1
|
Jiang H, Zeng Y, He P, Zhu X, Zhu J, Gao Y. Aberrant resting-state voxel-mirrored homotopic connectivity in major depressive disorder with and without anxiety. J Affect Disord 2025; 368:191-199. [PMID: 39173924 DOI: 10.1016/j.jad.2024.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Prior researchers have identified distinct differences in functional connectivity neuroimaging characteristics among MDD patients. However, the auxiliary diagnosis and subtype differentiation roles of VMHC values in MDD patients have yet to be fully understood. We aim to explore the separating ability of VMHC values in patients with anxious MDD or with non-anxious MDD and HCs. METHODS We recruited 90 patients with anxious MDD, 69 patients with non-anxious MDD and 84 HCs. We collected a set of clinical variables included HAMD-17 scores, HAMA scores and rs-fMRI data. The data were analyzed combining difference analysis, SVM, correlation analysis and ROC analysis. RESULTS Relative to HCs, non-anxious MDD patients displayed significant lower VMHC values in the insula and PCG, and anxious MDD patients displayed a significant decrease in VMHC values in the cerebellum_crus2, STG, postCG, MFG and IFG. Compared with non-anxious MDD patients, the anxious MDD showed significant enhanced VMHC values in the PCG. The VMHC values in the insula and cerebellum_crus2 regions showed a better ability to discriminate HCs from patients with non-anxious MDD or with anxious MDD. The VMHC values in PCG showed a better ability to discriminate patients with anxious MDD and non-anxious MDD patients. CONCLUSION The VMHC values in the insula and cerebellum_crus2 regions could be served as imaging markers to differentiate HCs from patients with non-anxious MDD or with anxious MDD respectively. And the VMHC values in the PCG could be used to discriminate patients with anxious MDD from the non-anxious MDD patients.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - YanPing Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peidong He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Xiwei Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Jiangrui Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China; Yichang City Clinical Research Center for Mental Disorders, China.
| |
Collapse
|
2
|
Atienza-Navarro I, Del Marco A, Angeles Garcia-Perez MDL, Raya-Marin A, Gil C, Martinez A, Benavente-Fernandez I, Lubian-Lopez S, Garcia-Alloza M. VP3.15 reduces acute cerebellum damage after germinal matrix-intraventricular hemorrhage of the preterm newborn. Biomed Pharmacother 2024; 180:117586. [PMID: 39413619 DOI: 10.1016/j.biopha.2024.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most common complications of the preterm newborn. The pathology of the GM-IVH is not completely understood and even regions distant from the lesion area are severely affected. It has been suggested that cerebellar diaschisis may underlie the neurodevelopmental problems that many of these kids show, including cerebral palsy, attention deficit disorders or hyperactivity. Additionally, GM-IVH has no successful treatment. VP3.15 is a dual action phosphodiesterase 7 (PDE7) and glycogen synthase kinase-3β (GSK-3β) inhibitor that limits neuroinflammation and neuronal loss. Therefore, it might also provide a relevant tool to reduce complications associated with GM-IVH. We have used a murine model of GM-IVH to analyze the short and long-term effects of VP3.15 in brain pathology and behavioral complications. In our hands, the induction of unilateral GM-IVH to P7 CD1 mice results in a short-term (P14) compromise of the cerebellar neuronal population and Purkinje cells arborization, an increase of microglia burden in the nuclei and an overall increase of punctuate cerebellar hemorrhages. Whereas brain alterations are no longer observed in the long term (P110), these animals present overt hyperactivity when analyzed in the adulthood, supporting the long-term behavioral impairment. Also, hyperactivity significantly correlates with ipsi and contralateral cerebellar sizes, neuronal densities and myelin basic protein levels. Importantly, treatment with VP3.15 significantly reduces neuronal loss, Purkinje cells simplification, the presence of cerebellar hemorrhages, as well as hyperactivity. Altogether, our data support the neuroprotective effects of VP3.15 in GM-IVH of the PT.
Collapse
Affiliation(s)
- Isabel Atienza-Navarro
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Alvaro Raya-Marin
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Carmen Gil
- Centro de Investigaciones Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centro de Investigaciones Biomedicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid 28031, Spain
| | - Isabel Benavente-Fernandez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain; Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Cadiz, Spain
| | - Simon Lubian-Lopez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain; Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain.
| |
Collapse
|
3
|
Zhang Y, Duan M, He H. Deficient salience and default mode functional integration in high worry-proneness subject: a connectome-wide association study. Brain Imaging Behav 2024:10.1007/s11682-024-00951-1. [PMID: 39382787 DOI: 10.1007/s11682-024-00951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Worry has been conceptualized as a relatively uncontrollable chain of thought that increases the risk of mental problems, such as anxiety disorders. Here, we examined the link between individual variation in the functional connectome and worry proneness, which remains unclear. A total of 32 high worry-proneness (HWP) subjects and 25 low worry-proneness (LWP) subjects were recruited. We conducted multivariate distance-based matrix regression to identify phenotypic relationships in high-dimensional brain resting-state functional connectivity data from HWP subjects. Multiple hub regions, including key brain nodes of the salience network (SN) and default mode network (DMN), were identified in HWP subjects. Follow-up analyses revealed that a high worry-proneness score was dominated by functional connectivity between the SN and the DMN. Moreover, HWP subjects showed hypoconnectivity between the cerebellum and the SN and DMN compared with LWP subjects. This cross-sectional study could not fully measure the causal relationships between changes in functional networks and worry proneness in healthy subjects. Functional changes in the cerebellum-cortical region might affect the modulation of external stimuli processing. Together, our results provide new insight into the role of key networks, including the SN, DMN and cerebellum, in understanding the potential mechanism underlying the high worry dimension in healthy subjects.
Collapse
Affiliation(s)
- Youxue Zhang
- School of Education and Psychology, Chengdu Normal University, Chengdu, 611130, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
4
|
Saiz-Masvidal C, De la Peña-Arteaga V, Bertolín S, Martínez-Zalacaín I, Juaneda-Seguí A, Chavarría-Elizondo P, Subirà M, Menchón JM, Fullana MA, Soriano-Mas C. Uncovering the correlation between neurotransmitter-specific functional connectivity and multidimensional anxiety in a non-clinical cohort. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01879-9. [PMID: 39190041 DOI: 10.1007/s00406-024-01879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Research on anxiety faces challenges due to the wide range of symptoms, making it difficult to determine if different aspects of anxiety are linked to distinct neurobiological processes. Both alterations in functional brain connectivity (FC) and monoaminergic neurotransmitter systems are implicated as potential neural bases of anxiety. We aimed to investigate whole-brain FC involving monoaminergic nuclei and its association with anxiety dimensions in 178 non-clinical participants. Nine anxiety-related scales were used, encompassing trait and state anxiety scores, along with measures of cost-probability, hypervigilance, reward-punishment sensitivity, uncertainty, and trait worry. Resting-state functional magnetic resonance imaging data were acquired, focusing on seven brainstem regions representing serotonergic, dopaminergic, and noradrenergic nuclei, with their FC patterns voxel-wise correlated with the scales. All models underwent family-wise-error correction for multiple comparisons. We observed intriguing relationships: trait and state anxiety scores exhibited opposing correlations in FC between the dorsal raphe nucleus and the paracingulate gyrus. Additionally, we identified shared neural correlates, such as a negative correlation between the locus coeruleus and the frontal pole. This connection was significantly associated with scores on measures of probability, hypervigilance, reward sensitivity, and trait worry. These findings underscore the intricate interplay between anxiety dimensions and subcortico-cortical FC patterns, shedding light on the underlying neural mechanisms governing anxiety.
Collapse
Affiliation(s)
- C Saiz-Masvidal
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - V De la Peña-Arteaga
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau, Sant Pau - Campus Salut Barcelona, Barcelona, Spain
| | - S Bertolín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - I Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, Barcelona, 08907, Spain
| | - A Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - P Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - M Subirà
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - J M Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - M A Fullana
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Hospital Clinic, Barcelona, Spain.
| | - C Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Blithikioti C, Duek O, Gordon C, Krystal JH, Levy I, Harpaz-Rotem I, Schiller D, Perl O. Cerebellar Contributions to Traumatic Autobiographical Memory in People with Post-Traumatic Stress Disorder. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01731-9. [PMID: 39180693 DOI: 10.1007/s12311-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition characterized by recurrent re-experiencing of traumatic events. Despite increasing evidence suggesting that the cerebellum is involved in PTSD pathophysiology, it remains unclear whether this involvement is related to symptoms directly resulting from previous trauma exposure, such as involuntary re-experiencing of the traumatic events, or reflects a broader cerebellar engagement in negative affective states. In this study, we investigated the specific role of the cerebellum in PTSD by employing a script reactivation paradigm with personalized traumatic and sad autobiographical memories in 28 individuals diagnosed with chronic PTSD. Functional magnetic resonance imaging (fMRI) data were collected while participants listened to their own autobiographical narratives recounted by a third person. Activation in the right cerebellar lobule VI was uniquely associated with traumatic autobiographical recall and was parametrically modulated by the severity of re-experiencing symptoms. In contrast, cerebellar Crus II showed increased activation during both traumatic and sad autobiographical recall, suggesting a broader involvement in processing negative emotions. Our findings highlight the unique contribution of the right cerebellar lobule VI in the processing of traumatic autobiographical memories, potentially through its engagement in low-level representation of sensory and emotional aspects of traumatic events.
