1
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
2
|
Strekalova T, Radford-Smith D, Dunstan IK, Gorlova A, Svirin E, Sheveleva E, Burova A, Morozov S, Lyundup A, Berger G, Anthony DC, Walitza S. Omega-3 alleviates behavioral and molecular changes in a mouse model of stress-induced juvenile depression. Neurobiol Stress 2024; 31:100646. [PMID: 38912378 PMCID: PMC11190747 DOI: 10.1016/j.ynstr.2024.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Depression is increasingly diagnosed in adolescence, necessitating specific prevention and treatment methods. However, there is a lack of animal models mimicking juvenile depression. This study explores a novel model using ultrasound (US) stress in juvenile mice. Methods We employed the US stress model in one-month-old C57/BL6 mice, exposing them to alternating ultrasound frequencies (20-25 kHz and 25-45 kHz) for three weeks. These frequencies correspond to negative and neutral emotional states in rodents and can induce a depressive-like syndrome. Concurrently, mice received either an omega-3 food supplement (FS) containing eicosapentaenoic acid (EPA; 0.55 mg/kg/day) and docosahexaenoic acid (DHA; 0.55 mg/kg/day) or a vehicle. Post-stress, we evaluated anxiety- and depressive-like behaviors, blood corticosterone levels, brain expression of pro-inflammatory cytokines, and conducted metabolome analysis of brain, liver and blood plasma. Results US-exposed mice treated with vehicle exhibited decreased sucrose preference, a sign of anhedonia, a key feature of depression, increased anxiety-like behavior, elevated corticosterone levels, and enhanced TNF and IL-1β gene expression in the brain. In contrast, US-FS mice did not display these changes. Omega-3 supplementation also reduced anxiety-like behavior in non-stressed mice. Metabolomic analysis revealed US-induced changes in brain energy metabolism, with FS increasing brain sphingomyelin. Liver metabolism was affected by both US and FS, while plasma metabolome changes were exclusive to FS. Brain glucose levels correlated positively with activity in anxiety tests. Conclusion Chronic omega-3 intake counteracted depressive- and anxiety-like behaviors in a US model of juvenile depression in mice. These effects likely stem from the anti-inflammatory properties of the supplement, suggesting potential therapeutic applications in juvenile depression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
- Department of Pharmacology, Oxford University, Oxford, UK
| | | | | | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
- RUDN University, 6 Miklukho-Maklaya Str, Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Elisaveta Sheveleva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aleksey Lyundup
- RUDN University, 6 Miklukho-Maklaya Str, Moscow, Russia
- Endocrinology Research Centre, Dmitry Ulyanov str. 19, Moscow, 117036, Russia
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zuerich, Zuerich, Switzerland
| | | | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zuerich, Zuerich, Switzerland
| |
Collapse
|
3
|
Wei QQ, Yin YY, Qiao YX, Ni H, Han SY, Yao Y, Li YF, Zhang LM, Li J. Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) via regulating the synaptic plasticity in hippocampus. Eur J Pharmacol 2024; 969:176394. [PMID: 38331342 DOI: 10.1016/j.ejphar.2024.176394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
TSPO, translocator protein (18 kDa) ligands have demonstrated consistent antidepression and anxiolytic effects in several preclinical studies. This study aimed to examine whether YL-IPA08[N-ethyl-N-(2-pyridinylmethyl)-2-(3,4-ichlorophenyl) -7-methylimidazo [1,2-a] pyridine-3-acetamide hydrochloride], a potent and selective TSPO ligand synthesized by our institute, could alleviate anxiety-related behaviors induced by electric shock (ES) and investigate its underlying mechanism. As expected, we showed that chronic treatment with YL-IPA08 significantly reversed anxiety-related behaviors induced by electrical stimulation (0.5 mA, 12 times, duration 1s, interval 10s) exposure. Using the analysis of RNA-sequencing (RNA-seq) technology, it was found that the differential genes associated with the anxiolytic effect of YL-IPA08 were mainly related to synaptic plasticity. Furthermore, YL-IPA08 restored the decreased levels of brain-derived neurotrophic factor (BDNF), synapse-related protein (e.g. synapsin-1 and post-synaptic density95, PSD95), and the number of doublecortin (DCX) + neurons in the hippocampus of post-ES mice. In addition, YL-IPA08 also enhanced the dendritic complexity and dendritic spine density of hippocampal dentate gyrus (DG) granule neurons. Meanwhile, the induction of long-term potentiation (LTP) was significantly enhanced by YL-IPA08. In summary, the findings from the current study showed that YL-IPA08 exerted a clear anxiolytic effect, which might be partially mediated by promoting hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Qian-Qian Wei
- Department of Basic Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yong-Xing Qiao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Hebei University of Science and Technology, Shijiazhuang, China
| | - Han Ni
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo-Yu Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yishan Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Junxu Li
