for 2012 were included (demographic/socioeconomic information, health information, district-level information including PM2.5). Random forest variable importance, the contribution of a variable for the performance of the model, was used for identifying major predictors of antidepressant-free months. Based on random forest variable importance, the top 15 determinants of antidepressant medication during 2013-2015 included cardiovascular disease (0.0054), age (0.0047), household income (0.0037), gender (0.0027), the district-level proportion of recipients of national basic living security program benefits (0.0019), district-level social satisfaction (0.0013), diabetes mellitus (0.0012), January 2012 PM2.5 (0.0011), district-level street ratio (0.0010), drinker (0.0009), chronic obstructive pulmonary disease (0.0008), district-level economic satisfaction (0.0006), exercise (0.0005), March 2012 PM2.5 (0.0005) and November 2012 PM2.5 (0.0004). Besides these predictors, smoker and district-level deprivation index are found to be influential most widely, given that they ranked within the top 10 most often in sub-group analysis. In conclusion, antidepressant medication has strong associations with neighborhood conditions including socioeconomic satisfaction and the seasonality of particulate matter. Strong interventions for these factors are really needed for the effective management of major depressive disorder.
Collapse
Affiliation(s)
- Kwang-Sig Lee
- AI Center, Korea University College of Medicine, Seoul, South Korea
| | - Geunyeong Kim
- Korea University Graduate School of Policy Studies, Seoul, South Korea
| | - Byung-Joo Ham
- Department of Mental Health, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Zhao R, Sun JB, Deng H, Cheng C, Li X, Wang FM, He ZY, Chang MY, Lu LM, Tang CZ, Xu NG, Yang XJ, Qin W. Per1 gene polymorphisms influence the relationship between brain white matter microstructure and depression risk. Front Psychiatry 2022; 13:1022442. [PMID: 36440417 PMCID: PMC9691780 DOI: 10.3389/fpsyt.2022.1022442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circadian rhythm was involved in the pathogenesis of depression. The detection of circadian genes and white matter (WM) integrity achieved increasing focus for early prediction and diagnosis of major depressive disorder (MDD). This study aimed to explore the effects of PER1 gene polymorphisms (rs7221412), one of the key circadian genes, on the association between depressive level and WM microstructural integrity. MATERIALS AND METHODS Diffusion tensor imaging scanning and depression assessment (Beck Depression Inventory, BDI) were performed in 77 healthy college students. Participants also underwent PER1 polymorphism detection and were divided into the AG group and AA group. The effects of PER1 genotypes on the association between the WM characteristics and BDI were analyzed using tract-based spatial statistics method. RESULTS Compared with homozygous form of PER1 gene (AA), more individuals with risk allele G of PER1 gene (AG) were in depression state with BDI cutoff of 14 (χ2 = 7.37, uncorrected p = 0.007). At the level of brain imaging, the WM integrity in corpus callosum, internal capsule, corona radiata and fornix was poorer in AG group compared with AA group. Furthermore, significant interaction effects of genotype × BDI on WM characteristics were observed in several emotion-related WM tracts. To be specific, the significant relationships between BDI and WM characteristics in corpus callosum, internal capsule, corona radiata, fornix, external capsule and sagittal stratum were only found in AG group, but not in AA group. CONCLUSION Our findings suggested that the PER1 genotypes and emotion-related WM microstructure may provide more effective measures of depression risk at an early phase.
Collapse
Affiliation(s)
- Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Jin-Bo Sun
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hui Deng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Chen Cheng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Xue Li
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Fu-Min Wang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Zhao-Yang He
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Meng-Ying Chang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Li-Ming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Juan Yang
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Qin
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Liu L, Zhao Q, Yu X, Xu D, Li H, Ji N, Wu Z, Cheng J, Su Y, Cao Q, Sun L, Qian Q, Wang Y. Monoaminergic Genetic Variants, Prefrontal Cortex-Amygdala Circuit, and Emotional Symptoms in Children With ADHD: Exploration Based on the Gene-Brain-Behavior Relationship. J Atten Disord 2021; 25:1272-1283. [PMID: 31910717 DOI: 10.1177/1087054719897838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: This study aimed to explore the association between monoaminergic genetic variants and emotional lability (EL) symptoms in children with ADHD. In addition, genetic effects on prefrontal cortex (PFC)-amygdala functional connectivity (FC) were investigated. Method: Children with ADHD and controls were genotyped for five monoaminergic genetic variants and were evaluated for EL symptoms. Imaging genetic exploration was conducted with previously reported aberrant PFC-amygdala resting-state functional connectivities (RSFCs) as target features. Results: A genotypic effect on EL symptoms was only found for NET1-rs3785143, indicating higher EL symptoms in TT genotype carriers than in C-allele carriers. Imaging genetic analyses indicated a marginal effect of NET1-rs3785143 on ADHD-altered FC between the superficial amygdala (SFA) and middle frontal gyrus (MFG). Mediation analysis suggested potential effects of NET1-rs3785143 via RSFC (SFA-MFG) on EL. Conclusion:NET1 variants might participate in the pathogenesis of EL in children with ADHD by influencing the function of the PFC-amygdala circuit.
Collapse
Affiliation(s)
- Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Qihua Zhao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China.,Beijing Chaoyang District Third Hospital, Beijing, China
| | - Xiaoyan Yu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Defeng Xu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China.,Shandong Mental Health Center, Jinan, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Ning Ji
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Zhaomin Wu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Jia Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yi Su
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Qingjiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, the NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Jiang N, Xu J, Li X, Wang Y, Zhuang L, Qin S. Negative Parenting Affects Adolescent Internalizing Symptoms Through Alterations in Amygdala-Prefrontal Circuitry: A Longitudinal Twin Study. Biol Psychiatry 2021; 89:560-569. [PMID: 33097228 DOI: 10.1016/j.biopsych.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND The synergic interaction of risk genes and environmental factors has been thought to play a critical role in mediating emotion-related brain circuitry function and dysfunction in depression and anxiety disorders. Little, however, is known regarding neurodevelopmental bases underlying how maternal negative parenting affects emotion-related brain circuitry linking to adolescent internalizing symptoms and whether this neurobehavioral association is heritable during adolescence. METHODS The effects of maternal parenting on amygdala-based emotional circuitry and internalizing symptoms were examined by using longitudinal functional magnetic resonance imaging among 100 monozygotic twins and 78 dizygotic twins from early adolescence (age 13 years) to mid-adolescence (age 16 years). The mediation effects among variables of interest and their heritability were assessed by structural equation modeling and quantitative genetic analysis, respectively. RESULTS Exposure to maternal negative parenting was positively predictive of stronger functional connectivity of the amygdala with the ventrolateral prefrontal cortex. This neural pathway mediated the association between negative parenting and adolescent depressive symptoms and exhibited moderate heritability (21%). CONCLUSIONS These findings highlight that maternal negative parenting in early adolescence is associated with the development of atypical amygdala-prefrontal connectivity in relation to internalizing depressive symptoms in mid-adolescence. Such abnormality of emotion-related brain circuitry is heritable to a moderate degree.
