1
|
Yang Z, Klugah-Brown B, Ding G, Zhou W, Biswal BB. Brain structural differences in cocaine use disorder: Insights from multivariate and neurotransmitter analyses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111159. [PMID: 39366518 DOI: 10.1016/j.pnpbp.2024.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Cocaine use disorder (CUD) is a chronic and relapsing neuropsychiatric disorder characterized by structural and functional brain lesions, posing a significant public health challenge. While the disruptive effects of cocaine on neurotransmitter systems (receptors/transporters) have been well established, the patterns of brain structural abnormalities in CUD and its interaction with other factors remain an ongoing topic of investigation. We employed source-based morphometry (SBM), a multivariate approach on 50 CUD participants and 50 matched healthy controls from the public SUDMEX CONN dataset. This method allowed us to identify co-varying patterns of brain tissue volume differences, and further explore the effect of average cocaine dosage through moderation analysis. Spatial correlation analysis was also performed to examine micro-macro structural consistency between tissue volume variations and chemoarchitectural distribution of dopamine and serotonin. Our SBM analysis findings were consistent with reward-related neuroadaptations in the striato-thalamo-cortical and limbic pathways and also exhibited co-localization with the distribution of dopamine and serotonin systems. The moderation analysis suggested that the average dosage positively strengthens cocaine consumption years' effect on brain structures. By integrating our findings of gray and white matter volume differences and corresponding neurotransmitter profiles, this comprehensive view not only strengthens our understanding of the brain's structural abnormalities in CUD, but also reveals potential mechanisms underlying its development and progression.
Collapse
Affiliation(s)
- Zhenzhen Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China.
| | - Guobin Ding
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Wenchao Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Camacho-Téllez V, Castro MN, Wainsztein AE, Goldberg X, De Pino G, Costanzo EY, Cardoner N, Menchón JM, Soriano-Mas C, Guinjoan SM, Villarreal MF. Childhood adversity modulates structural brain changes in borderline personality but not in major depression disorder. Psychiatry Res Neuroimaging 2024; 340:111803. [PMID: 38460393 DOI: 10.1016/j.pscychresns.2024.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Adverse childhood experiences (ACEs) negatively affect the function and structure of emotion brain circuits, increasing the risk of various psychiatric disorders. It is unclear if ACEs show disorder specificity with respect to their effects on brain structure. We aimed to investigate whether the structural brain effects of ACEs differ between patients with major depression (MDD) and borderline personality disorder (BPD). These disorders share many symptoms but likely have different etiologies. To achieve our goal, we obtained structural 3T-MRI images from 20 healthy controls (HC), 19 MDD patients, and 18 BPD patients, and measured cortical thickness and subcortical gray matter volumes. We utilized the Adverse Childhood Experiences (ACE) questionnaire to quantify self-reported exposure to childhood trauma. Our findings suggest that individuals with MDD exhibit a smaller cortical thickness when compared to those with BPD. However, ACEs showed a significantly affected relationship with cortical thickness in BPD but not in MDD. ACEs were found to be associated with thinning in cortical regions involved in emotional behavior in BPD, whereas HC showed an opposite association. Our results suggest a potential mechanism of ACE effects on psychopathology involving changes in brain structure. These findings highlight the importance of early detection and intervention strategies.
Collapse
Affiliation(s)
- Vicente Camacho-Téllez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina.
| | - Agustina E Wainsztein
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Ximena Goldberg
- Mental Health Department, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Gabriela De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Laboratorio de Neuroimágenes, Departamento de Imágenes, Fleni, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina
| | - Elsa Y Costanzo
- Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Narcís Cardoner
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Menchón
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, USA; Department of Psychiatry, Health Sciences Center, Oklahoma University, and Oxley College, Tulsa University, Tulsa, Oklahoma, USA
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| |
Collapse
|
3
|
Altered cortical thickness and emotional dysregulation in adolescents with borderline personality disorder. Eur J Psychotraumatol 2023; 14:2163768. [PMID: 37052085 PMCID: PMC9848334 DOI: 10.1080/20008066.2022.2163768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Emotional dysregulation is a core feature of borderline personality disorder (BPD). Previous studies have reported that abnormal grey matter volume is associated with the limbic-cortical circuit and default mode network (DMN) in patients with BPD. However, alterations of cortical thickness in adolescents with BPD have not been well evaluated.Objective: The aim of this study was to assess cortical thickness and its association with emotional dysregulation in adolescents with BPD.Method: This prospective study enrolled 52 adolescents with BPD and 39 age- and sex-matched healthy controls (HCs). Assessments included brain magnetic resonance imaging (MRI) acquisition with structural and resting-state functional MRI data, and clinical assessment for emotional dysregulation using the Difficulties in Emotion Regulation Scale (DERS). Cortical thickness and seed-based functional connectivity were analysed with FreeSurfer 7.2 software. Correlation analysis between cortical thickness and the scores from emotional assessment was performed with Spearman analysis.Results: Compared to HCs, there was altered cortical thickness in the DMN and limbic-cortical circuit in adolescents with BPD (Monte Carlo correction, all p < .05). These regions with altered cortical thickness were significantly associated with emotional dysregulation (all p < .05). There were also alterations of functional connectivity, i.e. with increased connectivity of the right prefrontal cortex with bilateral occipital lobes, or with the limbic system, and with decreased connectivity among the DMN regions (voxel p < .001, cluster p < .05, family-wise error corrected).Conclusions: Our results suggest that the altered cortical thickness and altered functional connectivity in the limbic-cortical circuit and DMN may be involved in emotional dysregulation in adolescents with BPD.