- Department of Basic Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Zubkov E, Riabova O, Zorkina Y, Egorova A, Ushakova V, Lepioshkin A, Novoselova E, Abramova O, Morozova A, Chekhonin V, Makarov V. Antidepressant-like Effect of the Eburnamine-Type Molecule Vindeburnol in Rat and Mouse Models of Ultrasound-Induced Depression. ACS Chem Neurosci 2024; 15:560-571. [PMID: 38216514 DOI: 10.1021/acschemneuro.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Vindeburnol (VIND, RU24722, BC19), a synthetic molecule derived from the eburnamine-vincamine alkaloid group, has many neuropsychopharmacological effects, but its antidepressant-like effects are poorly understood and have only been described in a few patents. To reliably estimate this effect, vindeburnol was studied in a model of long-term variable-frequency ultrasound (US) exposure at 20-45 kHz in male Wistar rats and BALB/c mice. Vindeburnol was administered chronically for 21 days against a background of simultaneous ultrasound exposure at a dose of 20 mg/kg intraperitoneally (IP). Using four behavioral tests, the sucrose preference test (SPT), the social interaction test (SIT), the open field test (OFT), and the forced swimming test (FST), we found that the treatment with the compound diminished depression-like symptoms in mice and rats. The compound restored the ultrasound-related reduced sucrose consumption to control levels and increased social interaction time in mice and rats compared with those in ultrasound-exposed animals. Vindeburnol showed contraversive results of horizontal and vertical activity in both species and generally did not increase locomotor activity. At the same time, the compound showed a specific effect in the FST, significantly reducing the immobility time. Moreover, we found an increase in norepinephrine, dopamine, and its metabolite levels in the brainstem, as well as an increase in dopamine, 3-methoxytyramine, and 3,4-dihydroxyphenylacetic acid levels in the striatum. We also observed a statistically significant increase in tyrosine hydroxylase (TH) levels in the region containing the locus coeruleus (LC). We suggest that using its distinct chemical structure and pharmacological activity as a starting point could boost antidepressant drug discovery.
Collapse
Affiliation(s)
- Eugene Zubkov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Yana Zorkina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Valeriya Ushakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Alexander Lepioshkin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Elena Novoselova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Olga Abramova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Anna Morozova
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| |
Collapse
|
5
|
Strekalova T, Svirin E, Gorlova A, Sheveleva E, Burova A, Khairetdinova A, Sitdikova K, Zakharova E, Dudchenko AM, Lyundup A, Morozov S. Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model. Biomolecules 2023; 13:1782. [PMID: 38136653 PMCID: PMC10741640 DOI: 10.3390/biom13121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Wuerzburg, Germany
| | - Evgeniy Svirin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Anna Gorlova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elizaveta Sheveleva
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alisa Burova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Adel Khairetdinova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Kseniia Sitdikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elena Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alexander M. Dudchenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Aleksey Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, Moscow 117036, Russia;
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| |
Collapse
|
6
|
Bosque M, Margalef R, Llaveria A, Santafe MM. Stress increases the spontaneous release of ACh and may be involved in the generation and maintenance of myofascial trigger points in mouse. Behav Brain Res 2023; 452:114572. [PMID: 37421986 DOI: 10.1016/j.bbr.2023.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
An increase in spontaneous neurotransmission may be related to myofascial pain. Sympathetic neurons innervate most of the neuromuscular junction sand are involved in the modulation of synaptic transmission. Therefore, a direct action of stress on acetylcholine release is expected. For this reason, this study aims to evaluate the relationship between stress and spontaneous neurotransmission. Five acute stressors (immobilization, forced swimming, food and water deprivation, social isolation and ultrasound) were tested in 6 weeks adult Swiss male mice. Subsequently, these types of stress were combined to generate a model of chronic stress. The study of ACh release was evaluated before and after the application of stress by intracellular recording of spontaneous neurotransmission (mEPPs). In each one of the stressors, an increase in the frequency of mEPPs was obtained immediately after treatment, which remained elevated for 5 days and thereafter returned to control values after a week. With chronic stress, a much higher increase in the frequency of mEPPs was obtained and it was maintained for 15 days. In summary, stress, both in its acute and chronic forms, increased spontaneous neurotransmission significantly. There is a possibility that chronic stress is related with the genesis or maintenance of myofascial pain.