Collapse
Affiliation(s)
- Chrysanthi Blithikioti
- Department of Psychiatry, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Duek
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Daniela Schiller
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Perl
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Perez-Pouchoulen M, Holley AS, Reinl EL, VanRyzin JW, Mehrabani A, Dionisos C, Mirza M, McCarthy MM. Viral-mediated inflammation by Poly I:C induces the chemokine CCL5 in NK cells and its receptors CCR1 and CCR5 in microglia in the neonatal rat cerebellum. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:155-168. [PMID: 39175524 PMCID: PMC11338497 DOI: 10.1515/nipt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Objectives To study the effect of viral inflammation induced by Polyinosinic:polycytidylic acid (PIC) on the cerebellum during a critical period of development in rats. Methods Neonatal rat pups were treated with PIC on postnatal days (PN) 8 and 10 after which we quantified RNA using Nanostring, qRT-PCR and RNAscope and analyzed immune cells through flow cytometry and immunohistochemistry on PN11. Using the same paradigm, we also analyzed play juvenile behavior, anxiety-like behavior, motor balance using the balance beam and the rotarod assays as well as fine motor behavior using the sunflower seed opening test. Results We determined that male and female pups treated with PIC reacted with a significant increase in CCL5, a chemotactic cytokine that attracts T-cells, eosinophils and basophils to the site of inflammation, at PN11. PIC treatment also increased the expression of two receptors for CCL5, CCR1 and CCR5 in the cerebellar vermis in both males and females at PN11. In-situ hybridization (RNAscope®) for specific transcripts revealed that microglia express both CCL5 receptors under inflammatory and non-inflammatory conditions in both males and females. PIC treatment also increased the total number of CCL5+ cells in the developing cerebellum which were determined to be both natural killer cells and T-cells. There were modest but significant impacts of PIC treatment on large and fine motor skills and juvenile play behavior. Conclusions Our findings suggest an important role for CCL5 and other immune cells in mediating inflammation in the developing cerebellum that potentially impact the maturation of cerebellar neurons during a critical period of development.
Collapse
Affiliation(s)
| | - Amanda S. Holley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin L. Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amir Mehrabani
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christie Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammed Mirza
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Liu N, Sun H, Yang C, Li X, Gao Z, Gong Q, Zhang W, Lui S. The difference in volumetric alternations of the orbitofrontal-limbic-striatal system between major depressive disorder and anxiety disorders: A systematic review and voxel-based meta-analysis. J Affect Disord 2024; 350:65-77. [PMID: 38199394 DOI: 10.1016/j.jad.2024.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and anxiety disorders (ANX) are psychiatric disorders with high mutual comorbidity rates that might indicate some shared neurobiological pathways between them, but they retain diverse phenotypes that characterize themselves specifically. However, no consistent evidence exists for common and disorder-specific gray matter volume (GMV) alternations between them. METHODS A systematic review and meta-analysis on voxel-based morphometry studies of patients with MDD and ANX were performed. The effect of comorbidity was explicitly controlled during disorder-specific analysis and particularly investigated in patient with comorbidity. RESULTS A total of 45 studies with 54 datasets comprising 2196 patients and 2055 healthy participants met the inclusion criteria. Deficits in the orbitofrontal cortex, striatum, and limbic regions were found in MDD and ANX. The disorder-specific analyses showed decreased GMV in the bilateral anterior cingulate cortex, right striatum, hippocampus, and cerebellum in MDD, while decreased GMV in the left striatum, amygdala, insula, and increased cerebellar volume in ANX. A totally different GMV alternation pattern was shown involving bilateral temporal and parietal gyri and left fusiform gyrus in patients with comorbidity. LIMITATIONS Owing to the design of included studies, only partial patients in the comorbid group had a secondary comorbidity diagnosis. CONCLUSION Patients with MDD and ANX shared a structural disruption in the orbitofrontal-limbic-striatal system. The disorder-specific effects manifested their greatest severity in distinct lateralization and directionality of these changes that differentiate MDD from ANX. The comorbid group showed a totally different GMV alternation pattern, possibly suggesting another illness subtype that requires further investigation.
Collapse
Affiliation(s)
- Naici Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xing Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
8
|
Zheng A, Chen X, Xiang G, Li Q, Du X, Liu X, Xiao M, Chen H. Association Between Negative Affect and Perceived Mortality Threat During the COVID-19 Pandemic: The Role of Brain Activity and Connectivity. Neuroscience 2023; 535:63-74. [PMID: 37913860 DOI: 10.1016/j.neuroscience.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The prevalence of the novel coronavirus (COVID-19) has been considered a major threat to physical and mental health around the world, causing great pressure and mortality threat to most people. The current study aimed to investigate the neurological markers underlying the relationship between perceived mortality threat (PMT) and negative affect (NA). We examined whether the regional amplitude of low-frequency fluctuations (ALFF) and resting-state functional connectivity (RSFC) before the COVID-19 outbreak (October 2019 to December 2019, wave 1) were predictive for NA and PMT during the mid-term of the COVID-19 pandemic (February 22 to 28, 2020, wave 2) among 603 young adults (age range 17-22, 70.8% females). Results indicated that PMT was associated with spontaneous activity in several regions (e.g., inferior temporal gyrus, medial occipital gyrus, medial frontal gyrus, angular gyrus, and cerebellum) and their RSFC with the distributed regions of the default mode network and cognitive control network. Furthermore, longitudinal mediation models showed that ALFF in the cerebellum, medial occipital gyrus, medial frontal gyrus, and angular gyrus (wave 1) predicted PMT (wave 2) through NA (wave 2). These findings revealed functional neural markers of PMT and suggest candidate mechanisms for explaining the complex relationship between NA and mental/neural processing related to PMT in the circumstance of a major crisis.
Collapse
Affiliation(s)
- Anqi Zheng
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Ximei Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Guangcan Xiang
- Tian Jiabing College of Education, China Three Gorges University, Yichang 443002, China.
| | - Qingqing Li
- School of Psychology, Central China Normal University, China.
| | - Xiaoli Du
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Xinyuan Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Mingyue Xiao
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China; Research Center of Psychology and Social Development, Chongqing 400715, China.
| |
Collapse
|
9
|
Paitel ER, Nielson KA. Cerebellar EEG source localization reveals age-related compensatory activity moderated by genetic risk for Alzheimer's disease. Psychophysiology 2023; 60:e14395. [PMID: 37493042 PMCID: PMC10720653 DOI: 10.1111/psyp.14395] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The apolipoprotein-E (APOE) ε4 allele is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), but alone it is not sufficiently predictive. Because neuropathological changes associated with AD begin decades before cognitive symptoms, neuroimaging of healthy, cognitively intact ε4 carriers (ε4+) may enable early characterization of patterns associated with risk for future decline. Research in the cerebral cortex highlights a period of compensatory recruitment in elders and ε4+, which serves to maintain cognitive functioning. Yet, AD-related changes may occur even earlier in the cerebellum. Advances in electroencephalography (EEG) source localization now allow effective modeling of cerebellar activity. Importantly, healthy aging and AD are associated with declines in both cerebellar functions and executive functioning (EF). However, it is not known whether cerebellar activity can detect pre-symptomatic AD risk. Thus, the current study analyzed cerebellar EEG source localization during an EF-dependent stop-signal task (i.e., inhibitory control) in healthy, intact older adults (Mage = 80 years; 20 ε4+, 25 ε4-). Task performance was comparable between groups. Older age predicted greater activity in left crus II and lobule VIIb during the P300 window (i.e., performance evaluation), consistent with age-related compensation. Age*ε4 moderations specifically showed that compensatory patterns were evident only in ε4-, suggesting that cerebellar compensatory resources may already be depleted in healthy ε4+ elders. Thus, the posterolateral cerebellum is sensitive to AD-related neural deficits in healthy elders. Characterization of these patterns may be essential for the earliest possible detection of AD risk, which would enable critical early intervention prior to symptom onset.
Collapse
Affiliation(s)
| | - Kristy A. Nielson
- Department of Psychology, Marquette University
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin
| |
Collapse
|
10
|
da Silva Campelo M, Câmara Neto JF, de Souza ÁL, Ferreira MKA, Dos Santos HS, Gramosa NV, de Aguiar Soares S, Ricardo NMPS, de Menezes JESA, Ribeiro MENP. Clove volatile oil-loaded nanoemulsion reduces the anxious-like behavior in adult zebrafish. Daru 2023; 31:183-192. [PMID: 37639147 PMCID: PMC10624781 DOI: 10.1007/s40199-023-00473-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Álamo Lourenço de Souza
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratório de Produtos Naturais, Centro de Ciência e Tecnologia, Universidade Estadual do Ceará, Campus Itaperi, 60714-903, Fortaleza, CE, Brasil
| | - Hélcio Silva Dos Santos
- Laboratório de Produtos Naturais, Centro de Ciência e Tecnologia, Universidade Estadual do Ceará, Campus Itaperi, 60714-903, Fortaleza, CE, Brasil
- Centro de Ciência e Tecnologia - Curso de Química, Universidade Estadual Vale do Acaraú, 62010-295, Sobral, CE, Brasil
| | - Nilce Viana Gramosa
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Produtos Naturais, Centro de Ciência e Tecnologia, Universidade Estadual do Ceará, Campus Itaperi, 60714-903, Fortaleza, CE, Brasil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, CE, 60455-760, Fortaleza, Brasil.
| |
Collapse
|
11
|
Chen CH, Newman LN, Stark AP, Bond KE, Zhang D, Nardone S, Vanderburg CR, Nadaf NM, Yao Z, Mutume K, Flaquer I, Lowell BB, Macosko EZ, Regehr WG. A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain. Nat Neurosci 2023; 26:1929-1941. [PMID: 37919612 PMCID: PMC11348979 DOI: 10.1038/s41593-023-01462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.
Collapse
Affiliation(s)
- Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Leannah N Newman
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Amanda P Stark
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Katherine E Bond
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Dawei Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Stefano Nardone
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles R Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Naeem M Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhiyi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kefiloe Mutume
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|
13
|
Iosif CI, Bashir ZI, Apps R, Pickford J. Cerebellar Prediction and Feeding Behaviour. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1002-1019. [PMID: 36121552 PMCID: PMC10485105 DOI: 10.1007/s12311-022-01476-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.