Collapse
|
4
|
Chibaatar E, Watanabe K, Quinn PM, Okamoto N, Shinkai T, Natsuyama T, Hayasaki G, Ikenouchi A, Kakeda S, Yoshimura R. Triple network connectivity changes in patients with major depressive disorder versus healthy controls via structural network imaging after electroconvulsive therapy treatment. J Affect Disord 2023; 340:923-929. [PMID: 37598718 DOI: 10.1016/j.jad.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE To investigate the effect of electroconvulsive treatment (ECT) on dynamic structural network connectivity in major depressive disorder (MDD), based on the triple-network model. METHODS Twenty-one first-episode, drug-naïve patients with MDD and 21 age- and sex-matched healthy subjects were recruited. Bilateral electrical stimulation was performed thrice a week for a total of 4-5 weeks in the MDD group. MRI data were obtained, and triple-network structural connectivity was evaluated using source-based morphometry (SBM) analysis. A paired t-test was used to analyze structural connectivity differences between pre- and post-ECT MDD groups, one-way analysis was used to calculate three intrinsic network differences between HCs, pre- and post-ECT groups, and partial least squares structural equation modelling was used to investigate dynamic structural network connectivity (dSNC) across groups. RESULTS Pre-ECT patients with MDD exhibited significantly lower salience network (SN) structural connectivity (p = 0.010) than the healthy control (HC) group and after ECT therapy SN structural connectivity was significantly elevated (p = 0.002) in post-ECT group compared with pre-ECT. PLS-SEM analysis conducted on inter-network connectivity in the triple-network model indicated a significant difference between SN and central executive network (CEN) in all three groups. The HC and post-ECT MDD groups showed notable direct connectivity between the SN and default mode network (DMN), while the pre-ECT MDD group showed consequential pathological connectivity between the CEN and DMN. A mediation analysis revealed a significant indirect effect of the SN on the DMN through the CEN (β = 0.363, p = 0.008) only in the pre-ECT MDD group. CONCLUSIONS ECT may be an effective and minimally invasive treatment for addressing structural changes in the SN and direct communication abnormalities between the three core brain networks in patients with MDD, with possible beneficial correction of indirect connections.
Collapse
Affiliation(s)
- Enkmurun Chibaatar
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Patrick M Quinn
- Wakamatsu Hospital, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takahiro Shinkai
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomoya Natsuyama
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Gaku Hayasaki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
5
|
Wang K, Hu Y, Yan C, Li M, Wu Y, Qiu J, Zhu X. Brain structural abnormalities in adult major depressive disorder revealed by voxel- and source-based morphometry: evidence from the REST-meta-MDD Consortium. Psychol Med 2023; 53:3672-3682. [PMID: 35166200 DOI: 10.1017/s0033291722000320] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroimaging studies on major depressive disorder (MDD) have identified an extensive range of brain structural abnormalities, but the exact neural mechanisms associated with MDD remain elusive. Most previous studies were performed with voxel- or surface-based morphometry which were univariate methods without considering spatial information across voxels/vertices. METHODS Brain morphology was investigated using voxel-based morphometry (VBM) and source-based morphometry (SBM) in 1082 MDD patients and 990 healthy controls (HCs) from the REST-meta-MDD Consortium. We first examined group differences in regional grey matter (GM) volumes and structural covariance networks between patients and HCs. We then compared first-episode, drug-naïve (FEDN) patients, and recurrent patients. Additionally, we assessed the effects of symptom severity and illness duration on brain alterations. RESULTS VBM showed decreased GM volume in various regions in MDD patients including the superior temporal cortex, anterior and middle cingulate cortex, inferior frontal cortex, and precuneus. SBM returned differences only in the prefrontal network. Comparisons between FEDN and recurrent MDD patients showed no significant differences by VBM, but SBM showed greater decreases in prefrontal, basal ganglia, visual, and cerebellar networks in the recurrent group. Moreover, depression severity was associated with volumes in the inferior frontal gyrus and precuneus, as well as the prefrontal network. CONCLUSIONS Simultaneous application of VBM and SBM methods revealed brain alterations in MDD patients and specified differences between recurrent and FEDN patients, which tentatively provide an effective multivariate method to identify potential neurobiological markers for depression.