Collapse
Affiliation(s)
- Nengzhi Jiang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; School of Psychology, Weifang Medical University, Weifang, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Xinying Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Yanyu Wang
- School of Psychology, Weifang Medical University, Weifang, China
| | - Liping Zhuang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
6
|
Ren F, Ma Y, Zhu X, Guo R, Wang J, He L. Pharmacogenetic association of bi- and triallelic polymorphisms of SLC6A4 with antidepressant response in major depressive disorder. J Affect Disord 2020; 273:254-264. [PMID: 32421611 DOI: 10.1016/j.jad.2020.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Antidepressants (ADs) are the main clinical therapy for depression, but approximately half of users do not get adequate response. The biallelic (5-HTTLPR) and triallelic (5-HTTLPR/rs25531) polymorphisms in SLC6A4 have been frequently investigated, but their associations with ADs response are in controversy. Here, we performed a meta-analysis to assess their modulation effect to ADs response in major depressive disorder (MDD). METHODS We performed literature search in PubMed, Web of Science and EMBASE before June 2019. Pooled analysis of genetic associations with response and remission, meta-regression and sensitivity analysis were performed, and publication bias was assessed. RESULTS Literature search yielded 49 eligible studies with 46 and 10 studies for biallelic and triallelic polymorphism, respectively. L allele of 5-HTTLPR was associated with both of response and remission rates. In the Caucasians using SSRIs only, carriers of LL/LS or LL genotype were more likely to be responders compared to SS carriers (LL/LS vs. SS: OR=1.55, 95%CI 1.20-2.00, p=0.001; LL vs. SS: OR=1.97, 95%CI 1.45-2.67, p<0.001). Similar associations were also found with remission rate. However, no effects on response or remission were found in the Asians or mixed/other antidepressant subgroups. Additionally, the 5-HTTLPR/rs25531 triallelic polymorphism may not associate with ADs response. Meta-regression showed that percent of female in participants, year of publication and treatment duration modulated the association in Caucasians. CONCLUSION 5-HTTLPR, instead of 5-HTTLPR/rs25531 triallelic polymorphism, may exert as a marker for the prediction of response to SSRIs in Caucasians with MDD.
Collapse
Affiliation(s)
- Feifei Ren
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100078, China
| | - Yufeng Ma
- Third Affiliated Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Xiaochen Zhu
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100078, China
| | - Rongjuan Guo
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100078, China
| | - Jialin Wang
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100078, China
| | - Lijuan He
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
7
|
Cui L, Gong X, Chang M, Yin Z, Geng H, Song Y, Lv J, Feng R, Wang F, Tang Y, Xu K. Association of LHPP genetic variation (rs35936514) with structural and functional connectivity of hippocampal-corticolimbic neural circuitry. Brain Imaging Behav 2019; 14:1025-1033. [PMID: 31250265 DOI: 10.1007/s11682-019-00140-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A single nucleotide polymorphism at the LHPP gene (rs35936514) has been reported to be associated with major depressive disorder (MDD) in genome-wide association studies. We conducted a neuroimaging analysis to explore whether and which brain neural systems are affected by LHPP variation. Since LHPP variants seem to be associated with the hippocampus, we assessed the relationship between rs35936514 variation and structural-functional connectivity within a hippocampal-corticolimbic neural system implicated in MDD. A total of 122 Chinese subjects were divided into a CC homozygous group (CC genotype, n = 60) and a T allele-carrier group (CT/TT genotypes, n = 62). All subjects participated in resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) scans. Structural and functional connectivity data analyses were then performed. Compared to the CC group, the T allele-carrier group showed significantly higher fractional anisotropy (FA) values in the fornix as well as increased functional connectivity from the hippocampus to the rostral part of the anterior cingulate cortex (rACC). Moreover, a significant negative correlation between fornix FA value and hippocampus-rACC functional connectivity was identified (P < 0.05). These findings suggest that there is a relationship between rs35936514 variation and both structural and functional hippocampal-corticolimbic neural system involvement in MDD. LHPP may play an important role in the neuropathophysiology of MDD.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and MOE key Laboratory of Contemporary Anthroology, School of Life Sciences, Fudan University, Shanghai, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyang Geng
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Lv
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruiqi Feng
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The Research Institute for Brain Functional Imaging, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.
- Department of Geriatrics and Psychiatry, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
Zhang H, Qiu M, Ding L, Mellor D, Li G, Shen T, Peng D. Intrinsic gray-matter connectivity of the brain in major depressive disorder. J Affect Disord 2019; 251:78-85. [PMID: 30909161 DOI: 10.1016/j.jad.2019.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 01/20/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) has been assumed to be associated with aberrant brain connectivity. However, research suggests that brain connectivity abnormalities should not be restricted to extrinsic white matter connectivity, but may also impact on intrinsic gray matter connectivity. Therefore, our study aimed to investigate the intrinsic gray-matter connectivity in MDD. METHODS The participants were 16 first-episode, drug-naïve patients with MDD and 16 healthy controls matched on age and gender. All participants were scanned by 3.0T structural magnetic resonance imaging. Global and local intrinsic gray-matter connectivity were measured based on surface-based geodesic distances, including mean coritical separation distances (MSDs), perimeter function, and radius function. RESULTS MDD patients had significantly lower MSDs in the left postcentral gyrus and higher MSDs in the left superior parietal cortex. Marginally significant correlation was observed between MSDs in the left postcentral gyrus and symptoms of depression. Compared with healthy controls, depressed subjects had abnormal local intrinsic gray-matter connectivity in the left postcentral gyrus, the left transverse temporal gyrus, the right lingual gyrus, the right lateral occipital cortex, and the right superior frontal gyrus. Furthermore, local intrinsic gray matter connections of these brain areas were associated with some symptoms of depression. LIMITATIONS The small sample size limited the interpretability of our potential conclusions. CONCLUSION Aberrant intrinsic gray-matter connectivity was observed in depressed subjects, indicating abnormal intrinsic wiring cost of brain architecture. This might help explain the aberrant topological properties of brain functional connectivity and provide insights into the vulnerability of MDD.
Collapse
Affiliation(s)
- Huifeng Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, China
| | - Meihui Qiu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, China; Department of Medical Psychology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Ding
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, China
| | - David Mellor
- School of Psychology, Deakin University, 221 Burwood Highway, Burwood, Melbourne 3125, Victoria, Australia
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina, 130 Mason Farm Road, Chapel Hill, NC 27599-7513, USA
| | - Ting Shen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, China.
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping South Road, Shanghai 200030, China.
| |
Collapse
|
9
|
Ping L, Xu J, Zhou C, Lu J, Lu Y, Shen Z, Jiang L, Dai N, Xu X, Cheng Y. Tryptophan hydroxylase-2 polymorphism is associated with white matter integrity in first-episode, medication-naïve major depressive disorder patients. Psychiatry Res Neuroimaging 2019; 286:4-10. [PMID: 30822678 DOI: 10.1016/j.pscychresns.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
Considerable evidence suggests that the tryptophan hydroxylase-2 (TPH2) gene is associated with the pathophysiology of major depressive disorder (MDD). In the present study, we investigated alterations of white matter (WM) integrity and the impact of TPH2 polymorphism on WM in a sample of 118 first-episode, medication-naïve, MDD patients and 118 well-matched healthy controls. Whole brain analyses of fractional anisotropy (FA) were performed using tract-based spatial statistics (TBSS). The results showed that the MDD group had significantly reduced FA values for the genu and body of the corpus callosum (CC) and the bilateral anterior corona radiate (ACR). In the MDD patient group, the GG homozygote subgroup exhibited a widespread reduction of FA (uncorrected) and significantly reduced FA in the left retrolenticular portion of the internal capsule and left superior longitudinal fasciculus (SLF) compared with those of the T carriers (GT/TT) (FWE corrected). No significant correlation was found between the FA values in any brain region and the patients' clinical variables. Our findings demonstrate the presence of abnormal white matter integrity in untreated patients with first-episode depression. TPH2-rs4570625 polymorphisms may be involved in the pathological mechanism of WM microarchitecture in patients.