Collapse
Affiliation(s)
- Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
14
|
Dong L, Liang HB, Du J, Wang Y, Zhou Q, Xin Z, Hu Y, Liu YS, Zhao R, Qiao Y, Zhou C, Liu JR, Du X. Microstructural Differences of the Cerebellum-Thalamus-Basal Ganglia-Limbic Cortex in Patients with Somatic Symptom Disorders: a Diffusion Kurtosis Imaging Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:840-851. [PMID: 35986875 DOI: 10.1007/s12311-022-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Somatic symp tom disorders (SSDs) are a group of psychiatric disorders characterized by persistent disproportionate concern and obsessive behaviors regarding physical conditions. Currently, SSDs lack effective treatments and their pathophysiology is unclear. In this paper, we aimed to examine microstructural abnormalities in the brains of patients with SSD using diffusion kurtosis imaging (DKI) and to investigate the correlation between these abnormalities and clinical indicators. Diffusion kurtosis images were acquired from 30 patients with SSD and 30 healthy controls (HCs). Whole-brain maps of multiple diffusion measures, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK), were calculated. To analyze differences between the two groups, nonparametric permutation testing with 10,000 randomized permutations and threshold-free cluster enhancement was used with family-wise error-corrected p values < 0.05 as the threshold for statistical significance. Then, the correlations between significant changes in these diffusion measures and clinical factors were examined. Compared to HCs, patients with SSD had significantly higher FA, MK, and RK and significantly lower MD and RD in the cerebellum, thalamus, basal ganglia, and limbic cortex. The FA in the left caudate and the pontine crossing tract were negatively correlated with disease duration; the MD and the RD in the genu of the corpus callosum were positively correlated with disease duration. Our findings highlight the role of the cerebellum-thalamus-basal ganglia-limbic cortex pathway, especially the cerebellum, in SSDs and enhance our understanding of the pathogenesis of SSDs.
Collapse
Affiliation(s)
- Liao Dong
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Huai-Bin Liang
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiaxin Du
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yingying Wang
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qichen Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Ziyue Xin
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yue Hu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Sheng Liu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rong Zhao
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuan Qiao
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chenglin Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Jian-Ren Liu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoxia Du
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
15
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
16
|
Chen Q, Xu Y, Christiaen E, Wu GR, De Witte S, Vanhove C, Saunders J, Peremans K, Baeken C. Structural connectome alterations in anxious dogs: a DTI-based study. Sci Rep 2023; 13:9946. [PMID: 37337053 DOI: 10.1038/s41598-023-37121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
Anxiety and fear are dysfunctional behaviors commonly observed in domesticated dogs. Although dogs and humans share psychopathological similarities, little is known about how dysfunctional fear behaviors are represented in brain networks in dogs diagnosed with anxiety disorders. A combination of diffusion tensor imaging (DTI) and graph theory was used to investigate the underlying structural connections of dysfunctional anxiety in anxious dogs and compared with healthy dogs with normal behavior. The degree of anxiety was assessed using the Canine Behavioral Assessment & Research Questionnaire (C-BARQ), a widely used, validated questionnaire for abnormal behaviors in dogs. Anxious dogs showed significantly decreased clustering coefficient ([Formula: see text]), decreased global efficiency ([Formula: see text]), and increased small-worldness (σ) when compared with healthy dogs. The nodal parameters that differed between the anxious dogs and healthy dogs were mainly located in the posterior part of the brain, including the occipital lobe, posterior cingulate gyrus, hippocampus, mesencephalon, and cerebellum. Furthermore, the nodal degree ([Formula: see text]) of the left cerebellum was significantly negatively correlated with "excitability" in the C-BARQ of anxious dogs. These findings could contribute to the understanding of a disrupted brain structural connectome underlying the pathological mechanisms of anxiety-related disorders in dogs.
Collapse
Affiliation(s)
- Qinyuan Chen
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Yangfeng Xu
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emma Christiaen
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Sara De Witte
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Neurology and Bru-BRAIN, University Hospital (UZ Brussel), Brussels, Belgium
- Neuroprotection & Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Christian Vanhove
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Jimmy Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
17
|
Guo M, Zhong Y, Xu J, Zhang G, Xu A, Kong J, Wang Q, Hang Y, Xie Y, Wu Z, Lang N, Tang Y, Zhang N, Wang C. Altered brain function in patients with acrophobia: A voxel-wise degree centrality analysis. J Psychiatr Res 2023; 164:59-65. [PMID: 37315355 DOI: 10.1016/j.jpsychires.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
AIM To explore the local spontaneous neural activity and whole-brain functional connectivity patterns in the resting brain of acrophobia patients. METHODS 50 patients with acrophobia and 47 healthy controls were selected for this study. All participants underwent resting-state MRI scans after enrollment. The imaging data were then analyzed using a voxel-based degree centrality (DC) method, and seed-based functional connectivity (FC) correlation analysis was used to explore the correlation between abnormal functional connectivity and clinical symptom scales in acrophobia. The severity of symptoms was evaluated using self-report and behavioral measures. RESULTS Compared to controls, acrophobia patients showed higher DC in the right cuneus and left middle occipital gyrus and significantly lower DC in the right cerebellum and left orbitofrontal cortex (p < 0.01, GRF corrected). Additionally, there were negative correlations between the acrophobia questionnaire avoidance (AQ- Avoidance) scores and right cerebellum-left perirhinal cortex FC (r = -0.317, p = 0.025) and between scores of the 7-item generalized anxiety disorder scale and left middle occipital gyrus-right cuneus FC (r = -0.379, p = 0.007). In the acrophobia group, there was a positive correlation between behavioral avoidance scale and right cerebellum-right cuneus FC (r = 0.377, p = 0.007). CONCLUSIONS The findings indicated that there are local abnormalities in spontaneous neural activity and functional connectivity in the visual cortex, cerebellum, and orbitofrontal cortex in patients with acrophobia.
Collapse
Affiliation(s)
- Meilin Guo
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Jingren Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Guojia Zhang
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Aoran Xu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Jingya Kong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Qiuyu Wang
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Yaming Hang
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Ya Xie
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhou Wu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Nan Lang
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China
| | - Yibin Tang
- College of Internet of Things Engineering, Hohai University, Changzhou, Jiangsu, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210029, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
18
|
Zanin JP, Pandya MA, Espinoza D, Friedman WJ, Shiflett MW. Excess cerebellar granule neurons induced by the absence of p75NTR during development elicit social behavior deficits in mice. Front Mol Neurosci 2023; 16:1147597. [PMID: 37305555 PMCID: PMC10249730 DOI: 10.3389/fnmol.2023.1147597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Recently, the cerebellum has been implicated with non-motor functions, including cognitive and emotional behavior. Anatomical and functional studies demonstrate bidirectional cerebellar connections with brain regions involved in social cognition. Cerebellar developmental abnormalities and injury are often associated with several psychiatric and mental disorders including autism spectrum disorders and anxiety. The cerebellar granule neurons (CGN) are essential for cerebellar function since they provide sensorimotor, proprioceptive, and contextual information to Purkinje cells to modify behavior in different contexts. Therefore, alterations to the CGN population are likely to compromise cerebellar processing and function. Previously we demonstrated that the p75 neurotrophin receptor (p75NTR) was fundamental for the development of the CGN. In the absence of p75NTR, we observed increased proliferation of the granule cell precursors (GCPs), followed by increased GCP migration toward the internal granule layer. The excess granule cells were incorporated into the cerebellar network, inducing alterations in cerebellar circuit processing. Methods In the present study, we used two conditional mouse lines to specifically delete the expression of p75NTR in CGN. In both mouse lines, deletion of the target gene was under the control of the transcription factor Atoh-1 promotor, however, one of the lines was also tamoxifen-inducible. Results We observed a loss of p75NTR expression from the GCPs in all cerebellar lobes. Compared to control animals, both mouse lines exhibited a reduced preference for social interactions when presented with a choice to interact with a mouse or an object. Open-field locomotor behavior and operant reward learning were unaffected in both lines. Lack of preference for social novelty and increased anxiety-related behavior was present in mice with constitutive p75NTR deletion; however, these effects were not present in the tamoxifen-inducible mice with p75NTR deletion that more specifically targeted the GCPs. Discussion Our findings demonstrate that alterations to CGN development by loss of p75NTR alter social behavior, and contribute to the increasing evidence that the cerebellum plays a role in non-motor-related behaviors, including social behavior.