Collapse
Affiliation(s)
- KangCheng Wang
- School of Psychology, Shandong Normal University, Jinan, Shandong, China
| | - YuFei Hu
- School of Psychology, Shandong Normal University, Jinan, Shandong, China
| | - ChaoGan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - MeiLing Li
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - YanJing Wu
- Faculty of Foreign Languages, Ningbo University, Ningbo, Zhejiang, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing 400716, China
| | - XingXing Zhu
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Begemann MJH, Schutte MJL, van Dellen E, Abramovic L, Boks MP, van Haren NEM, Mandl RCW, Vinkers CH, Bohlken MM, Sommer IEC. Childhood trauma is associated with reduced frontal gray matter volume: a large transdiagnostic structural MRI study. Psychol Med 2023; 53:741-749. [PMID: 34078485 PMCID: PMC9975993 DOI: 10.1017/s0033291721002087] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Childhood trauma increases risk for psychopathology and cognitive impairment. Prior research mainly focused on the hippocampus and amygdala in single diagnostic categories. However, other brain regions may be impacted by trauma as well, and effects may be independent of diagnosis. This cross-sectional study investigated cortical and subcortical gray matter volume in relation to childhood trauma severity. METHODS We included 554 participants: 250 bipolar-I patients, 84 schizophrenia-spectrum patients and 220 healthy individuals without a psychiatric history. Participants filled in the Childhood Trauma Questionnaire. Anatomical T1 MRI scans were acquired at 3T, regional brain morphology was assessed using Freesurfer. RESULTS In the total sample, trauma-related gray matter reductions were found in the frontal lobe (β = -0.049, p = 0.008; q = 0.048), this effect was driven by the right medial orbitofrontal, paracentral, superior frontal regions and the left precentral region. No trauma-related volume reductions were observed in any other (sub)cortical lobes nor the hippocampus or amygdala, trauma-by-group (i.e. both patient groups and healthy subjects) interaction effects were absent. A categorical approach confirmed a pattern of more pronounced frontal gray matter reductions in individuals reporting multiple forms of trauma and across quartiles of cumulative trauma scores. Similar dose-response patterns were revealed within the bipolar and healthy subgroups, but did not reach significance in schizophrenia-spectrum patients. CONCLUSIONS Findings show that childhood trauma is linked to frontal gray matter reductions, independent of psychiatric morbidity. Our results indicate that childhood trauma importantly contributes to the neurobiological changes commonly observed across psychiatric disorders. Frontal volume alterations may underpin affective and cognitive disturbances observed in trauma-exposed individuals.
Collapse
Affiliation(s)
- Marieke J. H. Begemann
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maya J. L. Schutte
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edwin van Dellen
- Department of Psychiatry, UMCU Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Lucija Abramovic
- Department of Psychiatry, UMCU Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marco P. Boks
- Department of Psychiatry, UMCU Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Neeltje E. M. van Haren
- Department of Psychiatry, UMCU Brain Center, Utrecht University, Utrecht, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Rene C. W. Mandl
- Department of Psychiatry, UMCU Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
| | - Marc M. Bohlken
- Department of Psychiatry, UMCU Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Common and distinct patterns of gray matter alterations in young adults with borderline personality disorder and major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2022; 272:1569-1582. [PMID: 35419633 DOI: 10.1007/s00406-022-01405-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
Abstract
Young adults with borderline personality disorder (BPD) and major depressive disorder (MDD) have a relatively high comorbidity rate; however, whether they share a neurobiological basis remains controversial. Although previous studies have reported respective brain alterations, the common and distinct gray matter changes between two disorders are still inconsistent. We conducted a meta-analysis using anisotropic effect size-based algorithms (ASE-SDM) to identify consistent findings from whole-brain voxel-based morphometry (VBM) studies of gray matter volume (GMV) in 274 young adults (< 45 years old) with BPD and 1576 with MDD. Compared with healthy controls, the young adults with BPD showed GMV reduction mainly in the prefrontal cortex including the inferior frontal gyrus and superior frontal gyrus, medial temporal network, and insula, whereas the MDD showed GMV alteration in the visual network (fusiform gyrus and inferior temporal gyrus), sensorimotor network (bilateral postcentral gyrus (PoCG) and right cerebellum) and left caudate nucleus. The GMV differences between these two disorders were concentrated in the left orbitofrontal cortex, cingulate cortex, right insula, and cerebellum. The meta-regression of the MDD group showed a negative association between disease duration and the right middle cingulate gyrus as well as negative associations between depressive symptoms and brain regions of the right cerebellum and the left PoCG. Our results identified common and distinct patterns of GMV alteration between BPD and MDD, which may provide neuroimage evidence for the disorder comorbidity mechanisms and partly indicate the similar and different biological features in emotion regulation of the two disorders. This study was registered with PROSPERO (CRD42020212758).
Collapse
|
8
|
Aberrant Structural Connectivity of the Triple Network System in Borderline Personality Disorder Is Associated with Behavioral Dysregulation. J Clin Med 2022; 11:jcm11071757. [PMID: 35407365 PMCID: PMC8999477 DOI: 10.3390/jcm11071757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Core symptoms of Borderline Personality Disorder (BPD) are associated to aberrant connectivity of the triple network system (salience network [SN], default mode network [DMN], executive control network [ECN]). While functional abnormalities are widely reported, structural connectivity (SC) and anatomical changes have not yet been investigated. Here, we explored the triple network’s SC, structure, and its association with BPD clinical features. Methods: A total of 60 BPD and 26 healthy controls (HC) underwent a multidomain neuropsychological and multimodal MRI (diffusion- and T1-weighted imaging) assessment. Metrics (fractional anisotropy [FA], mean diffusivity [MD], cortical thickness) were extracted from SN, DMN, ECN (triple network), and visual network (control network) using established atlases. Multivariate general linear models were conducted to assess group differences in metrics and associations with clinical features. Results: Patients showed increased MD in the anterior SN, dorsal DMN, and right ECN compared to HC. Diffusivity increases were more pronounced in patients with higher behavioral dysregulation, i.e., suicidal attempting, self-harm, and aggressiveness. No differences were detected in network structure. Conclusions: These results indicate that the triple network system is impaired in BPD at the microstructural level. The preferential involvement of anterior and right-lateralized subsystems and their clinical association suggests that these abnormalities could contribute to behavioral dysregulation.