Collapse
Affiliation(s)
- Marc Bosque
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Ramón Margalef
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Albert Llaveria
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Manel M Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain.
| |
Collapse
|
7
|
Pavlov D, Gorlova A, Haque A, Cavalcante C, Svirin E, Burova A, Grigorieva E, Sheveleva E, Malin D, Efimochkina S, Proshin A, Umriukhin A, Morozov S, Strekalova T. Maternal Chronic Ultrasound Stress Provokes Immune Activation and Behavioral Deficits in the Offspring: A Mouse Model of Neurodevelopmental Pathology. Int J Mol Sci 2023; 24:11712. [PMID: 37511470 PMCID: PMC10380915 DOI: 10.3390/ijms241411712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Neurodevelopmental disorders stemming from maternal immune activation can significantly affect a child's life. A major limitation in pre-clinical studies is the scarcity of valid animal models that accurately mimic these challenges. Among the available models, administration of lipopolysaccharide (LPS) to pregnant females is a widely used paradigm. Previous studies have reported that a model of 'emotional stress', involving chronic exposure of rodents to ultrasonic frequencies, induces neuroinflammation, aberrant neuroplasticity, and behavioral deficits. In this study, we explored whether this model is a suitable paradigm for maternal stress and promotes neurodevelopmental abnormalities in the offspring of stressed females. Pregnant dams were exposed to ultrasound stress for 21 days. A separate group was injected with LPS on embryonic days E11.5 and E12.5 to mimic prenatal infection. The behavior of the dams and their female offspring was assessed using the sucrose test, open field test, and elevated plus maze. Additionally, the three-chamber sociability test and Barnes maze were used in the offspring groups. ELISA and qPCR were used to examine pro-inflammatory changes in the blood and hippocampus of adult females. Ultrasound-exposed adult females developed a depressive-like syndrome, hippocampal overexpression of GSK-3β, IL-1β, and IL-6 and increased serum concentrations of IL-1β, IL-6, IL-17, RANTES, and TNFα. The female offspring also displayed depressive-like behavior, as well as cognitive deficits. These abnormalities were comparable to the behavioral changes induced by LPS. The ultrasound stress model can be a promising animal paradigm of neurodevelopmental pathology associated with prenatal 'emotional stress'.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Abrar Haque
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Carlos Cavalcante
- Department of Human Health and Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Grigorieva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Sheveleva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Dmitry Malin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sofia Efimochkina
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Tatyana Strekalova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| |
Collapse
|
8
|
Veremeyko T, Jiang R, He M, Ponomarev ED. Complement C4-deficient mice have a high mortality rate during PTZ-induced epileptic seizures, which correlates with cognitive problems and the deficiency in the expression of Egr1 and other immediate early genes. Front Cell Neurosci 2023; 17:1170031. [PMID: 37234916 PMCID: PMC10206007 DOI: 10.3389/fncel.2023.1170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Complement system plays an important role in the immune defense against pathogens; however, recent studies demonstrated an important role of complement subunits C1q, C4, and C3 in normal functions of the central nervous system (CNS) such as non-functional synapse elimination (synapse pruning), and during various neurologic pathologies. Humans have two forms of C4 protein encoded by C4A and C4B genes that share 99.5% homology, while mice have only one C4B gene that is functionally active in the complement cascade. Overexpression of the human C4A gene was shown to contribute to the development of schizophrenia by mediating extensive synapse pruning through the activation C1q-C4-C3 pathway, while C4B deficiency or low levels of C4B expression were shown to relate to the development of schizophrenia and autism spectrum disorders possibly via other mechanisms not related to synapse elimination. To investigate the potential role of C4B in neuronal functions not related to synapse pruning, we compared wildtype (WT) mice with C3- and C4B- deficient animals for their susceptibility to pentylenetetrazole (PTZ)- induced epileptic seizures. We found that C4B (but not C3)-deficient mice were highly susceptible to convulsant and subconvulsant doses of PTZ when compared to WT controls. Further gene expression analysis revealed that in contrast to WT or C3-deficient animals, C4B-deficient mice failed to upregulate expressions of multiple immediate early genes (IEGs) Egrs1-4, c-Fos, c-Jus, FosB, Npas4, and Nur77 during epileptic seizures. Moreover, C4B-deficient mice had low levels of baseline expression of Egr1 on mRNA and protein levels, which was correlated with the cognitive problems of these animals. C4-deficient animals also failed to upregulate several genes downstream of IEGs such as BDNF and pro-inflammatory cytokines IL-1β, IL-6, and TNF. Taken together, our study demonstrates a new role of C4B in the regulation of expression of IEGs and their downstream targets during CNS insults such as epileptic seizures.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Mingliang He