Collapse
Affiliation(s)
- Juan Pablo Zanin
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Diego Espinoza
- Department of Psychology, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Michael W. Shiflett
- Department of Psychology, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
19
|
Abd-Elmawla MA, Essam RM, Ahmed KA, Abdelmonem M. Implication of Wnt/GSK-3β/β-Catenin Signaling in the Pathogenesis of Mood Disturbances Associated with Hyperthyroidism in Rats: Potential Therapeutic Effect of Naringin. ACS Chem Neurosci 2023. [PMID: 37196197 DOI: 10.1021/acschemneuro.3c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Patients with hyperthyroidism are commonly diagnosed with mood disorders. Naringin, (4',5,7-trihydrocyflavanone-7-O-rhamnoglucoside), a natural bioflavonoid, has many neurobehavioral activities including anxiolytic and antidepressant properties. The role of Wingless (Wnt) signaling in psychiatric disorders is considered substantial but debatable. Recently, regulation of Wnt signaling by naringin has been reported in different disorders. Therefore, the present study aimed to investigate the possible role of Wnt/GSK-3β/β-catenin signaling in hyperthyroidism-induced mood disturbances and explore the therapeutic effects of naringin. Hyperthyroidism was induced in rats by intraperitoneal injection of 0.3 mg/kg levothyroxine for 2 weeks. Naringin was orally administered to rats with hyperthyroidism at a dose of 50 or 100 mg/kg for 2 weeks. Hyperthyroidism induced mood alterations as revealed by behavioral tests and histopathological changes including marked necrosis and vacuolation of neurons in the hippocampus and cerebellum. Intriguingly, hyperthyroidism activated Wnt/p-GSK-3β/β-catenin/DICER1/miR-124 signaling pathway in the hippocampus along with an elevation in serotonin, dopamine, and noradrenaline contents and a reduction in brain-derived neurotrophic factor (BDNF) content. Additionally, hyperthyroidism induced upregulation of cyclin D-1 expression, malondialdehyde (MDA) elevation, and glutathione (GSH) reduction. Naringin treatment alleviated behavioral and histopathological alterations and reversed hyperthyroidism-induced biochemical changes. In conclusion, this study revealed, for the first time, that hyperthyroidism could affect mental status by stimulating Wnt/p-GSK-3β/β-catenin signaling in the hippocampus. The observed beneficial effects of naringin could be attributed to increasing hippocampal BDNF, controlling the expression of Wnt/p-GSK-3β/β-catenin signaling as well as its antioxidant properties.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
- Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza 3296121, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
20
|
Simona K, Veronika M, Zahinoor I, Martin V. Neuropsychiatric symptoms in spinocerebellar ataxias and Friedreich ataxia. Neurosci Biobehav Rev 2023; 150:105205. [PMID: 37137435 DOI: 10.1016/j.neubiorev.2023.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Apart from its role in motor coordination, the importance of the cerebellum in cognitive and affective processes has been recognized in the past few decades. Spinocerebellar ataxias (SCA) and Friedreich ataxia (FRDA) are rare neurodegenerative diseases of the cerebellum presenting mainly with a progressive loss of gait and limb coordination, dysarthria, and other motor disturbances, but also a range of cognitive and neuropsychiatric symptoms. This narrative review summarizes the current knowledge on neuropsychiatric impairment in SCA and FRDA. We discuss the prevalence, clinical features and treatment approaches in the most commonly reported domains of depression, anxiety, apathy, agitation and impulse dyscontrol, and psychosis. Since these symptoms have a considerable impact on patients' quality of life, we argue that further research is mandated to improve the detection and treatment options of neuropsychiatric co-morbidities in ataxia patients.
Collapse
Affiliation(s)
- Karamazovova Simona
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| | - Matuskova Veronika
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic.
| | - Ismail Zahinoor
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Cumming School of Medicine; Hotchkiss Brain Institute and O'Brien Institute of Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Vyhnalek Martin
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
21
|
Doubliez A, Nio E, Senovilla-Sanz F, Spatharioti V, Apps R, Timmann D, Lawrenson CL. The cerebellum and fear extinction: evidence from rodent and human studies. Front Syst Neurosci 2023; 17:1166166. [PMID: 37152612 PMCID: PMC10160380 DOI: 10.3389/fnsys.2023.1166166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
The role of the cerebellum in emotional control has gained increasing interest, with studies showing it is involved in fear learning and memory in both humans and rodents. This review will focus on the contributions of the cerebellum to the extinction of learned fear responses. Extinction of fearful memories is critical for adaptive behaviour, and is clinically relevant to anxiety disorders such as post-traumatic stress disorder, in which deficits in extinction processes are thought to occur. We present evidence that supports cerebellar involvement in fear extinction, from rodent studies that investigate molecular mechanisms and functional connectivity with other brain regions of the known fear extinction network, to fMRI studies in humans. This evidence is considered in relation to the theoretical framework that the cerebellum is involved in the formation and updating of internal models of the inner and outer world by detecting errors between predicted and actual outcomes. In the case of fear conditioning, these internal models are thought to predict the occurrence of an aversive unconditioned stimulus (US), and when the aversive US is unexpectedly omitted during extinction learning the cerebellum uses prediction errors to update the internal model. Differences between human and rodent studies are highlighted to help inform future work.
Collapse
Affiliation(s)
- Alice Doubliez
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Enzo Nio
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Fernando Senovilla-Sanz
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Vasiliki Spatharioti
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Charlotte L. Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Han Y, Yan H, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Can the aberrant occipital-cerebellum network be a predictor of treatment in panic disorder? J Affect Disord 2023; 331:207-216. [PMID: 36965626 DOI: 10.1016/j.jad.2023.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND This study aimed to detect altered brain activation pattern of patients with panic disorder (PD) and its changes after treatment. The possibilities of diagnosis and prediction of treatment response based on the aberrant brain activity were tested. METHODS Fifty-four PD patients and 54 healthy controls (HCs) were recruited. Clinical assessment and resting-state functional magnetic resonance imaging scans were conducted. Then, patients received a 4-week paroxetine treatment and underwent a second clinical assessment and scan. The fractional amplitude of low-frequency fluctuations (fALFF) was measured. Support vector machine (SVM) and support vector regression (SVR) analyses were conducted. RESULTS Lower fALFF values in the right calcarine/lingual gyrus and left lingual gyrus/cerebellum IV/V, whereas higher fALFF values in right cerebellum Crus II were observed in patients related to HCs at baseline. After treatment, patients with PD exhibited significant clinical improvement, and the abnormal lower fALFF values in the right lingual gyrus exhibited a great increase. The abnormal fALFF at pretreatment can distinguish patients from HCs with 80 % accuracy and predict treatment response which was reflected in the significant correlation between the predicted and actual treatment responses. LIMITATIONS The impacts of ethnic, cultural, and other regional differences on PD were not considered for it was a single-center study. CONCLUSIONS The occipital-cerebellum network played an important role in the pathophysiology of PD and should be a part of the fear network. The abnormal fALFF values in patients with PD at pretreatment could serve as biomarkers of PD and predict the early treatment response of paroxetine.
Collapse
Affiliation(s)
- Yiding Han
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
23
|
Allen MT. Weaker situations: Uncertainty reveals individual differences in learning: Implications for PTSD. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01077-5. [PMID: 36944865 DOI: 10.3758/s13415-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Few individuals who experience trauma develop posttraumatic stress disorder (PTSD). Therefore, the identification of individual differences that signal increased risk for PTSD is important. Lissek et al. (2006) proposed using a weak rather than a strong situation to identify individual differences. A weak situation involves less-salient cues as well as some degree of uncertainty, which reveal individual differences. A strong situation involves salient cues with little uncertainty, which produce consistently strong responses. Results from fear conditioning studies that support this hypothesis are discussed briefly. This review focuses on recent findings from three learning tasks: classical eyeblink conditioning, avoidance learning, and a computer-based task. These tasks are interpreted as weaker learning situations in that they involve some degree of uncertainty. Individual differences in learning based on behavioral inhibition, which is a risk factor for PTSD, are explored. Specifically, behaviorally inhibited individuals and rodents (i.e., Wistar Kyoto rats), as well as individuals expressing PTSD symptoms, exhibit enhanced eyeblink conditioning. Behaviorally inhibited rodents also demonstrate enhanced avoidance responding (i.e., lever pressing). Both enhanced eyeblink conditioning and avoidance are most evident with schedules of partial reinforcement. Behaviorally inhibited individuals also performed better on reward and punishment trials than noninhibited controls in a probabilistic category learning task. Overall, the use of weaker situations with uncertain relationships may be more ecologically valid than learning tasks in which the aversive event occurs on every trial and may provide more sensitivity for identifying individual differences in learning for those at risk for, or expressing, PTSD symptoms.
Collapse
Affiliation(s)
- M Todd Allen
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA.
| |
Collapse
|
24
|
Tichanek F. Psychiatric-Like Impairments in Mouse Models of Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2023; 22:14-25. [PMID: 35000108 DOI: 10.1007/s12311-022-01367-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Many patients with spinocerebellar ataxia (SCA) suffer from diverse neuropsychiatric issues, including memory impairments, apathy, depression, or anxiety. These neuropsychiatric aspects contribute per se to the reduced quality of life and worse prognosis. However, the extent to which SCA-related neuropathology directly contributes to these issues remains largely unclear. Behavioral profiling of various SCA mouse models can bring new insight into this question. This paper aims to synthesize recent findings from behavioral studies of SCA patients and mouse models. The role of SCA neuropathology for shaping psychiatric-like impairments may be exemplified in mouse models of SCA1. These mice evince robust cognitive impairments which are shaped by both the cerebellar as well as out-of-cerebellar pathology. Although emotional-related alternations are also present, they seem to be less robust and more affected by the specific distribution and character of the neuropathology. For example, cerebellar-specific pathology seems to provoke behavioral disinhibition, leading to seemingly decreased anxiety, whereas complex SCA1 neuropathology induces anxiety-like phenotype. In SCA1 mice with complex neuropathology, some of the psychiatric-like impairments are present even before marked cerebellar degeneration and ataxia and correlate with hippocampal atrophy. Similarly, complete or partial deletion of the implicated gene (Atxn1) leads to cognitive dysfunction and anxiety-like behavior, respectively, without apparent ataxia and cerebellar degeneration. Altogether, these findings collectively suggest that the neuropsychiatric issues have a biological basis partially independent of the cerebellum. As some neuropsychiatric issues may stem from weakening the function of the implicated gene, therapeutic reduction of its expression by molecular approaches may not necessarily mitigate the neuropsychiatric issues.