Collapse
|
9
|
Gray matter volume covariance networks are associated with altered emotional processing in bipolar disorder: a source-based morphometry study. Brain Imaging Behav 2021; 16:738-747. [PMID: 34546520 PMCID: PMC9010334 DOI: 10.1007/s11682-021-00541-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Widespread regional gray matter volume (GMV) alterations have been reported in bipolar disorder (BD). Structural networks, which are thought to better reflect the complex multivariate organization of the brain, and their clinical and psychological function have not been investigated yet in BD. 24 patients with BD type-I (BD-I), and 30 with BD type-II (BD-II), and 45 controls underwent MRI scan. Voxel-based morphometry and source-based morphometry (SBM) were performed to extract structural covariation patterns of GMV. SBM components associated with morphometric differences were compared among diagnoses. Executive function and emotional processing correlated with morphometric characteristics. Compared to controls, BD-I showed reduced GMV in the temporo-insular-parieto-occipital cortex and in the culmen. An SBM component spanning the prefrontal-temporal-occipital network exhibited significantly lower GMV in BD-I compared to controls, but not between the other groups. The structural network covariance in BD-I was associated with the number of previous manic episodes and with worse executive performance. Compared to BD-II, BD-I showed a loss of GMV in the temporal-occipital regions, and this was correlated with impaired emotional processing. Altered prefrontal-temporal-occipital network structure could reflect a neural signature associated with visuospatial processing and problem-solving impairments as well as emotional processing and illness severity in BD-I.
Collapse
|
10
|
Ding JB, Hu K. Structural MRI Brain Alterations in Borderline Personality Disorder and Bipolar Disorder. Cureus 2021; 13:e16425. [PMID: 34422464 PMCID: PMC8369985 DOI: 10.7759/cureus.16425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
Bipolar disorder (BD) and borderline personality disorder (BPD) share many behavioral features, such as periods of marked affective lability and instability. Although there is a symptomatic overlap, the two disorders may be differentiated based on longitudinal course, phenomenology, and treatment responsiveness. In addition, the emotional changes in BPD are generally influenced by interpersonal factors, whereas BD episodes tend to be more sustained. We performed a literature review on the structural MRI features of both disorders and compared the findings. There are differences in areas of white and gray matter volumes and thickness in BP and BPD. BPD primarily affects the fronto-limbic network, in particular, the amygdala, hippocampus, and orbitofrontal cortex, whereas BP affects both cortical and subcortical areas. There are a limited number of large studies, and many studies examined in this review did not adjust for confounding factors or motion artifacts, which limit the utility of current data.
Collapse
Affiliation(s)
- Jack B Ding
- Psychiatry, Royal Adelaide Hospital, Adelaide, AUS.,Psychiatry, University of Adelaide, Adelaide, AUS
| | - Kevin Hu
- Radiology, Lyell McEwin Hospital, Adelaide, AUS
| |
Collapse
|
11
|
Lapomarda G, Pappaianni E, Siugzdaite R, Sanfey AG, Rumiati RI, Grecucci A. Out of control: An altered parieto-occipital-cerebellar network for impulsivity in bipolar disorder. Behav Brain Res 2021; 406:113228. [PMID: 33684426 DOI: 10.1016/j.bbr.2021.113228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Bipolar disorder is an affective disorder characterized by rapid fluctuations in mood ranging from episodes of depression to mania, as well as by increased impulsivity. Previous studies investigated the neural substrates of bipolar disorder mainly using univariate methods, with a particular focus on the neural circuitry underlying emotion regulation difficulties. In the present study, capitalizing on an innovative whole-brain multivariate method to structural analysis known as Source-based Morphometry, we investigated the neural substrates of bipolar disorder and their relation with impulsivity, assessed with both self-report measures and performance-based tasks. Structural images from 46 patients with diagnosis of bipolar disorder and 60 healthy controls were analysed. Compared to healthy controls, patients showed decreased gray matter concentration in a parietal-occipital-cerebellar network. Notably, the lower the gray matter concentration in this circuit, the higher the self-reported impulsivity. In conclusion, we provided new evidence of an altered brain network in bipolar disorder patients related to their abnormal impulsivity. Taken together, these findings extend our understanding of the neural and symptomatic characterization of bipolar disorder.