Collapse
Affiliation(s)
- Liangliang Ping
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical Unversity, Kunming, Yunnan, China
| | - Cong Zhou
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Jin Lu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Yi Lu
- Imaging Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Linling Jiang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Nan Dai
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Interactive effects of genetic polymorphisms and childhood adversity on brain morphologic changes in depression. Prog Neuropsychopharmacol Biol Psychiatry 2019. [PMID: 29535036 DOI: 10.1016/j.pnpbp.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The etiology of depression is characterized by the interplay of genetic and environmental factors and brain structural alteration. Childhood adversity is a major contributing factor in the development of depression. Interactions between childhood adversity and candidate genes for depression could affect brain morphology via the modulation of neurotrophic factors, serotonergic neurotransmission, or the hypothalamus-pituitary-adrenal (HPA) axis, and this pathway may explain the subsequent onset of depression. Childhood adversity is associated with structural changes in the hippocampus, amygdala, anterior cingulate cortex (ACC), and prefrontal cortex (PFC), as well as white matter tracts such as the corpus callosum, cingulum, and uncinate fasciculus. Childhood adversity showed an interaction with the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism, serotonin transporter-linked promoter region (5-HTTLPR), and FK506 binding protein 51 (FKBP5) gene rs1360780 in brain morphologic changes in patients with depression and in a non-clinical population. Individuals with the Met allele of BDNF Val66Met and a history of childhood adversity had reduced volume in the hippocampus and its subfields, amygdala, and PFC and thinner rostral ACC in a study of depressed patients and healthy controls. The S allele of 5-HTTLPR combined with exposure to childhood adversity or a poorer parenting environment was associated with a smaller hippocampal volume and subsequent onset of depression. The FKBP5 gene rs160780 had a significant interaction with childhood adversity in the white matter integrity of brain regions involved in emotion processing. This review identified that imaging genetic studies on childhood adversity may deepen our understanding on the neurobiological background of depression by scrutinizing complicated pathways of genetic factors, early psychosocial environments, and the accompanying morphologic changes in emotion-processing neural circuitry.
Collapse
|
11
|
Ancelin ML, Carrière I, Artero S, Maller J, Meslin C, Ritchie K, Ryan J, Chaudieu I. Lifetime major depression and grey-matter volume. J Psychiatry Neurosci 2019; 44:45-53. [PMID: 30565905 PMCID: PMC6306287 DOI: 10.1503/jpn.180026] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There is evidence of structural brain alterations in major depressive disorder (MDD), but little is known about how these alterations might be affected by age at onset or genetic vulnerability. This study examines whether lifetime episodes of MDD are associated with specific alterations in grey-matter volume, and whether those alterations vary according to sex or serotonin transporter-linked promoter region (5-HTTLPR) genotype (LL, SL or SS). METHODS We used structural MRI to acquire anatomic scans from 610 community-dwelling participants. We derived quantitative regional estimates of grey-matter volume in 16 subregions using FreeSurfer software. We diagnosed MDD according to DSM-IV criteria. We adjusted analyses for age, sex, total brain volume, education level, head injury and comorbidities. RESULTS Lifetime MDD was associated with a smaller insula, thalamus, ventral diencephalon, pallidum and nucleus accumbens and with a larger pericalcarine region in both men and women. These associations remained after adjustment for false discovery rate. Lifetime MDD was also associated with a smaller caudate nucleus and amygdala in men and with a larger rostral anterior cingulate cortex in women. Late-onset first episodes of MDD (after age 50 years) were associated with a larger rostral anterior cingulate cortex and lingual and pericalcarine regions; early-onset MDD was associated with a smaller ventral diencephalon and nucleus accumbens. Some associations differed according to 5-HTTLPR genotype: the thalamus was smaller in participants with MDD and the LL genotype; pericalcarine and lingual volumes were higher in those with the SL genotype. LIMITATIONS This study was limited by its cross-sectional design. CONCLUSION Major depressive disorder was associated with persistent volume reductions in the deep nuclei and insula and with enlargements in visual cortex subregions; alterations varied according to age of onset and genotype.
Collapse
Affiliation(s)
- Marie-Laure Ancelin
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| | - Isabelle Carrière
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| | - Sylvaine Artero
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| | - Jerome Maller
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| | - Chantal Meslin
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| | - Karen Ritchie
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| | - Joanne Ryan
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| | - Isabelle Chaudieu
- From INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France (Ancelin, Carrière, Artero, Ritchie, Ryan, Chaudieu); Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Australia (Maller); Centre for Mental Health Research, Australian National University, Canberra, Australia (Maller, Meslin); General Electric Healthcare, Australia (Maller); Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (Ritchie); and Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Ryan)
| |
Collapse
|
12
|
Calabrò M, Fabbri C, Crisafulli C, Albani D, Forloni G, Kasper S, Sidoti A, Velardi E, Zohar J, Juven-Wetzler A, Souery D, Montgomery S, Mendlewicz J, Serretti A. The serotonin transporter and the activity regulated cytoskeleton-associated protein genes in antidepressant response and resistance: 5-HTTLPR and other variants. Hum Psychopharmacol 2018; 33:e2682. [PMID: 30426571 DOI: 10.1002/hup.2682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Diego Albani
- Laboratory of Biology of Neurodegenerative Disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Gianluigi Forloni
- Laboratory of Biology of Neurodegenerative Disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Elvira Velardi
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Joseph Zohar
- Department of Psychiatry, Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alzbeta Juven-Wetzler
- Department of Psychiatry, Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Souery
- Laboratoire de Psychologie Medicale, Universitè Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie Medicale, Brussels, Belgium
| | | | | | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Kitzlerová E, Fišar Z, Lelková P, Jirák R, Zvěřová M, Hroudová J, Manukyan A, Martásek P, Raboch J. Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer's Disease or Depressive Disorder. Med Sci Monit 2018; 24:2599-2619. [PMID: 29703883 PMCID: PMC5944403 DOI: 10.12659/msm.907202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer’s disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. Material/Methods A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. Results Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ɛ4 allele of APOE. Conclusions Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ɛ4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ɛ4 allele.