Collapse
Affiliation(s)
- Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
25
|
Myers S, McCracken K, Buck DJ, Curtis JT, Davis RL. Anti-inflammatory effects of β-FNA are sex-dependent in a pre-clinical model of LPS-induced inflammation. J Inflamm (Lond) 2023; 20:4. [PMID: 36698151 PMCID: PMC9878921 DOI: 10.1186/s12950-023-00328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Inflammation is present in neurological and peripheral disorders. Thus, targeting inflammation has emerged as a viable option for treating these disorders. Previous work indicated pretreatment with beta-funaltrexamine (β-FNA), a selective mu-opioid receptor (MOR) antagonist, inhibited inflammatory signaling in vitro in human astroglial cells, as well as lipopolysaccharide (LPS)-induced neuroinflammation and sickness-like-behavior in mice. This study explores the protective effects of β-FNA when treatment occurs 10 h after LPS administration and is the first-ever investigation of the sex-dependent effects of β-FNA on LPS-induced inflammation in the brain and peripheral tissues, including the intestines. RESULTS Male and female C57BL/6J mice were administered LPS followed by treatment with β-FNA-immediately or 10 h post-LPS. Sickness- and anxiety-like behavior were assessed using an open-field test and an elevated-plus-maze test, followed by the collection of whole brain, hippocampus, prefrontal cortex, cerebellum/brain stem, plasma, spleen, liver, large intestine (colon), proximal small intestine, and distal small intestine. Levels of inflammatory chemokines/cytokines (interferon γ-induced-protein, IP-10 (CXCL10); monocyte-chemotactic-protein 1, MCP-1 (CCL2); interleukin-6, IL-6; interleukin-1β, IL-1β; and tumor necrosis factor-alpha, TNF-α) in tissues were measured using an enzyme-linked immunosorbent assay. Western blot analysis was used to assess nuclear factor-kappa B (NF-κB) expression. There were sex-dependent differences in LPS-induced inflammation across brain regions and peripheral tissues. Overall, LPS-induced CXCL10, CCL2, TNF-α, and NF-κB were most effectively downregulated by β-FNA; and β-FNA effects differed across brain regions, peripheral tissues, timing of the dose, and in some instances, in a sex-dependent manner. β-FNA reduced LPS-induced anxiety-like behavior most effectively in female mice. CONCLUSION These findings provide novel insights into the sex-dependent anti-inflammatory effects of β-FNA and advance this agent as a potential therapeutic option for reducing both neuroinflammation an intestinal inflammation.
Collapse
Affiliation(s)
- Stephanie Myers
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Kelly McCracken
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Daniel J. Buck
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - J. Thomas Curtis
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Randall L. Davis
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| |
Collapse
|
26
|
Kim B, Niu X, Zhang F. Functional connectivity strength and topology differences in social phobia adolescents with and without ADHD comorbidity. Neuropsychologia 2023; 178:108418. [PMID: 36403658 DOI: 10.1016/j.neuropsychologia.2022.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
Social phobia (SP) is associated with changes in functional connectivity strength and topology. However, reported changes have been heterogeneous due to small sample sizes, inconsistent methodologies, and comorbidities, such as attention-deficit/hyperactivity disorder (ADHD), which has a high comorbidity rate with SP. Furthermore, there are few studies looking at SP in an adolescent population, a critical period for the development of the social brain. This project focuses on functional connectivity strength and topological differences in social phobia patients with and without ADHD comorbidity. We examined resting-state functional MRI images from 158 subjects, including 36 SP participants without ADHD comorbidity, 60 SP participants with ADHD comorbidity, and 62 healthy controls, with an overall average age of 14.16. We used a data-driven approach to examine impaired functional connectivity in a whole-brain analysis and higher-order topological differences in functional brain networks. We identified changes in the cerebellum and default mode network in social phobia patients as a whole, with the presence of ADHD comorbidity affecting various subsystems of the default mode network. Social phobia functional connectivity networks resembled random graphs, and local connectivity patterns in the superior occipital gyrus were different due to ADHD comorbidity. These alterations may indicate impairments in self-related processing, imagery, mentalizing, and predictive processes. We then used these changes in a linear support vector machine to distinguish between each pair of groups and achieved prediction accuracy significantly above chance rates. Our study extends prior research by showing that functional connectivity changes exist at adolescence, which are affected by ADHD comorbidity. As such, these results offer a new perspective in examining neurobiological changes in SP patients.
Collapse
Affiliation(s)
- Brian Kim
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA.
| | - Xin Niu
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Chin PW, Augustine GJ. The cerebellum and anxiety. Front Cell Neurosci 2023; 17:1130505. [PMID: 36909285 PMCID: PMC9992220 DOI: 10.3389/fncel.2023.1130505] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Although the cerebellum is traditionally known for its role in motor functions, recent evidence points toward the additional involvement of the cerebellum in an array of non-motor functions. One such non-motor function is anxiety behavior: a series of recent studies now implicate the cerebellum in anxiety. Here, we review evidence regarding the possible role of the cerebellum in anxiety-ranging from clinical studies to experimental manipulation of neural activity-that collectively points toward a role for the cerebellum, and possibly a specific topographical locus within the cerebellum, as one of the orchestrators of anxiety responses.
Collapse
Affiliation(s)
- Pei Wern Chin
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Wang Y, Xie C, Xu Y, Zhang Y, Zhu C, Zhou K. Cerebellar irradiation does not cause hyperactivity, fear, and anxiety-related disorders in the juvenile rat brain. Eur Radiol Exp 2022; 6:57. [PMCID: PMC9663786 DOI: 10.1186/s41747-022-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
The cerebellum is involved in hyperactivity, fear, and anxiety disorders that could be induced by whole-brain irradiation (WBI). However, whether cerebellar irradiation alone (CIA) could induce these disorders is unknown. We investigated the effect of CIA in an animal model.
Methods
Eleven-day-old rat pups underwent a single 3-Gy dose of either WBI (n = 28) or CIA (n = 20), while 34 rat pups were sham-irradiated (controls). Cell death was evaluated in the subgranular zone of the hippocampus by counting pyknotic cells after haematoxylin/eosin staining at 6 h after irradiation for 10, 8, and 9 pups, respectively. Behavioural changes were evaluated via open-field test at 6 weeks for 18, 12, and 25 pups, respectively. Unpaired two-tailed t-test and one-way and two-way repeated ANOVA were used.
Results
Massive cell death in cerebellar external granular layer was detected at 6 h after CIA (1,419 ± 211 mm, mean ± S.E.M. versus controls (68 ± 12 mm) (p < 0.001)), while no significant difference between CIA (1,419 ± 211 mm) versus WBI (1,433 ± 107 mm) (p = 0.955) was found. At open-field behavioural test, running distance, activity, wall distance, middle zone visit times, and duration were higher for WBI versus controls (p < 0.010), but no difference between CIA and controls was found (p > 0.05).
Conclusions
Although the cerebellum is involved in hyperactivity, fear, and anxiety disorders, CIA did not induce these disorders, indicating that WBI-induced cerebellar injury does not directly cause these behavioural abnormalities after WBI. Thus, targeting the cerebellum alone may not be enough to rescue or reduce these behavioural abnormalities after WBI.
Collapse
|
29
|
Hilber P. The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:791-800. [PMID: 35414040 DOI: 10.1007/s12311-022-01400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Clinical data and animal studies confirmed that the cerebellum and the vestibular system are involved in emotions. Nowadays, no real consensus has really emerged to explain the clinical symptoms in humans and behavioral deficits in the animal models. We envisage here that the cerebellum and the vestibular system play complementary roles in emotional reactivity. The cerebellum integrates a large variety of exteroceptive and proprioceptive information necessary to elaborate and to update the internal model: in emotion, as in motor processes, it helps our body and self to adapt to the environment, and to anticipate any changes in such environment in order to produce a time-adapted response. The vestibular system provides relevant environmental stimuli (i.e., gravity, self-position, and movement) and is involved in self-perception. Consequently, cerebellar or vestibular disorders could generate « internal fake news» (due to lack or false sensory information and/or integration) that could, in turn, generate potential internal model deficiencies. In this case, the alterations provoke false anticipation of motor command and external sensory feedback, associated with unsuited behaviors. As a result, the individual becomes progressively unable to cope with the environmental solicitation. We postulate that chronically unsuited, and potentially inefficient, behavioral and visceral responses to environmental solicitations lead to stressful situations. Furthermore, this inability to adapt to the context of the situation generates chronic anxiety which could precede depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- UNIROUEN, INSERM U1245, Cancer and Brain Genomics, Normandie University, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
| |
Collapse
|
30
|
Beeraka NM, Nikolenko VN, Khaidarovich ZF, Valikovna OM, Aliagayevna RN, Arturovna ZL, Alexandrovich KA, Mikhaleva LM, Sinelnikov MY. Recent Investigations on the Functional Role of Cerebellar Neural Networks in Motor Functions & Nonmotor Functions -Neurodegeneration. Curr Neuropharmacol 2022; 20:1865-1878. [PMID: 35272590 PMCID: PMC9886798 DOI: 10.2174/1570159x20666220310121441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cerebellum is a well-established primary brain center in charge of controlling sensorimotor functions and non-motor functions. Recent reports depicted the significance of cerebellum in higher-order cognitive functions, including emotion-processing, language, reward-related behavior, working memory, and social behavior. As it can influence diverse behavioral patterns, any defects in cerebellar functions could invoke neuropsychiatric diseases as indicated by the incidence of alexithymia and induce alterations in emotional and behavioral patterns. Furthermore, its defects can trigger motor diseases, such as ataxia and Parkinson's disease (PD). In this review, we have extensively discussed the role of cerebellum in motor and non-motor functions and how the cerebellum malfunctions in relation to the neural circuit wiring as it could impact brain function and behavioral outcomes in patients with neuropsychiatric diseases. Relevant data regarding cerebellar non-motor functions have been vividly described, along with anatomy and physiology of these functions. In addition to the defects in basal ganglia, the lack of activity in motor related regions of the cerebellum could be associated with the severity of motor symptoms. All together, this review delineates the importance of cerebellar involvement in patients with PD and unravels a crucial link for various clinical aspects of PD with specific cerebellar sub-regions.