Collapse
Affiliation(s)
- Gaia Lapomarda
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy.
| | - Edoardo Pappaianni
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Roma Siugzdaite
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Alan G Sanfey
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Raffaella I Rumiati
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), University of Trieste, Trieste, Italy
| | - Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
12
|
Najafpour Z, Fatemi A, Goudarzi Z, Goudarzi R, Shayanfard K, Noorizadeh F. Cost-effectiveness of neuroimaging technologies in management of psychiatric and insomnia disorders: A meta-analysis and prospective cost analysis. J Neuroradiol 2021; 48:348-358. [PMID: 33383065 DOI: 10.1016/j.neurad.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The optimal diagnostic strategy for patients with psychiatric and insomnia disorders has not been established yet. PURPOSE The purpose of this study was to perform cost-effectiveness analysis of six neuroimaging technologies in diagnosis of patients with psychiatric and insomnia disorders. METHODS An economic evaluation study was conducted in three parts, including a systematic review for determining diagnostic accuracy, a descriptive cross-sectional study with Activity-Based Costing (ABC) technique for tracing resource consumption, and a cost-effectiveness analysis using a short-term decision-analytic model. RESULTS In the first phase, 93 diagnostic accuracy studies were included in the systematic review. The accumulated results (meta-analysis) showed that the highest diagnostic accuracy for psychiatric and insomnia disorders was attributed to PET (sensitivity of 90% and specificity of 80%) and MRI (sensitivity of 76% and specificity of 78%) respectively. In the second phase of the study, we calculated the cost of each technology. The results showed that MRI has the lowest cost. Based on the results in the model of cost-effectiveness sMRI ($ 50.08 per accurate diagnosis) and MRI ($ 58.54 per accurate diagnosis) were more cost-effective neuroimaging technologies. CONCLUSION In psychiatric disorders, no single strategy was characterized by both low cost and high accuracy. However, MRI and PET scan had lower cost and higher accuracy for psychiatric disorders, respectively. MRI was the least costly with the highest diagnostic accuracy in insomnia disorders. Based on our model, sMRI in psychiatric disorders and MRI in insomnia disorders were the most cost-effective technologies.
Collapse
Affiliation(s)
- Zhila Najafpour
- Department of Health Care Management, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Asieh Fatemi
- Dpartment of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Faculty of Paramedical sciences, Rafsanjan University of Medical Sciences, Iran.
| | - Zahra Goudarzi
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Goudarzi
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Farsad Noorizadeh
- Basir Eye Health Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Tong P, Bo P, Shi Y, Dong L, Sun T, Gao X, Yang Y. Clinical traits of patients with major depressive disorder with comorbid borderline personality disorder based on propensity score matching. Depress Anxiety 2021; 38:100-106. [PMID: 33326658 DOI: 10.1002/da.23122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) with comorbid borderline personality disorder (BPD) makes the clinical symptoms of patients more complex and more difficult to treat, so more attention should be paid to the recognition of their clinical features. This study investigated the differences between patients with MDD with and without BPD in clinical traits. METHODS Propensity score matching was used to analyze the retrospective patients' data from August 2012 to September 2019. Altogether, 1381 patients with MDD were enrolled; 38 patients with MDD were matched to compare demographic data, and scores on the Hamilton Depression Scale, Hamilton Anxiety Scale (HAMA), Self-Rating Depression Scale (SDS), Modified Overt Aggression Scale (MOAS), and the frequency of nonsuicidal self-harm (NSSH). RESULTS Compared to patients with MDD without BPD, the age of onset of patients with MDD with comorbid BPD was significantly earlier (t = 3.25, p = .00). The scores of HAMA (t = -2.28, p = .03), SDS (t = 9.31, p = .00), MOAS (t = -13.67, p = .00), verbal aggression (t = -3.79, p = .00), aggression against objects (t = -2.84, p = .00), aggression against others (t = -6.70, p = .00), and aggression against self (t = -9.22, p = .00) were significantly higher in patients with MDD with comorbid BPD. Moreover, the frequency of NHSS in these patients was significantly higher (χ2 = 20.13, p = .00). MOAS was an independent influencing factor in these (odds ratio = 7.38, p = .00). CONCLUSIONS Patients with BPD showed early onset and increased complaints relative to symptoms, accompanied by obvious anxiety symptoms, impulsive behavior, and NSSH. Therefore, patients with MDD with impulsive behavior have comorbid BPD.
Collapse
Affiliation(s)
- Ping Tong
- Department of Clinical Psychology, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China.,Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Ping Bo
- Department of Clinical Psychology, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China.,Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Yuanhong Shi
- Department of Clinical Psychology, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China
| | - Liping Dong
- Department of Clinical Psychology, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China
| | - Ting Sun
- Department of Clinical Psychology, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xia Gao
- Department of Clinical Psychology, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yang Yang
- Department of Clinical Psychology, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
14
|
Watanabe K, Kakeda S, Katsuki A, Ueda I, Ikenouchi A, Yoshimura R, Korogi Y. Whole-brain structural covariance network abnormality in first-episode and drug-naïve major depressive disorder. Psychiatry Res Neuroimaging 2020; 300:111083. [PMID: 32298948 DOI: 10.1016/j.pscychresns.2020.111083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
There has been a growing interest in the abnormality of networks across the brain in major depressive disorder (MDD). We aimed to investigate the structural covariance networks in patients with first-episode and drug-naïve MDD using structural imaging. A total of 77 patients with first-episode and drug-naïve MDD and 79 healthy subjects (HS) were recruited, from whom high-resolution T1-weighted images were analysed. Incident component analysis was used to calculate the brain networks based on grey matter volume covariance. There were significant differences in salience network, medial temporal lobe network, default mode network and central executive network between MDD and HS (p < 0.05). Further, the disturbance of medial temporal lobe network was significantly correlated with the severity of depressive symptoms (p < 0.05). In conclusion, we found a novel abnormality in the brain network in the medial temporal lobe primarily involving the hippocampus and parahippocampal gyrus in patients with first-episode and treatment-naïve MDD.