Collapse
Affiliation(s)
- Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Lelková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ada Manukyan
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
14
|
Han KM, Choi S, Kim A, Kang J, Won E, Tae WS, Kim YK, Lee MS, Ham BJ. The effects of 5-HTTLPR and BDNF Val66Met polymorphisms on neurostructural changes in major depressive disorder. Psychiatry Res Neuroimaging 2018; 273:25-34. [PMID: 29414128 DOI: 10.1016/j.pscychresns.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
The serotonin-transporter-linked polymorphic region (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have been implicated in the pathophysiology of major depressive disorder (MDD). We aimed to investigate the effects of genetic variants of the 5-HTTLPR and BDNF Val66Met polymorphisms and their interactions with MDD on cortical volume and white matter integrity. Ninety-five patients with MDD and 65 healthy participants aged 20-65 years were recruited. The subjects were genotyped for the 5-HTTLPR and BDNF Val66Met polymorphisms and scanned with T1-weighted and diffusion tensor imaging. The gray matter volumes of 24 gyri in the prefrontal and anterior cingulate cortices and the fractional anisotropy values of nine white matter tracts in both hemispheres were determined. In the pooled sample of subjects from both groups, 5-HTTLPR L-allele carriers had significantly decreased cortical volume in the right anterior midcingulate gyrus compared to S-allele homozygotes. A significant effect of the interaction of the BDNF Val66Met polymorphism and MDD on the fractional anisotropy values of the right uncinate fasciculus was observed. Our results suggested that these genetic polymorphisms play important roles in the neurostructural changes of emotion-processing regions in subjects with MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Zhang HF, Mellor D, Peng DH. Neuroimaging genomic studies in major depressive disorder: A systematic review. CNS Neurosci Ther 2018; 24:1020-1036. [PMID: 29476595 DOI: 10.1111/cns.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 01/06/2023] Open
Abstract
Genetic-neuroimaging studies could identify new potential endophenotypes of major depressive disorder (MDD). Morphological and functional alterations may be attributable to genetic factors that regulate neurogenesis and neurodegeneration. Given that the association between gene polymorphisms and brain morphology or function has varied across studies, this systematic review aims at evaluating and summarizing all available genetic-neuroimaging studies. Twenty-eight gene variants were evaluated in 64 studies by structural or functional magnetic resonance imaging. Significant genetic-neuroimaging associations were found in monoaminergic genes, BDNF genes, glutamatergic genes, HPA axis genes, and the other common genes, which were consistent with common hypotheses of the pathogenesis of MDD.
Collapse
Affiliation(s)
- Hui-Feng Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David Mellor
- School of Psychology, Deakin University, Melbourne, Australia
| | - Dai-Hui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Chang M, Womer FY, Edmiston EK, Bai C, Zhou Q, Jiang X, Wei S, Wei Y, Ye Y, Huang H, He Y, Xu K, Tang Y, Wang F. Neurobiological Commonalities and Distinctions Among Three Major Psychiatric Diagnostic Categories: A Structural MRI Study. Schizophr Bull 2018; 44:65-74. [PMID: 29036668 PMCID: PMC5768040 DOI: 10.1093/schbul/sbx028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) are distinct diagnostic categories in current psychiatric nosology, yet there is increasing evidence for shared clinical and biological features in these disorders. No previous studies have examined brain structural features concurrently in these 3 disorders. The aim of this study was to identify the extent of shared and distinct brain alterations in SZ, BD, and MDD. We examined gray matter (GM) volume and white matter (WM) integrity in a total of 485 individuals (135 with SZ, 86 with BD, 108 with MDD, and 156 healthy controls [HC]) who underwent high-resolution structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) at a single site. RESULTS Significant 4-group (SZ, BD, MDD, and HC groups) differences (P < .05, corrected) in GM volumes were found primarily in the paralimbic and heteromodal corticies. Post hoc analyses showed that the SZ, BD, and MDD groups shared GM volume decreases in 87.9% of the total regional volume with significant 4-group differences. Significant 4-group differences in WM integrity (P < .05 corrected) were found in callosal, limbic-paralimbic-hetermodal, cortico-cortical, thalamocortical and cerebellar WM. Post hoc analyses revealed that the SZ and BD groups shared WM alterations in all regions, while WM alterations were not observed with MDD. CONCLUSIONS Our findings of common alterations in SZ, BD, and MDD support the presence of core neurobiological disruptions in these disorders and suggest that neural structural distinctions between these disorders may be less prominent than initially postulated, particularly between SZ and BD.
Collapse
Affiliation(s)
- Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO
| | - E Kale Edmiston
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Chuan Bai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Qian Zhou
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yuting Ye
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Haiyan Huang
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, PR China,To whom correspondence should be addressed; Department of Psychiatry and Radiology, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, PR China; tel/fax: +8624-83283405, e-mail:
| |
Collapse
|
17
|
Yang TY, Jang EY, Ryu Y, Lee GW, Lee EB, Chang S, Lee JH, Koo JS, Yang CH, Kim HY. Effect of acupuncture on Lipopolysaccharide-induced anxiety-like behavioral changes: involvement of serotonin system in dorsal Raphe nucleus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:528. [PMID: 29228944 PMCID: PMC5725650 DOI: 10.1186/s12906-017-2039-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 01/27/2023]
Abstract
Background Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Methods Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. Results The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Conclusions Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.
Collapse
|
18
|
Padberg F, Kumpf U, Mansmann U, Palm U, Plewnia C, Langguth B, Zwanzger P, Fallgatter A, Nolden J, Burger M, Keeser D, Rupprecht R, Falkai P, Hasan A, Egert S, Bajbouj M. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). Eur Arch Psychiatry Clin Neurosci 2017; 267:751-766. [PMID: 28246891 DOI: 10.1007/s00406-017-0769-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
UNLABELLED Transcranial direct current stimulation (tDCS) has been proposed as novel treatment for major depressive disorder (MDD) based on clinical pilot studies as well as randomized controlled monocentric trials. The DepressionDC trial is a triple-blind (blinding of rater, operator and patient), randomized, placebo controlled multicenter trial investigating the efficacy and safety of prefrontal tDCS used as additive treatment in MDD patients who have not responded to selective serotonin reuptake inhibitors (SSRI). At 5 study sites, 152 patients with MDD receive a 6-weeks treatment with active tDCS (anode F3 and cathode F4, 2 mA intensity, 30 min/day) or sham tDCS add-on to a stable antidepressant medication with an SSRI. Follow-up visits are at 3 and 6 months after the last tDCS session. The primary outcome measure is the change of the Montgomery-Asberg Depression Rating Scale (MADRS) scores at week 6 post-randomisation compared to baseline. Secondary endpoints also cover other psychopathological domains, and a comprehensive safety assessment includes measures of cognition. Patients undergo optional investigations comprising genetic testing and functional magnetic resonance imaging (fMRI) of structural and functional connectivity. The study uses also an advanced tDCS technology including standard electrode positioning and recording of technical parameters (current, impedance, voltage) in every tDCS session. Aside reporting the study protocol here, we present a novel approach for monitoring technical parameters of tDCS which will allow quality control of stimulation and further analysis of the interaction between technical parameters and clinical outcome. The DepressionDC trial will hopefully answer the important clinical question whether prefrontal tDCS is a safe and effective antidepressant intervention in patients who have not sufficiently responded to SSRIs. TRIAL REGISTRY ClinicalTrials.gov Identifier NCT0253016.