Collapse
Affiliation(s)
| | - Vladimir N. Nikolenko
- Address correspondence to these authors at the Department of Human Anatomy,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; E-mail:
| | | | | | | | | | | | | | - Mikhail Y. Sinelnikov
- Address correspondence to these authors at the Department of Human Anatomy,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; E-mail:
| |
Collapse
|
31
|
Hua JC, Xu XM, Xu ZG, Xue Y, Xu JJ, Hu JH, Wu Y, Chen YC. Abnormal cerebellar network and effective connectivity in sudden and long-term sensorineural hearing loss. Front Aging Neurosci 2022; 14:964349. [PMID: 36034151 PMCID: PMC9403534 DOI: 10.3389/fnagi.2022.964349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a common otology emergency and some SSNHL will develop into a long-term hearing loss (LSNHL). However, whether SSNHL and LSNHL have similar psychiatric patterns remains unknown, as well as the neural substrates. Increasing evidence has proved that the cerebellar network plays a vital role in hearing, cognition processing, and emotion control. Thus, we recruited 20 right SSNHL (RSSNHL), 20 right LSNHL (RLSNHL), and 24 well-matched healthy controls to explore the cerebellar patterns among the three groups. Every participant underwent pure tone audiometry tests, neuropsychological evaluations, and MRI scanning. Independent component analysis (ICA) was carried out on the MRI data and the cerebellar network was extracted. Granger causality analysis (GCA) was conducted using the significant cerebellar region as a seed. Pearson’s correlation analysis was computed between imaging characteristics and clinical features. ICA found the effect of group on right cerebellum lobule V for the cerebellar network. Then, we found decreased outflow from right cerebellum lobule V to right middle orbitofrontal cortex, inferior frontal gyrus, anterior cingulate cortex, superior temporal gyrus, and dorsal lateral prefrontal cortex in RSSNHL group in GCA analysis. No significance was found in RLSNHL subjects. Additionally, the RSSNHL group showed increased effective connectivity from the right middle frontal gyrus (MFG) and the RLSNHL group showed increased effective connectivity from the right insula and temporal pole to the right cerebellum lobule V. Moreover, connections between right cerebellum lobule V and mean time series of the cerebellar network was negatively correlated with anxiety score in RSSNHL and negatively correlated with depression scores in RLSNHL. Effective connectivity from right MFG to right cerebellum lobule V could predict anxiety status in RSSNHL subjects. Our results may prove potential imaging biomarkers and treatment targets for hearing loss in future work.
Collapse
Affiliation(s)
- Jin-Chao Hua
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiao-Min Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen-Gui Xu
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Hua Hu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen Yuanqing Wu
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen Yuanqing Wu
| |
Collapse
|
32
|
Attentional bias to threat and gray matter volume morphology in high anxious individuals. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:600-609. [PMID: 34755317 DOI: 10.3758/s13415-021-00968-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
In a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted magnetic resonance imaging scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the middle frontal gyrus and superior frontal gyrus. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the inferior frontal gyrus, insula, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct subregions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat.
Collapse
|
33
|
Park SE, Kim YH, Yang JC, Jeong GW. Comparative Functional Connectivity of Core Brain Regions between Implicit and Explicit Memory Tasks Underlying Negative Emotion in General Anxiety Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:279-291. [PMID: 35466099 PMCID: PMC9048018 DOI: 10.9758/cpn.2022.20.2.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/24/2022]
Abstract
Objective To investigate not only differential patterns of functional connectivity of core brain regions between implicit and explicit verbal memory tasks underlying negatively evoked emotional condition, but also correlations of functional connectivity (FC) strength with clinical symptom severity in patients with generalized anxiety disorder (GAD). Methods Thirteen patients with GAD and 13 healthy controls underwent functional magnetic resonance imaging for memory tasks with negative emotion words. Results Clinical symptom and its severities of GAD were potentially associated with abnormalities of task-based FC with core brain regions and distinct FC patterns between implicit vs. explicit memory processing in GAD were potentially well discriminated. Outstanding FC in implicit memory task includes positive connections of precentral gyus (PrG) to inferior frontal gyrus and inferior parietal gyrus (IPG), respectively, in encoding period; a positive connection of amygdala (Amg) to globus pallidus as well as a negative connection of Amg to cerebellum in retrieval period. Meanwhile, distinct FC in explicit memory included a positive connection of PrG to inferior temporal gyrus (ITG) in encoding period; a positive connection of the anterior cingulate gyrus to superior frontal gyrus in retrieval period. Especially, there were positive correlation between GAD-7 scores and FC of PrG-IPG (r2 = 0.324, p = 0.042) in implicit memory encoding, and FC of PrG-ITG (r2 = 0.378, p = 0.025) in explicit memory encoding. Conclusion This study clarified differential patterns of brain activation and relevant FC between implicit and explicit verbal memory tasks underlying negative emotional feelings in GAD. These findings will be helpful for an understanding of distinct brain functional mechanisms associated with clinical symptom severities in GAD.
Collapse
Affiliation(s)
- Shin-Eui Park
- Advanced Institute of Aging Science, Chonnam National University, Gwangju, Korea
| | - Yun-Hyeon Kim
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Gwang-Woo Jeong
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
34
|
Hu D, Liu J, Liu G, Hu S, Li Z, Wei Y, Zhang N, Wu R, Peng Y. Altered brain activity and functional networks in school-age boys with severe haemophilia A: A resting-state functional magnetic resonance imaging study. Haemophilia 2022; 28:578-587. [PMID: 35505587 DOI: 10.1111/hae.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Microstructural alterations of brain structure in haemophilic boys were found in our previous study. AIM We investigated alterations of brain function in school-age boys with severe haemophilia A (HA) with resting-state functional magnetic resonance imaging (rs-fMRI). METHODS We obtained rs-fMRI scans from 24 boys with HA and 25 demographically matched healthy children. Spontaneous brain activity parameters were calculated. Graph theoretical analyses on rs-fMRI data at the global and regional levels were performed. Two-sample t tests were used to analyze differences, and correlation analyses identified relationships between altered neural properties and psychological characteristics. RESULTS Children with severe HA showed small-worldness organization but with an increased efficiency and compactness in functional segregation. The whole brain showed an overtight connection pattern. At the regional level, significantly increased nodal efficiency in the salience network (SN), default mode network (DMN) and executive control network was found. Social Anxiety Scale for Children (SASC) scores were positively correlated with these alterations. Spontaneous brain activity alterations in regions including the cerebellum, frontal gyrus (orbital part), temporal gyrus and thalamus were observed; some of these regions have been closely related to social anxiety and family or social support. CONCLUSION Our study is the first to evaluate the neurological functional changes in school-age boys with severe HA. Disruptions in topographic characteristics and abnormal activity were closely related to social conditions. These data could help us to understand early neurological alterations in haemophilic children, improve the traditional view of family support and strengthen normal school life at an early stage.
Collapse
Affiliation(s)
- Di Hu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Department of Radiology, Beijing, China
| | - Jingran Liu
- Beijing Children's Hospital, National Center for Children's Health, Neurological Center, Capital Medical University, Beijing, China
| | - Guoqing Liu
- Beijing Children's Hospital, National Center for Children's Health, Hematology Center, Capital Medical University, Beijing, China
| | - Shasha Hu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Department of Radiology, Beijing, China
| | - Zekun Li
- Beijing Children's Hospital, National Center for Children's Health, Hematology Center, Capital Medical University, Beijing, China
| | - Yunyun Wei
- Beijing Children's Hospital, National Center for Children's Health, Hematology Center, Capital Medical University, Beijing, China
| | - Ningning Zhang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Department of Radiology, Beijing, China
| | - Runhui Wu
- Beijing Children's Hospital, National Center for Children's Health, Neurological Center, Capital Medical University, Beijing, China
| | - Yun Peng
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Department of Radiology, Beijing, China
| |
Collapse
|
35
|
Wang L, Chen J, Hu Y, Liao A, Zheng W, Wang X, Lan J, Shen J, Wang S, Yang F, Wang Y, Li Y, Chen D. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl Psychiatry 2022; 12:114. [PMID: 35318322 PMCID: PMC8941112 DOI: 10.1038/s41398-022-01875-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease featuring social interaction deficits and repetitive/stereotyped behaviours; the prevalence of this disorder has continuously increased. Progranulin (PGRN) is a neurotrophic factor that promotes neuronal survival and differentiation. However, there have not been sufficient studies investigating its effect in animal models of autism. This study investigated the effects of PGRN on autistic phenotypes in rats treated with valproic acid (VPA) and assessed the underlying molecular mechanisms. PGRN was significantly downregulated in the cerebellum at postnatal day 14 (PND14) and PND35 in VPA-exposed rats, which simultaneously showed defective social preference, increased repetitive behaviours, and uncoordinated movements. When human recombinant PGRN (r-PGRN) was injected into the cerebellum of newborn ASD model rats (PND10 and PND17), some of the behavioural defects were alleviated. r-PGRN supplementation also reduced cerebellar neuronal apoptosis and rescued synapse formation in ASD rats. Mechanistically, we confirmed that PGRN protects neurodevelopment via the PI3K/Akt/GSK-3β pathway in the cerebellum of a rat ASD model. Moreover, we found that prosaposin (PSAP) promoted the internalisation and neurotrophic activity of PGRN. These results experimentally demonstrate the therapeutic effects of PGRN on a rat model of ASD for the first time and provide a novel therapeutic strategy for autism.
Collapse
Affiliation(s)
- Lili Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhui Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Hu
- Qujiang No. 2 Middle School, Xi'an, 710000, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqing Wang
- Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
36
|
Stingo-Hirmas D, Cunha F, Cardoso RF, Carra LG, Rönnegård L, Wright D, Henriksen R. Proportional Cerebellum Size Predicts Fear Habituation in Chickens. Front Physiol 2022; 13:826178. [PMID: 35250629 PMCID: PMC8891606 DOI: 10.3389/fphys.2022.826178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a highly conserved neural structure across species but varies widely in size. The wide variation in cerebellar size (both absolute and in proportion to the rest of the brain) among species and populations suggests that functional specialization is linked to its size. There is increasing recognition that the cerebellum contributes to cognitive processing and emotional control in addition to its role in motor coordination. However, to what extent cerebellum size reflects variation in these behavioral processes within species remains largely unknown. By using a unique intercross chicken population based on parental lines with high divergence in cerebellum size, we compared the behavior of individuals repeatedly exposed to the same fear test (emergence test) early in life and after sexual maturity (eight trials per age group) with proportional cerebellum size and cerebellum neural density. While proportional cerebellum size did not predict the initial fear response of the individuals (trial 1), it did increasingly predict adult individuals response as the trials progressed. Our results suggest that proportional cerebellum size does not necessarily predict an individual’s fear response, but rather the habituation process to a fearful stimulus. Cerebellum neuronal density did not predict fear behavior in the individuals which suggests that these effects do not result from changes in neuronal density but due to other variables linked to proportional cerebellum size which might underlie fear habituation.