Collapse
Affiliation(s)
- Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan.
| | - Shingo Kakeda
- Department of Diagnostic Radiology, Hirosaki University Graduate School of Medicine Radiology, Aomori, Japan
| | - Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| |
Collapse
|
15
|
Abstract
After participating in this activity, learners should be better able to:• Assess differences between adult patients with the diagnosis of borderline personality disorder (BPD) and healthy control subjects in terms of empathy and related processes• Evaluate the effects of empathy or related processes as factors contributing to abnormal social functioning in BPD ABSTRACT: We reviewed 45 original research studies, published between 2000 and 2019, to assess differences between adult patients with the diagnosis of borderline personality disorder (BPD) and healthy control subjects in terms of empathy and related processes (i.e., theory of mind, mentalizing, social cognition, and emotional intelligence). Thirty-six studies reported deficits of empathy or related processes in patients with BPD. Enhanced emotional empathy in BPD was also reported in eight studies, all of which revealed that patients had increased scores of personal distress on the Interpersonal Reactivity Index self-report questionnaire. Six studies did not find significant differences between patients with BPD and healthy control subjects in terms of empathy or related processes. No study reported enhanced cognitive empathy, social cognition, or emotional intelligence in patients with BPD. We postulate that deficits of empathy or related processes contribute to preempting the formation of stable interpersonal relationships, whereas enhanced emotional empathy might lead to personal (and interpersonal) distress, further contributing to abnormal social functioning in BPD.
Collapse
|
16
|
Teti Mayer J, Nicolier M, Gabriel D, Masse C, Giustiniani J, Compagne C, Vandel P, Pazart L, Haffen E, Bennabi D. Efficacy of transcranial direct current stimulation in reducing impulsivity in borderline personality disorder (TIMBER): study protocol of a randomized controlled clinical trial. Trials 2019; 20:347. [PMID: 31182143 PMCID: PMC6558822 DOI: 10.1186/s13063-019-3427-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Impulsivity is a core feature of borderline personality disorder (BPD) and is closely related to suicide risk and destructive and aggressive behaviors. Although transcranial direct current stimulation (tDCS) has shown its promising effects as an intervention to modulate impulsivity, no study has explored its potential regarding BPD. Methods/design This is a multicenter, crossover, double-blind study comparing active versus sham tDCS (2 mA, 30 min), applied over the dorsolateral prefrontal cortex for five consecutive days in 50 BPD patients. Participants will be assessed for impulsivity, depressive symptoms, and suicide risk. The main efficacy criteria on reduction of impulsivity will be the amplitude variation of one specific evoked potential detected by electroencephalography (EEG) during the balloon analogue risk task. Baseline measures will be compared to scores obtained immediately after sessions, then 12 and 30 days later. Discussion This study investigates the safety and effects of tDCS, which may have a significant impact on impulsivity in patients with BPD and may be useful to reduce risky behaviors. Trial registration ClinicalTrials.gov, NCT03498937. Registered on 17 April 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3427-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Teti Mayer
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France. .,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.
| | - Magali Nicolier
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France
| | - Damien Gabriel
- Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France
| | - Caroline Masse
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France
| | - Julie Giustiniani
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France
| | - Charline Compagne
- Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France
| | - Pierre Vandel
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.,Centre Mémoire Ressources et Recherche, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France
| | - Lionel Pazart
- Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France
| | - Emmanuel Haffen
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.,Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France
| | - Djamila Bennabi
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France.,Laboratoire de Neurosciences Intégratives et Cliniques EA, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.,Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030, Besançon Cedex, France
| |
Collapse
|
17
|
Sorella S, Lapomarda G, Messina I, Frederickson JJ, Siugzdaite R, Job R, Grecucci A. Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms. Neuroimage Clin 2019; 23:101854. [PMID: 31121524 PMCID: PMC6529770 DOI: 10.1016/j.nicl.2019.101854] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Despite the traditional view of Schizophrenia (SZ) and Bipolar disorder (BD) as separate diagnostic categories, the validity of such a categorical approach is challenging. In recent years, the hypothesis of a continuum between Schizophrenia (SZ) and Bipolar disorder (BD), postulating a common pathophysiologic mechanism, has been proposed. Although appealing, this unifying hypothesis may be too simplistic when looking at cognitive and affective differences these patients display. In this paper, we aim to test an expanded version of the continuum hypothesis according to which the continuum extends over three clusters: the psychotic, the cognitive, and the affective. We applied an innovative approach known as Source-based Morphometry (SBM) to the structural images of 46 individuals diagnosed with SZ, 46 with BD and 66 healthy controls (HC). We also analyzed the psychological profiles of the three groups using cognitive, affective, and clinical tests. At a neural level, we found evidence for a shared psychotic core in a distributed network involving portions of the medial parietal and temporo-occipital areas, as well as parts of the cerebellum and the middle frontal gyrus. We also found evidence of a cognitive core more compromised in SZ, including alterations in a fronto-parietal circuit, and mild evidence of an affective core more compromised in BD, including portions of the temporal and occipital lobes, cerebellum, and frontal gyrus. Such differences were confirmed by the psychological profiles, with SZ patients more impaired in cognitive tests, while BD in affective ones. On the bases of these results we put forward an expanded view of the continuum hypothesis, according to which a common psychotic core exists between SZ and BD patients complemented by two separate cognitive and affective cores that are both impaired in the two patients' groups, although to different degrees.