Collapse
Affiliation(s)
- Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilian University Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Jana Nolden
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Max Burger
- Department of Psychiatry and Psychotherapy, Charité-Campus Benjamin Franklin, Berlin, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Silvia Egert
- Münchner Studienzentrum, Technical University of Munich, Munich, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité-Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
19
|
Han KM, Won E, Kang J, Choi S, Kim A, Lee MS, Tae WS, Ham BJ. TESC gene-regulating genetic variant (rs7294919) affects hippocampal subfield volumes and parahippocampal cingulum white matter integrity in major depressive disorder. J Psychiatr Res 2017; 93:20-29. [PMID: 28575645 DOI: 10.1016/j.jpsychires.2017.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 11/18/2022]
Abstract
Two recent genome-wide association studies have suggested that rs7294919 is associated with changes in hippocampal volume. rs7294919 regulates the transcriptional products of the TESC gene, which is involved in neuronal proliferation and differentiation. We investigated the interactive effect of rs7294919 and major depressive disorder (MDD) on the volume of the hippocampal subfields and the integrity of the parahippocampal cingulum (PHC). We also investigated the correlation of these structural changes with the DNA methylation status of rs7294919. A total of 105 patients with MDD and 85 healthy control subjects underwent T1-weighted structural magnetic resonance imaging and diffusion tensor imaging. The rs7294919 was genotyped and its DNA methylation status was assessed in all the participants. We analyzed the hippocampal subfield volumes and PHC integrity using FreeSurfer and the Tracts Constrained by Underlying Anatomy (TRACULA) respectively. Significant interactive effects of rs7294919 and MDD were observed in the volumes of the dentate gyrus and CA4. The patients with MDD had increased methylation in two of the three CpG loci of rs7294919, and the methylation of CpG3 was significantly correlated with right PHC integrity in the MDD group. Our results provide neurobiological evidence for the association of rs7294919 with brain structural changes in MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Wang L, Liu Z, Cao X, Li J, Zhang A, Sun N, Yang C, Zhang K. A Combined Study of SLC6A15 Gene Polymorphism and the Resting-State Functional Magnetic Resonance Imaging in First-Episode Drug-Naive Major Depressive Disorder. Genet Test Mol Biomarkers 2017; 21:523-530. [PMID: 28915082 DOI: 10.1089/gtmb.2016.0426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The SLC6A15 gene has been identified as a novel candidate gene for major depressive disorder (MDD). However, the mechanism underlying the effects of how the SLC6A15 gene affects functional brain activity of patients with MDD remains unknown. METHODS In the present study, we investigated the effect of the SLC6A15 gene polymorphism, rs1545843, on resting-state brain function in MDD with the imaging genomic technology and the regional homogeneity (ReHo) method. Sixty-seven MDD patients and 44 healthy controls underwent functional magnetic resonance imaging scans and genotyping. The differences in ReHo between genotypes were initially tested using the student's t test. We then performed a 2 × 2 (genotypes × disease status) analysis of variance to identify the main effects of genotypes, disease status, and their interactions in MDD. RESULTS MDD patients with A+ genotypes showed decreased ReHo in the medial cingulum compared with MDD patients with the GG genotype. This was in contrast to normal controls with A+ genotypes who showed increased ReHo in the posterior cingulum and the frontal, temporal, and parietal lobes and decreased ReHo in the left corpus callosum, compared with controls with the GG genotypes. The main effect of disease was found in the frontal, parietal, and temporal lobes. The main effect of genotypes was found in the left corpus callosum and the frontal lobe. There was no interaction between rs1545843 genotypes and disease status. We found that the left corpus callosum ReHo was positively correlated with total scores of the Hamilton Depression Scale (HAMD) (p = 0.021), so as was the left inferior parietal gyrus ReHo with cognitive disorder (p = 0.02). In addition, the right middle temporal gyrus had a negative correlation with retardation (p = 0.049). CONCLUSION We observed an association between the SLC6A15 rs1545843 and resting-state brain function of the corpus callosum, cingulum and the frontal, parietal, and temporal lobes in MDD patients, which may be involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Lijuan Wang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China .,2 The First Clinical Medical College, Shanxi Medical University , Taiyuan, China
| | - Zhifen Liu
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Xiaohua Cao
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Jianying Li
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Aixia Zhang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Ning Sun
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Chunxia Yang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Kerang Zhang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| |
Collapse
|
21
|
Wigmore EM, Clarke TK, Howard DM, Adams MJ, Hall LS, Zeng Y, Gibson J, Davies G, Fernandez-Pujals AM, Thomson PA, Hayward C, Smith BH, Hocking LJ, Padmanabhan S, Deary IJ, Porteous DJ, Nicodemus KK, McIntosh AM. Do regional brain volumes and major depressive disorder share genetic architecture? A study of Generation Scotland (n=19 762), UK Biobank (n=24 048) and the English Longitudinal Study of Ageing (n=5766). Transl Psychiatry 2017; 7:e1205. [PMID: 28809859 PMCID: PMC5611720 DOI: 10.1038/tp.2017.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/08/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
Major depressive disorder (MDD) is a heritable and highly debilitating condition. It is commonly associated with subcortical volumetric abnormalities, the most replicated of these being reduced hippocampal volume. Using the most recent published data from Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium's genome-wide association study of regional brain volume, we sought to test whether there is shared genetic architecture between seven subcortical brain volumes and intracranial volume (ICV) and MDD. We explored this using linkage disequilibrium score regression, polygenic risk scoring (PRS) techniques, Mendelian randomisation (MR) analysis and BUHMBOX. Utilising summary statistics from ENIGMA and Psychiatric Genomics Consortium, we demonstrated that hippocampal volume was positively genetically correlated with MDD (rG=0.46, P=0.02), although this did not survive multiple comparison testing. None of the other six brain regions studied were genetically correlated and amygdala volume heritability was too low for analysis. Using PRS analysis, no regional volumetric PRS demonstrated a significant association with MDD or recurrent MDD. MR analysis in hippocampal volume and MDD identified no causal association, however, BUHMBOX analysis identified genetic subgrouping in GS:SFHS MDD cases only (P=0.00281). In this study, we provide some evidence that hippocampal volume and MDD may share genetic architecture in a subgroup of individuals, albeit the genetic correlation did not survive multiple testing correction and genetic subgroup heterogeneity was not replicated. In contrast, we found no evidence to support a shared genetic architecture between MDD and other regional subcortical volumes or ICV.