Collapse
Affiliation(s)
| | - Felipe Cunha
- IFM-Biology, Linköping University, Linköping, Sweden
| | | | | | - Lars Rönnegård
- School of Technology and Business Studies, Dalarna University, Falun, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Rie Henriksen
- IFM-Biology, Linköping University, Linköping, Sweden
- *Correspondence: Rie Henriksen,
| |
Collapse
|
37
|
Kong L, Li H, Shu Y, Liu X, Li P, Li K, Xie W, Zeng Y, Peng D. Aberrant Resting-State Functional Brain Connectivity of Insular Subregions in Obstructive Sleep Apnea. Front Neurosci 2022; 15:765775. [PMID: 35126035 PMCID: PMC8813041 DOI: 10.3389/fnins.2021.765775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
The insular cortex is a cortical regulatory area involved in dyspnea, cognition, emotion, and sensorimotor function. Previous studies reported that obstructive sleep apnea (OSA) shows insular tissue damage and abnormal functional connections for the whole insula. The insula can be divided into different subregions with distinct functional profiles, including the ventral anterior insula (vAI) participating in affective processing, dorsal anterior insula (dAI) involved in cognitive processing, and posterior insula (PI) involved in the processing of sensorimotor information. However, the functional connectivity (FC) of these insular subregions in OSA has yet to be established. Hence, the purpose of this study was to explore the resting-state FC of the insular subregions with other brain areas and its relationship with clinical symptoms of OSA. Resting-state functional magnetic resonance imaging data from 83 male OSA patients and 84 healthy controls were analyzed by whole-brain voxel-based FC using spherical seeds from six insular subregions, namely, the bilateral vAI, dAI, and PI, to identify abnormalities in the insular subregions network and related brain regions. Ultimately, the Pearson correlation analysis was carried out between the dysfunction results and the neuropsychological tests. Compared with the healthy control group, the OSA patients exhibited disturbed FC from the dAI to areas relevant to cognition, such as the bilateral cerebellum posterior lobe, superior frontal gyrus, right middle frontal gyrus and middle temporal gyrus; decreased FC from the vAI to areas linked with emotion, such as the bilateral fusiform gyrus, superior parietal lobule, precuneus and cerebellum posterior lobe; and abnormal FC from the PI to the brain regions involved in sensorimotor such as the bilateral precentral gyrus, right superior/middle temporal gyrus and left superior frontal gyrus. The linear regression result showed that the apnea-hypopnea index was positively correlated with the increased FC between the right PI and the right precuneus (after Bonferroni correlation, P < 0.001) In conclusion, the abnormal FC between insular subregions and other brain regions were related to cognitive, emotional and sensorimotor networks in OSA patients. These results may provide a new imaging perspective for further understanding of OSA-related cognitive and affective disorders.
Collapse
|
38
|
Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype. Mol Psychiatry 2022; 27:3047-3055. [PMID: 35422470 PMCID: PMC9205773 DOI: 10.1038/s41380-022-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (n = 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures-such as the corpus callosum, midbrain, and thalamus-were more likely to be affected by immune dysfunction. A notable brain-behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.
Collapse
|
39
|
Adamaszek M, Cattaneo Z, Ciricugno A, Chatterjee A. The Cerebellum and Beauty: The Impact of the Cerebellum in Art Experience and Creativity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:213-233. [DOI: 10.1007/978-3-030-99550-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT. α6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev 2022; 74:238-270. [PMID: 35017178 DOI: 10.1124/pharmrev.121.000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Lih-Chu Chiou
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Margot Ernst
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Jure Fabjan
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Miroslav M Savić
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Ming Tatt Lee
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| |
Collapse
|
41
|
Cerebellum and Emotion Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:53-73. [DOI: 10.1007/978-3-030-99550-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Cerebellum and Neurorehabilitation in Emotion with a Focus on Neuromodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:285-299. [DOI: 10.1007/978-3-030-99550-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
43
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
44
|
Iliou A, Vlaikou AM, Nussbaumer M, Benaki D, Mikros E, Gikas E, Filiou MD. Exploring the metabolomic profile of cerebellum after exposure to acute stress. Stress 2021; 24:952-964. [PMID: 34553679 DOI: 10.1080/10253890.2021.1973997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Psychological stress and stress-related disorders constitute a major health problem in modern societies. Although the brain circuits involved in emotional processing are intensively studied, little is known about the implication of cerebellum in stress responses whereas the molecular changes induced by stress exposure in cerebellum remain largely unexplored. Here, we investigated the effects of acute stress exposure on mouse cerebellum. We used a forced swim test (FST) paradigm as an acute stressor. We then analyzed the cerebellar metabolomic profiles of stressed (n = 11) versus control (n = 11) male CD1 mice by a Nuclear Magnetic Resonance (NMR)-based, untargeted metabolomics approach. Our results showed altered levels of 19 out of the 47 annotated metabolites, which are implicated in neurotransmission and N-acetylaspartic acid (NAA) turnover, as well as in energy and purine/pyrimidine metabolism. We also correlated individual metabolite levels with FST behavioral parameters, and reported associations between FST readouts and levels of 4 metabolites. This work indicates an altered metabolomic signature after acute stress in the cerebellum and highlights a previously unexplored involvement of cerebellum in stress responses.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Angeliki-Maria Vlaikou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Dimitra Benaki
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Evangelos Gikas
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Chemistry, Section of Analytical Chemistry, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michaela D Filiou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
45
|
Analysis of the cerebellar molecular stress response led to first evidence of a role for FKBP51 in brain FKBP52 expression in mice and humans. Neurobiol Stress 2021; 15:100401. [PMID: 34632006 PMCID: PMC8488056 DOI: 10.1016/j.ynstr.2021.100401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
As the cerebellar molecular stress response is understudied, we assessed protein expression levels of hypothalamic-pituitary-adrenal (HPA) axis regulators and neurostructural markers in the cerebellum of a male PTSD mouse model and of unstressed vs. stressed male FK506 binding protein 51 (Fkbp5) knockout (KO) vs. wildtype mice. We explored the translatability of our findings in the Fkbp5 KO model to the situation in humans by correlating mRNA levels of candidates with those of FKBP5 in two whole transcriptome datasets of post-mortem human cerebellum and in blood of unstressed and stressed humans. Fkbp5 deletion rescued the stress-induced loss in hippocampal, prefrontal cortical, and, possibly, also cerebellar FKBP52 expression and modulated post-stress cerebellar expression levels of the glucocorticoid receptor (GR) and possibly (trend) also of glial fibrillary acidic protein (GFAP). Accordingly, expression levels of genes encoding for these three genes correlated with those of FKBP5 in human post-mortem cerebellum, while other neurostructural markers were not related to Fkbp5 either in mouse or human cerebellum. Also, gene expression levels of the two immunophilins correlated inversely in the blood of unstressed and stressed humans. We found transient changes in FKBP52 and persistent changes in GR and GFAP in the cerebellum of PTSD-like mice. Altogether, upon elucidating the cerebellar stress response we found first evidence for a novel facet of HPA axis regulation, i.e., the ability of FKBP51 to modulate the expression of its antagonist FKBP52 in the mouse and, speculatively, also in the human brain and blood and, moreover, detected long-term single stress-induced changes in expression of cerebellar HPA axis regulators and neurostructural markers of which some might contribute to the role of the cerebellum in fear extinction.
Collapse
|
46
|
Jahed S, Daneshvari NO, Liang AL, Richey LN, Bryant BR, Krieg A, Bray MJC, Pradeep T, Luna LP, Trapp NT, Jones MB, Stevens DA, Roper C, Goldwaser EL, Berich-Anastasio E, Pletnikova A, Lobner K, Lee DJ, Lauterbach M, Sair HI, Peters ME. Neuroimaging Correlates of Syndromal Anxiety Following Traumatic Brain Injury: A Systematic Review of the Literature. J Acad Consult Liaison Psychiatry 2021; 63:119-132. [PMID: 34534701 DOI: 10.1016/j.jaclp.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) can precipitate new-onset psychiatric symptoms or worsen existing psychiatric conditions. To elucidate specific mechanisms for this interaction, neuroimaging is often used to study both psychiatric conditions and TBI. This systematic review aims to synthesize the existing literature of neuroimaging findings among patients with anxiety after TBI. METHODS We conducted a Preferred Reporting Items for Systematic Review and Meta-Analyses-compliant literature search via PubMed (MEDLINE), PsychINFO, EMBASE, and Scopus databases before May, 2019. We included studies that clearly defined TBI, measured syndromic anxiety as a primary outcome, and statistically analyzed the relationship between neuroimaging findings and anxiety symptoms. RESULTS A total of 5982 articles were retrieved from the systematic search, of which 65 studied anxiety and 13 met eligibility criteria. These studies were published between 2004 and 2017, collectively analyzing 764 participants comprised of 470 patients with TBI and 294 non-TBI controls. Imaging modalities used included magnetic resonance imaging, functional magnetic resonance imaging, diffusion tensor imaging, electroencephalogram, magnetic resonance spectrometry, and magnetoencephalography. Eight of 13 studies presented at least one significant finding and together reflect a complex set of changes that lead to anxiety in the setting of TBI. The left cingulate gyrus in particular was found to be significant in 2 studies using different imaging modalities. Two studies also revealed perturbances in functional connectivity within the default mode network. CONCLUSIONS This is the first systemic review of neuroimaging changes associated with anxiety after TBI, which implicated multiple brain structures and circuits, such as the default mode network. Future research with consistent, rigorous measurements of TBI and syndromic anxiety, as well as attention to control groups, previous TBIs, and time interval between TBI and neuroimaging, are warranted. By understanding neuroimaging correlates of psychiatric symptoms, this work could inform future post-TBI screening and surveillance, preventative efforts, and early interventions to improve neuropsychiatric outcomes.