Collapse
Affiliation(s)
- Sara Sorella
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Gaia Lapomarda
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | | | | | - Roma Siugzdaite
- Department of Experimental Psychology, Faculty of Psychological and Pedagogical Sciences, Ghent University, Ghent, Belgium.
| | - Remo Job
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| |
Collapse
|
18
|
Structural networks analysis for depression combined with graph theory and the properties of fiber tracts via diffusion tensor imaging. Neurosci Lett 2018; 694:34-40. [PMID: 30465819 DOI: 10.1016/j.neulet.2018.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022]
Abstract
Previous studies have suggested that major depressive disorder was associated with topological properties of impaired white matter. However, most related studies only use one property of nerve fibers to construct whole-brain structural brain network. Considering white matter changes variously, We hypothesized whether the alternations of white matter topological properties could reflect different impairment of white matter integrity. In addition, it is still unknown whether impaired integrity of the white matter fiber tracts has relationship with abnormal topological properties in MDD. This study investigated the impaired white matter by using graph theoretic analyses in a cohort of 37 MDD patients and 38 matched control subjects. In addition, we further investigated fiber tracts differences in three interregional connectivity matrixes of significant different topological regions in MDD. Our graph theoretic analyses demonstrated that 7 different regions were observed for the local measures in patients with MDD compared with control groups. These regions were the central nodes of cortical-limbic network, frontal-cingulate network, default mode network (DMN), cognitive control network(CCN)and affective network (AN). In addition, two impaired white matter pathways which included inferior longitudinal fasciculus (ILF) and cingulum were observed in MDD using fiber tracts analysis. We speculate impaired integrity of ILF is due to the alternations in the number of axons or myelination. The results further demonstrated that the number of fiber tracts of anterior cingulum was associated with the depression scores in MDD.
Collapse
|
19
|
Depping MS, Thomann PA, Wolf ND, Vasic N, Sosic-Vasic Z, Schmitgen MM, Sambataro F, Wolf RC. Common and distinct patterns of abnormal cortical gyrification in major depression and borderline personality disorder. Eur Neuropsychopharmacol 2018; 28:1115-1125. [PMID: 30119924 DOI: 10.1016/j.euroneuro.2018.07.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
Abnormal gray matter volume has been consistently reported in patients with major depressive disorder (MDD), but markers of cortical neurodevelopment have been rarely investigated. Also, it is unclear whether there exist common versus distinct spatial patterns of abnormal cortical development across different disorders presenting with negative emotions and deficient affective regulation. In this study, we used structural MRI at 3T to investigate the local gyrification index (LGI), a marker of fetal/infant neurodevelopment, in adult female patients with MDD (n = 22), in adult female patients with borderline personality disorder (BPD) (n = 17), and in controls (n = 22). Reduced cortical folding of the precuneus, the superior parietal gyrus and the parahippocampal gyrus was found in both MDD and BPD patients when compared to controls (p < 0.05, cluster-wise probability [CWP] corrected). MDD patients showed additional hypogyrification of the middle frontal gyrus and the fusiform gyrus when compared to both controls and BPD patients (p < 0.05, CWP corrected). In MDD patients, lower LGI of prefrontal regions was significantly associated with the age of disease onset and with the number of depressive episodes. In BPD patients, lower LGI of orbitofrontal regions was associated with impulsivity. Our findings suggest abnormal early cortical development in MDD, affecting brain regions that have been frequently implied in MDD pathophysiology. However, LGI abnormalities may not be specific for MDD, since MDD and BPD patients also exhibited common patterns of hypogyrification. Hypogyrification of cortical regions associated with higher-order cognition appears to be most pronounced in MDD. Abnormal early cortical neurodevelopment may mediate vulnerability to disorders of emotion.
Collapse
Affiliation(s)
- Malte S Depping
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | | | - Nadine D Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Nenad Vasic
- Clinical Center Christophsbad, Department of Psychiatry and Psychotherapy, Göppingen, Germany
| | | | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Italy
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany.
| |
Collapse
|
20
|
Fahmy R, Wasfi M, Mamdouh R, Moussa K, Wahba A, Wittemann M, Hirjak D, Kubera KM, Wolf ND, Sambataro F, Wolf RC. Mindfulness-based interventions modulate structural network strength in patients with opioid dependence. Addict Behav 2018; 82:50-56. [PMID: 29494858 DOI: 10.1016/j.addbeh.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/11/2023]
Abstract
Mindfulness-based interventions (MBI) are increasingly used in the treatment of patients with mental disorders, in particular in individuals presenting with affective disorders or in patients exhibiting abnormal levels of impulsive behavior. MBI have been also offered to patients with substance use disorders, where such treatment options may yield considerable clinical effects. Neural effects associated with MBI have been increasingly acknowledged, but is unknown whether MBI exert specific effects on brain structure in patients with substance use disorders. In this study, we investigated 19 inpatients with opioid dependence receiving treatment-as-usual (TAU, n = 9) or additional MBI (n = 10). Structural magnetic resonance imaging data were acquired before and after four weeks of treatment. Source-based morphometry was used to investigate modulation of structural networks after treatment. Both treatment modalities led to significant clinical improvement. Patients receiving MBI showed a significant change in distress tolerance levels. An increase in bilateral striatal/insular and prefrontal/cingulate network strength was found in patients receiving MBI compared to individuals receiving TAU. Prefrontal/cingulate cortical network strength was associated with impulsivity levels. These findings suggest that MBI can have a recognizable role in treatment of substance use disorders and that neural effects of MBI may be captured in terms of frontostriatal structural network change.