Collapse
Affiliation(s)
- E M Wigmore
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK,Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK. E-mail:
| | - T-K Clarke
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - D M Howard
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - M J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - L S Hall
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Y Zeng
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J Gibson
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - G Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - A M Fernandez-Pujals
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - P A Thomson
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - C Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - B H Smith
- Division of Population Health Sciences, University of Dundee, Dundee, UK
| | - L J Hocking
- Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - S Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - K K Nicodemus
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Won E, Han KM, Kang J, Kim A, Yoon HK, Chang HS, Park JY, Lee MS, Greenberg T, Tae WS, Ham BJ. Vesicular monoamine transporter 1 gene polymorphism and white matter integrity in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:138-145. [PMID: 28408293 DOI: 10.1016/j.pnpbp.2017.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022]
Abstract
The genetic variant of the vesicular monoamine transporter 1 gene (VMAT1) has been suggested to be associated with monoaminergic signaling and neural circuit activity related to emotion processing. We aimed to investigate microstructural changes in white matter tracts of patients with major depressive disorder (MDD), and examined the interaction effect between VMAT1 Thr136Ile (rs1390938) polymorphism and MDD on white matter integrity. Diffusion tensor imaging (DTI) and VMAT1 Thr136Ile (rs1390938) genotyping were performed on 103 patients diagnosed with MDD and 83 healthy control participants. DTI was used to investigate microstructural changes in white matter tracts in patients compared to healthy controls. The possible interaction effect between rs1390938 and MDD on white matter integrity was also assessed. Patients with MDD exhibited lower fractional anisotropy (FA) values of the forceps major (p<0.001), forceps minor (p=0.001), inferior longitudinal fasciculus (left: p=0.001; right: p<0.001), parietal endings of the superior longitudinal fasciculus (left: p<0.001; right: p=0.002), left temporal endings of the superior longitudinal fasciculus (p=0.001), and right uncinate fasciculus (p=0.001). Significant genotype-by-diagnosis interaction effects were observed on FA values of the right uncinate fasciculus (p=0.001), with A-allele carrier patients exhibiting lower FA values compared to G-allele homozygous patients (p=0.003). No significant differences in FA values were observed between genotype subgroups among healthy controls. Our results may contribute to the evidence indicating an association between the VMAT1 gene and structural brain alterations in depression.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Bucheon, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Pittsburgh, United States
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Tsafrir Greenberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Gong L, He C, Yin Y, Ye Q, Bai F, Yuan Y, Zhang H, Lv L, Zhang H, Zhang Z, Xie C. Nonlinear modulation of interacting between COMT and depression on brain function. Eur Psychiatry 2017; 45:6-13. [PMID: 28728097 DOI: 10.1016/j.eurpsy.2017.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear. METHODS Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function. RESULTS We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease×COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system). CONCLUSION Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD.
Collapse
Affiliation(s)
- L Gong
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China
| | - C He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China
| | - Y Yin
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009 Jiangsu, China
| | - Q Ye
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China
| | - F Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China
| | - Y Yuan
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009 Jiangsu, China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China
| | - H Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan, China
| | - L Lv
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan, China
| | - H Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan, China
| | - Z Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China
| | - C Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China.
| |
Collapse
|
24
|
Savage JE, Sawyers C, Roberson-Nay R, Hettema JM. The genetics of anxiety-related negative valence system traits. Am J Med Genet B Neuropsychiatr Genet 2017; 174:156-177. [PMID: 27196537 PMCID: PMC5349709 DOI: 10.1002/ajmg.b.32459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
NIMH's Research Domain Criteria (RDoC) domain of negative valence systems (NVS) captures constructs of negative affect such as fear and distress traditionally subsumed under the various internalizing disorders. Through its aims to capture dimensional measures that cut across diagnostic categories and are linked to underlying neurobiological systems, a large number of phenotypic constructs have been proposed as potential research targets. Since "genes" represent a central "unit of analysis" in the RDoC matrix, it is important for studies going forward to apply what is known about the genetics of these phenotypes as well as fill in the gaps of existing knowledge. This article reviews the extant genetic epidemiological data (twin studies, heritability) and molecular genetic association findings for a broad range of putative NVS phenotypic measures. We find that scant genetic epidemiological data is available for experimentally derived measures such as attentional bias, peripheral physiology, or brain-based measures of threat response. The molecular genetic basis of NVS phenotypes is in its infancy, since most studies have focused on a small number of candidate genes selected for putative association to anxiety disorders (ADs). Thus, more research is required to provide a firm understanding of the genetic aspects of anxiety-related NVS constructs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeanne E. Savage
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roxann Roberson-Nay
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - John M. Hettema
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
25
|
Han KM, Won E, Sim Y, Kang J, Han C, Kim YK, Kim SH, Joe SH, Lee MS, Tae WS, Ham BJ. Influence of FKBP5 polymorphism and DNA methylation on structural changes of the brain in major depressive disorder. Sci Rep 2017; 7:42621. [PMID: 28198448 PMCID: PMC5309810 DOI: 10.1038/srep42621] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
A single nucleotide polymorphism of rs1360780 in the FKBP5 gene is associated with a predisposition to developing major depressive disorder (MDD). We investigated the interactive effects of FKBP5 rs1360780 allelic variants, DNA methylation, and the diagnosis of MDD on structural changes of the entire brain. One hundred and fourteen patients with MDD and eighty-eight healthy controls underwent T1-weighted structural magnetic resonance imaging and FKBP5 rs1360780 genotyping, including DNA methylation of intron 7. We analyzed the volume of cortical and subcortical regions and cortical thickness using FreeSurfer. Significant genotype-by-diagnosis interactions were observed for volumes of the left pars triangularis, supramarginal gyrus, superior parietal lobule, right frontomarginal, and posterior midcingulate gyrus. The T allele was associated with significant volume reductions in these brain regions only in the MDD group except for the right posterior midcingulate gyrus. FKBP5 DNA methylation showed a positive correlation with the thickness of the right transverse frontopolar gyrus in the C allele homozygote group. Our findings suggest that the FKBP5 gene and its epigenetic changes could have influence on morphologic changes of several brain regions involved in emotion regulation, and that this process may be associated with the development of MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngbo Sim
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sook-Haeng Joe
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
26
|
Fabbri C, Hosak L, Mössner R, Giegling I, Mandelli L, Bellivier F, Claes S, Collier DA, Corrales A, Delisi LE, Gallo C, Gill M, Kennedy JL, Leboyer M, Lisoway A, Maier W, Marquez M, Massat I, Mors O, Muglia P, Nöthen MM, O'Donovan MC, Ospina-Duque J, Propping P, Shi Y, St Clair D, Thibaut F, Cichon S, Mendlewicz J, Rujescu D, Serretti A. Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World J Biol Psychiatry 2017; 18:5-28. [PMID: 27603714 DOI: 10.1080/15622975.2016.1208843] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and reproducible markers of efficacy are not available for clinical use. Further complicating treatment, the diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. A number of markers of MDD and antidepressant response have been investigated at the genetic, epigenetic, gene expression and protein levels. Polymorphisms in genes involved in antidepressant metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included in the first pharmacogenetic assays that have been tested for clinical applicability. The results of these investigations were encouraging when examining patient-outcome improvement. Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-α receptor type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. These first diagnostic and response-predictive tests for MDD provided a source of optimism for future clinical applications. However, such findings should be considered very carefully because their benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include combinations of different types of biomarkers and be specific for MDD subtypes or pathological dimensions.