Collapse
Affiliation(s)
- Sahar Jahed
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas O Daneshvari
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Angela L Liang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lisa N Richey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barry R Bryant
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Akshay Krieg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael J C Bray
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tejus Pradeep
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Licia P Luna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Melissa B Jones
- Menninger Department of Psychiatry and Behavioral Sciences, Michael E. DeBakey VA Medical Center & Baylor College of Medicine, Houston, TX
| | - Daniel A Stevens
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Eric L Goldwaser
- Sheppard Pratt, Baltimore, MD; University of Maryland School of Medicine, Baltimore, MD
| | | | - Alexandra Pletnikova
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katie Lobner
- Welch Medical Library, Johns Hopkins University, Baltimore, MD
| | - Daniel J Lee
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease & Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Margo Lauterbach
- Sheppard Pratt, Baltimore, MD; University of Maryland School of Medicine, Baltimore, MD
| | - Haris I Sair
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
47
|
Sakakibara N, Makita K, Hiraoka D, Kasaba R, Kuboshita R, Shimada K, Fujisawa TX, Tomoda A. Increased resting-state activity in the cerebellum with mothers having less adaptive sensory processing and trait anxiety. Hum Brain Mapp 2021; 42:4985-4995. [PMID: 34270152 PMCID: PMC8449103 DOI: 10.1002/hbm.25594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Child‐rearing mothers with high levels of trait anxiety have a tendency for less adaptive sensory processing, which causes parenting stress. However, the neural mechanisms underlying this sensory processing and trait anxiety remain unclear. We aimed to determine the whole‐brain spontaneous neural activity and sensory processing characteristics in mothers with varying parenting stress levels. Using resting‐state functional magnetic resonance imaging, we assessed mothers caring for more than one preschool aged (2–5 years) child and presenting with varying levels of sensory processing, trait anxiety, and parenting stress. Spontaneous neural activities in select brain regions were evaluated by whole‐brain correlation analyses based on the fractional amplitude of low‐frequency fluctuations (fALFF). We found significant positive correlations between levels of sensory processing with trait anxiety and parenting stress. Mothers having less adaptive sensory processing had significantly increased resting‐state network activities in the left lobule VI of the cerebellum. Increased fALFF values in the left lobule VI confirmed the mediation effect on the relationship between trait anxiety and sensory processing. A tendency for less adaptive sensory processing involving increased brain activity in lobule VI could be an indicator of maternal trait anxiety and the risk of parenting stress.
Collapse
Affiliation(s)
- Nobuko Sakakibara
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Daiki Hiraoka
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryoko Kasaba
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Ryo Kuboshita
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan.,Japan Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
48
|
Uzunova G, Pallanti S, Hollander E. Presentation and management of anxiety in individuals with acute symptomatic or asymptomatic COVID-19 infection, and in the post-COVID-19 recovery phase. Int J Psychiatry Clin Pract 2021; 25:115-131. [PMID: 33635172 DOI: 10.1080/13651501.2021.1887264] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID-19 is associated with neuropsychiatric complications, the most frequent one being anxiety. Multiple biological and psychosocial factors contribute to anxiety in COVID-19. Among the biological factors, stress, genetics, gender, immune system, resilience, anosmia, hypogeusia, and central nervous system infection with SARS-CoV-2 are key. Anxiety is a complication of COVID-19 that may exacerbate the infection course, and the infection may exacerbate anxiety. We present the mechanisms of anxiety in symptomatic or asymptomatic COVID-19. We discuss the presentation of anxiety in patients without or with prior psychiatric illness, and with co-morbidities. Timely diagnosis and management of anxiety in COVID-19 patients is important. Given the frequent complication of COVID-19 with Acute Respiratory Distress Syndrome and Intensive Care Unit stay, anxiety may be a long-term complication. We review the diagnostic tools for anxiety in COVID-19, and summarise pharmacologic and non-pharmacologic treatments. We provide recommendations for diagnosis, treatment, prevention and follow up of anxiety in COVID-19.Key pointsPatients with COVID-19 (symptomatic or asymptomatic) exhibit a high frequency of neuropsychiatric complications with highest percentage attributed to anxiety.Multiple biological and psychosocial risk factors for anxiety exist in COVID-19-ill individuals. Biological risk factors include stress, resilience, genetics, gender, age, immune system, direct infection of the central nervous system (CNS) with SARS-CoV-2, comorbid psychiatric and general medical illnesses, ARDS and ICU stay. Anosmia and hypogeusia are COVID-19-specific anxiety risk factors. Knowledge of the anxiety risk factors is essential to focus on timely interventions, because anxiety may be a complication of and exacerbate the COVID-19 course.An inverse correlation exists between resilience and anxiety because of COVID-19, and therefore efforts should be made to increase resilience in COVID-19 patients.In COVID-19, important anxiety mechanism is neuroinflammation resulting from activation of the immune system and an ensuing cytokine storm.The general approach to management of anxiety in COVID-19 should be compassionate, similar to that during trauma or disaster, with efforts focussed on instilling a sense of hope and resilience.In selecting pharmacological treatment of anxiety, the stress response and immune system effects should be key. Medications with cardio-respiratory adverse effects should be avoided in patients with respiratory problems.Anxiety is a disorder that will require for long-term follow up at least one month after COVID-19.
Collapse
Affiliation(s)
- Genoveva Uzunova
- Psychiatric Research Institute at Montefiore-Einstein, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefano Pallanti
- Istituto di Neuroscienze, Firenze, Italy.,Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Hollander
- Autism and Obsessive Compulsive Spectrum Program, Department of Psychiatry and Behavioral Sciences, Psychiatric Research Institute at Montefiore-Einstein, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
49
|
Yu X, Ruan Y, Zhang Y, Wang J, Liu Y, Zhang J, Zhang L. Cognitive Neural Mechanism of Social Anxiety Disorder: A Meta-Analysis Based on fMRI Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115556. [PMID: 34067468 PMCID: PMC8196988 DOI: 10.3390/ijerph18115556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Objective: The present meta-analysis aimed to explore the cognitive and neural mechanism of social anxiety disorder (SAD) from a whole-brain view, and compare the differences in brain activations under different task paradigms. Methods: We searched Web of Science Core Collection and other databases with the keywords related to social anxiety, social phobia, and functional magnetic resonance imaging (fMRI) for comparing persons with SAD to healthy controls and used the activation likelihood estimation method. Thirty-seven papers met the inclusion criteria, including 15 with emotional faces as stimuli, 8 presenting specific situations as stimuli, and 14 using other types of tasks as stimuli. Among these papers, 654 participants were in the SAD group and 594 participants were in the control group with 335 activation increase points and 115 activation decrease points. Results: Whole-brain analysis showed that compared with healthy controls, persons with SAD showed significantly lower activation of the left anterior cingulate gyrus (MNI coordinate: x = −6, y = 22, z = 38; p 0.001). Sub-group analysis based on task indicated that when performing tasks with emotional faces as stimuli, persons with SAD showed significantly lower activation of the left cerebellar slope and fusiform gyrus (MNI coordinate: x = −26, y = −68, z = −12; p 0.001), and significantly higher activation of the right supramarginal gyrus and angular gyrus, than healthy controls (MNI coordinate: x = 58, y = −52, z = 30; p 0.001). Conclusion: Individuals with social anxiety disorder show abnormal activation in the cingulate gyrus, which is responsible for the process of attention control, and task type can influence the activation pattern.
Collapse
Affiliation(s)
- Xianglian Yu
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
- Key Laboratory of Adolescent Cyberpsychology and Behavior, Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430056, China
| | - Yijun Ruan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yawen Zhang
- Department of Medical Psychology, School of Health Humanities, Peking University, Beijing 100191, China;
| | - Jiayi Wang
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
| | - Yuting Liu
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
| | - Jibiao Zhang
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
- Correspondence: (J.Z.); (L.Z.); Tel.: +86-151-1631-9551 (J.Z.); Tel.: +86-186-2215-2329 (L.Z.)
| | - Lin Zhang
- Key Laboratory of Adolescent Cyberpsychology and Behavior, Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430056, China
- Correspondence: (J.Z.); (L.Z.); Tel.: +86-151-1631-9551 (J.Z.); Tel.: +86-186-2215-2329 (L.Z.)
| |
Collapse
|
50
|
A multispecies probiotic accelerates fear extinction and inhibits relapse in mice: Role of microglia. Neuropharmacology 2021; 193:108613. [PMID: 34022177 DOI: 10.1016/j.neuropharm.2021.108613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
The relapse of fear memory remains a clinical challenge in treatment of fear-related disorders. Here we tested the effects and underlying mechanisms of probiotics treatment after fear conditioning on fear extinction. We found that fear conditioning induced synapse loss, microglial activation, and synaptic phagocytosis of activated microglial cells in hippocampal dentate gyrus of mice. And probiotics treatment (1 capsule/day/mice) after fear conditioning for 27 days inhibited these changes, promoted fear extinction, and inhibited the recovery of fear memory even 7 days after extinction. 16S rRNA gene sequencing demonstrated that probiotics supplement after fear conditioning partially normalized fear conditioning-induced dysbiosis of gut microbiota. In addition, we also found that repopulation of microglial cells in fear conditioning mice via PLX3397 treatment promoted long-term extinction of fear memory. Probiotics treatment after fear conditioning inhibited microglial activation and had similar therapeutic effects as the microglial cell repopulation induced by PLX3397 treatment. These data showed that (1) probiotics treatment after fear conditioning might promote long-term fear extinction which could be associated with the mitigation of synaptic pruning of activated microglial cells; (2) probiotics may be applicable as therapeutic strategy to inhibit microglial activation and treat fear-related disorders.
Collapse
|