Collapse
Affiliation(s)
- Reham Fahmy
- Department of Psychiatry, Kasralainy Faculty of Medicine, Cairo University, Egypt
| | - Maha Wasfi
- Department of Psychiatry, Kasralainy Faculty of Medicine, Cairo University, Egypt
| | - Rania Mamdouh
- Department of Psychiatry, Kasralainy Faculty of Medicine, Cairo University, Egypt
| | - Kareem Moussa
- Department of Radiology, Kasralainy Faculty of Medicine, Cairo University, Egypt
| | - Ahmed Wahba
- Psychiatric Hospital Rickling, Rickling, Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy, Saarland University, Homburg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Nadine D Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | | | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany.
| |
Collapse
|
21
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
22
|
Brain Structural Networks Associated with Intelligence and Visuomotor Ability. Sci Rep 2017; 7:2177. [PMID: 28526888 PMCID: PMC5438383 DOI: 10.1038/s41598-017-02304-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence indicates that multiple structures in the brain are associated with intelligence and cognitive function at the network level. The association between the grey matter (GM) structural network and intelligence and cognition is not well understood. We applied a multivariate approach to identify the pattern of GM and link the structural network to intelligence and cognitive functions. Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based morphometry analysis was applied to the imaging data to extract GM structural covariance. We assessed the intelligence, verbal fluency, processing speed, and executive functioning of the participants and further investigated the correlations of the GM structural networks with intelligence and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component and the frontal component were significantly associated with intelligence. The parietal and frontal regions were each distinctively associated with intelligence by maintaining structural networks with the cerebellum and the temporal region, respectively. The cerebellar component was associated with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by demonstrating how each core region for intelligence works in concert with other regions. In addition, we revealed how the cerebellum is associated with intelligence and cognitive functions.
Collapse
|
23
|
Wolf RC, Nolte HM, Hirjak D, Hofer S, Seidl U, Depping MS, Stieltjes B, Maier-Hein K, Sambataro F, Thomann PA. Structural network changes in patients with major depression and schizophrenia treated with electroconvulsive therapy. Eur Neuropsychopharmacol 2016; 26:1465-1474. [PMID: 27424799 DOI: 10.1016/j.euroneuro.2016.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/06/2016] [Accepted: 06/18/2016] [Indexed: 02/06/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments in severe and treatment-resistant major depressive disorder (MDD). In schizophrenia (SZ), ECT is frequently considered in drug-resistant cases, as an augmentation of antipsychotic treatment or in cases when rapid symptom relief is indicated. Accumulating neuroimaging evidence suggests modulation of medial temporal lobe and prefrontal cortical regions in MDD by ECT. In SZ, ECT-effects on brain structure have not been systematically investigated so far. In this study, we investigated brain volume in 21 ECT-naïve patients (12 with MDD, 9 with SZ) who received right-sided unilateral ECT. Twenty-one healthy controls were included. Structural magnetic resonance imaging data were acquired before and after ECT. Healthy participants were scanned once. Source-based morphometry was used to investigate modulation of structural networks pre/post ECT. ECT had an impact on distinct structural networks in MDD and SZ. In both MDD and SZ SBM revealed a medial temporal lobe (MTL) network (including hippocampus and parahippocampal cortex) which showed a significant increase after ECT. The increase in MTL network strength was not associated with clinical improvement in either MDD or SZ. In SZ a lateral prefrontal/cingulate cortical network showed a volume increase after ECT, and this effect was accompanied by clinical improvement. These findings provide preliminary evidence for structural network change in response to ECT in MDD and SZ. The data suggest both diagnosis-specific and transdiagnostic ECT-effects on brain volume. In contrast to SZ, in MDD structural network modulation by ECT was not associated with clinical improvement.
Collapse
Affiliation(s)
- Robert Christian Wolf
- Center for Psychosocial Medicine, Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Kirrberger Str. 1, 66421 Homburg, Germany.
| | - Henrike Maria Nolte
- Center for Psychosocial Medicine, Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany
| | - Dusan Hirjak
- Center for Psychosocial Medicine, Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany
| | - Stefan Hofer
- Department of Anesthesiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ulrich Seidl
- Center for Mental Health, Klinikum Stuttgart, 70374 Stuttgart, Germany
| | - Malte Sebastian Depping
- Center for Psychosocial Medicine, Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany
| | - Bram Stieltjes
- Department of Radiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Klaus Maier-Hein
- Medical Image Computing Group, Division of Medical and Biological Informatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| | - Philipp Arthur Thomann
- Center for Psychosocial Medicine, Department of Psychiatry, University of Heidelberg, 69115 Heidelberg, Germany
| |
Collapse
|