Collapse
Affiliation(s)
- Chiara Fabbri
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Ladislav Hosak
- b Department of Psychiatrics , Charles University, Faculty of Medicine and University Hospital, Hradec Králové , Czech Republic
| | - Rainald Mössner
- c Department of Psychiatry and Psychotherapy , University of Tübingen , Tübingen , Germany
| | - Ina Giegling
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Laura Mandelli
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Frank Bellivier
- e Fondation Fondamental, Créteil, France AP-HP , GH Saint-Louis-Lariboisière-Fernand-Widal, Pôle Neurosciences , Paris , France
| | - Stephan Claes
- f GRASP-Research Group, Department of Neuroscience , University of Leuven , Leuven , Belgium
| | - David A Collier
- g Social, Genetic and Developmental Psychiatry Centre , Institute of Psychiatry, King's College London , London , UK
| | - Alejo Corrales
- h National University (UNT) Argentina, Argentinean Association of Biological Psychiatry , Buenos Aires , Argentina
| | - Lynn E Delisi
- i VA Boston Health Care System , Brockton , MA , USA
| | - Carla Gallo
- j Departamento de Ciencias Celulares y Moleculares, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Michael Gill
- k Neuropsychiatric Genetics Research Group, Department of Psychiatry , Trinity College Dublin , Dublin , Ireland
| | - James L Kennedy
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Marion Leboyer
- m Faculté de Médecine , Université Paris-Est Créteil, Inserm U955, Equipe Psychiatrie Translationnelle , Créteil , France
| | - Amanda Lisoway
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Wolfgang Maier
- n Department of Psychiatry , University of Bonn , Bonn , Germany
| | - Miguel Marquez
- o Director of ADINEU (Asistencia, Docencia e Investigación en Neurociencia) , Buenos Aires , Argentina
| | - Isabelle Massat
- p UNI - ULB Neurosciences Institute, ULB , Bruxelles , Belgium
| | - Ole Mors
- q Department P , Aarhus University Hospital , Risskov , Denmark
| | | | - Markus M Nöthen
- s Institute of Human Genetics , University of Bonn , Bonn , Germany
| | - Michael C O'Donovan
- t MRC Centre for Neuropsychiatric Genetics and Genomics , Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , UK
| | - Jorge Ospina-Duque
- u Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | | | - Yongyong Shi
- w Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai , China
| | - David St Clair
- x University of Aberdeen, Institute of Medical Sciences , Aberdeen , UK
| | - Florence Thibaut
- y University Hospital Cochin (Site Tarnier), University Sorbonne Paris Cité (Faculty of Medicine Paris Descartes), INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Sven Cichon
- z Division of Medical Genetics, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Julien Mendlewicz
- aa Laboratoire de Psychologie Medicale, Centre Européen de Psychologie Medicale , Université Libre de Bruxelles and Psy Pluriel , Brussels , Belgium
| | - Dan Rujescu
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Alessandro Serretti
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
27
|
Ye Q, Bai F, Zhang Z. Shared Genetic Risk Factors for Late-Life Depression and Alzheimer's Disease. J Alzheimers Dis 2017; 52:1-15. [PMID: 27060956 DOI: 10.3233/jad-151129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Considerable evidence has been reported for the comorbidity between late-life depression (LLD) and Alzheimer's disease (AD), both of which are very common in the general elderly population and represent a large burden on the health of the elderly. The pathophysiological mechanisms underlying the link between LLD and AD are poorly understood. Because both LLD and AD can be heritable and are influenced by multiple risk genes, shared genetic risk factors between LLD and AD may exist. OBJECTIVE The objective is to review the existing evidence for genetic risk factors that are common to LLD and AD and to outline the biological substrates proposed to mediate this association. METHODS A literature review was performed. RESULTS Genetic polymorphisms of brain-derived neurotrophic factor, apolipoprotein E, interleukin 1-beta, and methylenetetrahydrofolate reductase have been demonstrated to confer increased risk to both LLD and AD by studies examining either LLD or AD patients. These results contribute to the understanding of pathophysiological mechanisms that are common to both of these disorders, including deficits in nerve growth factors, inflammatory changes, and dysregulation mechanisms involving lipoprotein and folate. Other conflicting results have also been reviewed, and few studies have investigated the effects of the described polymorphisms on both LLD and AD. CONCLUSION The findings suggest that common genetic pathways may underlie LLD and AD comorbidity. Studies to evaluate the genetic relationship between LLD and AD may provide insights into the molecular mechanisms that trigger disease progression as the population ages.
Collapse
|
28
|
Han KM, Won E, Kang J, Kim A, Yoon HK, Chang HS, Son KR, Lee MS, Tae WS, Ham BJ. Local gyrification index in patients with major depressive disorder and its association with tryptophan hydroxylase-2 (TPH2) polymorphism. Hum Brain Mapp 2016; 38:1299-1310. [PMID: 27807918 DOI: 10.1002/hbm.23455] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 01/19/2023] Open
Abstract
The tryptophan hydroxylase-2 (TPH2) gene is considered a promising genetic candidate regarding its association with a predisposition to major depressive disorder (MDD). Local gyrification reflects the early neural development of cortical connectivity, and is regarded as a potential neural endophenotype in psychiatric disorders. They aimed to investigate the alterations in the cortical gyrification of the prefrontal cortex and anterior cingulate cortex and their association with the TPH2 rs4570625 polymorphism in patients with MDD. One hundred and thirteen patients with MDD and eighty-six healthy controls underwent T1-weighted structural magnetic resonance imaging and genotyping for TPH2 rs4570625. The local gyrification index of 22 cortical regions in the prefrontal cortex and anterior cingulate cortex was analyzed using the FreeSurfer. The patients with MDD showed significant hypergyria in the right rostral anterior cingulate cortex (P = 0.001), medial orbitofrontal cortex (P = 0.003), and frontal pole (P = 0.001). There was a significant genotype-by-diagnosis interaction for the local gyrification index in the right rostral anterior cingulate cortex (P = 0.003). Their study revealed significant hypergyria of the anterior cingulate cortex and prefrontal cortex and an interactive effect between the diagnosis of MDD and the genotype in the anterior cingulate cortex. This might be associated with the dysfunction of neural circuits mediating emotion processing, which could contribute to pathophysiology of MDD. Hum Brain Mapp 38:1299-1310, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Bucheon, Republic of Korea
| | - Kyu Ri Son
- Department of Radiology, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
29
|
Choi S, Han KM, Kang J, Won E, Chang HS, Tae WS, Son KR, Kim SJ, Lee MS, Ham BJ. Effects of a Polymorphism of the Neuronal Amino Acid Transporter SLC6A15 Gene on Structural Integrity of White Matter Tracts in Major Depressive Disorder. PLoS One 2016; 11:e0164301. [PMID: 27723767 PMCID: PMC5056691 DOI: 10.1371/journal.pone.0164301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022] Open
Abstract
Background The SLC6A15 gene has been identified as a novel candidate gene for major depressive disorder (MDD). It is presumed to be involved in the pathophysiology of MDD through regulation of glutamate transmission in the brain. However, the involvement of this gene in microstructural changes in white matter (WM) tracts remains unclear. We aimed to investigate the influence of a polymorphism of this gene (rs1545853) on the structural integrity of WM tracts in the cortico-limbic network. Methods Eighty-six patients with MDD and 64 healthy controls underwent T1-weighted structural magnetic resonance imaging, including diffusion tensor imaging (DTI), and genotype analysis. We selected the genu of the corpus callosum, the uncinate fasciculus, cingulum, and fornix as regions of interest, and extracted fractional anisotropy (FA) values using the FMRIB Diffusion Toolbox software. Results FA values for the left parahippocampal cingulum (PHC) was significantly reduced in the patients with MDD compared to healthy control participants (p = 0.004). We also found that MDD patients with the A allele showed reduced FA values for the left PHC than did healthy controls with the A allele (p = 0.012). There was no significant difference in the FA value of left PHC for the comparison between the G homozygotes of MDD and healthy control group. Conclusions We observed an association between the risk allele of the SLC6A15 gene rs1545843 and the WM integrity of the PHC in MDD patients, which is known to play an important role in the neural circuit involved in emotion processing.
Collapse
Affiliation(s)
- Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate school, Soonchunhyang University, Bucheon, South Korea
| | - Woo Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, South Korea
| | - Kyu Ri Son
- Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Kim
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, South Korea
- * E-mail:
| |
Collapse
|
30
|
Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neurosci Biobehav Rev 2016; 69:299-312. [DOI: 10.1016/j.neubiorev.2016.08.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/18/2016] [Accepted: 08/06/2016] [Indexed: 12/20/2022]
|
31
|
Association between reduced white matter integrity in the corpus callosum and serotonin transporter gene DNA methylation in medication-naive patients with major depressive disorder. Transl Psychiatry 2016; 6:e866. [PMID: 27505229 PMCID: PMC5022083 DOI: 10.1038/tp.2016.137] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/05/2016] [Indexed: 01/01/2023] Open
Abstract
Previous evidence suggests that the serotonin transporter gene (SLC6A4) is associated with the structure of brain regions that are critically involved in dysfunctional limbic-cortical network activity associated with major depressive disorder (MDD). Diffusion tensor imaging (DTI) and tract-based spatial statistics were used to investigate changes in white matter integrity in patients with MDD compared with healthy controls. A possible association between structural alterations in white matter tracts and DNA methylation of the SLC6A4 promoter region was also assessed. Thirty-five medication-naive patients with MDD (mean age: 40.34, male/female: 10/25) and age, gender and education level matched 49 healthy controls (mean age: 41.12, male/female: 15/34) underwent DTI. SLC6A4 DNA methylation was also measured at five CpG sites of the promoter region, and the cell type used was whole-blood DNA. Patients with MDD had significantly lower fractional anisotropy (FA) values for the genu of the corpus callosum and body of the corpus callosum than that in healthy controls (family-wise error corrected, P<0.01). Significant inverse correlations were observed between SLC6A4 DNA methylation and FA (CpG3, Pearson's correlation: r=-0.493, P=0.003) and axial diffusivity (CpG3, Pearson's correlation: r=-0.478, P=0.004) values of the body of the corpus callosum in patients with MDD. These results contribute to evidence indicating an association between epigenetic gene regulation and structural brain alterations in depression. Moreover, we believe this is the first report of a correlation between DNA methylation of the SLC6A4 promoter region and white matter integrity in patients with MDD.
Collapse
|
32
|
García-Fuster MJ, García-Sevilla JA. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl) 2016; 233:2955-71. [PMID: 27259485 DOI: 10.1007/s00213-016-4342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Fas-associated death domain (FADD) is an adaptor of death receptors that can also induce anti-apoptotic actions through its phosphorylated form (p-FADD). Activation of monoamine receptors, indirect targets of classic anti-depressant drugs (ADs), reduced FADD and increased p-FADD and p-FADD/FADD ratio in brain. OBJECTIVES To ascertain whether ADs, which indirectly regulate monoamine receptors, modulate FADD protein forms to promote anti-apoptotic actions. METHODS The effects of selected norepinephrine transporter (NET), serotonin transporter (SERT), monoamine oxidase (MAO) inhibitors, atypical ADs, and electroconvulsive shock (ECS) or behavioral procedures (forced swim test, FST) on FADD forms and pro-survival FADD-like interleukin-1β-converting enzyme-inhibitory protein (FLIP-L) and phosphoprotein enriched in astrocytes of 15 kDa (p-PEA-15) contents were assessed in rat brain cortex by western blot analysis. RESULTS Acute NET (e.g., nisoxetine) but not SERT (e.g., fluoxetine) inhibitors decreased cortical FADD (up to 37 %) and increased p-FADD/FADD ratio (up to 1.9-fold). Nisoxetine effects were prevented by α2-antagonist RX-821002, suggesting the involvement of presynaptic α2-autoreceptors. Immobility time in the FST correlated with increases of pro-apoptotic FADD and decreases of anti-apoptotic p-FADD. The MAO-A/B inhibitor phenelzine decreased FADD (up to 33 %) and increased p-FADD (up to 65 %) and p-FADD/FADD (up to 2.4-fold). Other MAO inhibitors (clorgyline, Ro 41-1049, rasagiline), atypical ADs (ketamine and mirtazapine), or ECS did not modulate cortical FADD. Chronic (14 days) desipramine and fluoxetine, but not phenelzine, increased p-FADD (up to 59 %), p-FADD/FADD ratio (up to 1.8-fold), and pro-survival p-PEA-15 (up to 46 %) in rat brain cortex. CONCLUSIONS Multifunctional FADD protein, through an increased p-FADD/FADD ratio, could participate in the mechanisms of anti-apoptotic actions induced by ADs.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
33
|
Won E, Choi S, Kang J, Lee MS, Ham BJ. Regional cortical thinning of the orbitofrontal cortex in medication-naïve female patients with major depressive disorder is not associated with MAOA-uVNTR polymorphism. Ann Gen Psychiatry 2016; 15:26. [PMID: 27752275 PMCID: PMC5062832 DOI: 10.1186/s12991-016-0116-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Orbitofrontal cortex alterations have been suggested to underlie the impaired mood regulation in depression. MAOA-uVNTR (monoamine oxidase A-upstream variable number of tandem repeats) polymorphism has been reported to be associated with major depressive disorder by various studies. The influence of MAOA-uVNTR genotype on function and structure of the orbitofrontal cortex has previously been reported. In this study, we investigated the difference in orbitofrontal cortex thickness between medication-naïve female patients with major depressive disorder and healthy controls, and the influence of MAOA-uVNTR genotype on orbitofrontal cortex thickness in depression. METHODS Thirty-one patients with major depressive disorder and 43 healthy controls were included. All participants were subjected to T1-weighted structural magnetic resonance imaging and genotyped for MAOA-uVNTR polymorphism. An automated procedure of FreeSurfer was used to analyze difference in orbitofrontal cortex thickness. RESULTS Patients showed a significantly thinner left orbitofrontal cortex (F(1,71) = 7.941, p = 0.006) and right orbitofrontal cortex (F(1,71) = 17.447, p < 0.001). For the orbitofrontal cortex sub-region analysis, patients showed a significantly thinner left medial orbitofrontal cortex (F(1,71) = 8.117, p = 0.006), right medial orbitofrontal cortex (F(1,71) = 21.795, p < 0.001) and right lateral orbitofrontal cortex (F(1,71) = 9.932, p = 0.002) compared to healthy controls. No significant interaction of diagnosis and MAOA-uVNTR genotype on orbitofrontal cortex thickness was revealed. CONCLUSIONS Our results suggest that structural alterations of the orbitofrontal cortex may be associated with the pathophysiology of major depressive disorder. Future studies with larger sample sizes are needed to detect a possible association between MAOA-uVNTR genotype and orbitofrontal cortex thickness in depression.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705 Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705 Republic of Korea
| |
Collapse
|