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Eugene D. Ponomarev
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
Radford-Smith DE, Anthony DC. Prebiotic and Probiotic Modulation of the Microbiota-Gut-Brain Axis in Depression. Nutrients 2023; 15:nu15081880. [PMID: 37111100 PMCID: PMC10146605 DOI: 10.3390/nu15081880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Emerging evidence demonstrates that alterations to the gut microbiota can affect mood, suggesting that the microbiota-gut-brain (MGB) axis contributes to the pathogenesis of depression. Many of these pathways overlap with the way in which the gut microbiota are thought to contribute to metabolic disease progression and obesity. In rodents, prebiotics and probiotics have been shown to modulate the composition and function of the gut microbiota. Together with germ-free rodent models, probiotics have provided compelling evidence for a causal relationship between microbes, microbial metabolites, and altered neurochemical signalling and inflammatory pathways in the brain. In humans, probiotic supplementation has demonstrated modest antidepressant effects in individuals with depressive symptoms, though more studies in clinically relevant populations are needed. This review critically discusses the role of the MGB axis in depression pathophysiology, integrating preclinical and clinical evidence, as well as the putative routes of communication between the microbiota-gut interface and the brain. A critical overview of the current approaches to investigating microbiome changes in depression is provided. To effectively translate preclinical breakthroughs in MGB axis research into novel therapies, rigorous placebo-controlled trials alongside a mechanistic and biochemical understanding of prebiotic and probiotic action are required from future research.
Collapse
Affiliation(s)
- Daniel E Radford-Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
10
|
Qin Z, Shi DD, Li W, Cheng D, Zhang YD, Zhang S, Tsoi B, Zhao J, Wang Z, Zhang ZJ. Berberine ameliorates depression-like behaviors in mice via inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing neuroplasticity disruption. J Neuroinflammation 2023; 20:54. [PMID: 36859349 PMCID: PMC9976521 DOI: 10.1186/s12974-023-02744-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES Neuroinflammation has been suggested that affects the processing of depression. There is renewed interest in berberine owing to its anti-inflammatory effects. Herein, we investigated whether berberine attenuate depressive-like behaviors via inhibiting NLRP3 inflammasome activation in mice model of depression. METHODS Adult male C57BL/6N mice were administrated corticosterone (CORT, 20 mg/kg/day) for 35 days. Two doses (100 mg/kg/day and 200 mg/kg/day) of berberine were orally administrated from day 7 until day 35. Behavioral tests were performed to measure the depression-like behaviors alterations. Differentially expressed gene analysis was performed for RNA-sequencing data in the prefrontal cortex. NLRP3 inflammasome was measured by quantitative reverse transcription polymerase chain reaction, western blotting, and immunofluorescence labeling. The neuroplasticity and synaptic function were measured by immunofluorescence labeling, Golgi-Cox staining, transmission electron microscope, and whole-cell patch-clamp recordings. RESULTS The results of behavioral tests demonstrated that berberine attenuated the depression-like behaviors induced by CORT. RNA-sequencing identified that NLRP3 was markedly upregulated after long-term CORT exposure. Berberine reversed the concentrations of peripheral and brain cytokines, NLRP3 inflammasome elicited by CORT in the prefrontal cortex and hippocampus were decreased by berberine. In addition, the lower frequency of neuronal excitation as well as the dendritic spine reduction were reversed by berberine treatment. Together, berberine increases hippocampal adult neurogenesis and synaptic plasticity induced by CORT. CONCLUSION The anti-depressants effects of berberine were accompanied by reduced the neuroinflammatory response via inhibiting the activation of NLRP3 inflammasome and rescued the neuronal deterioration via suppression of impairments in synaptic plasticity and neurogenesis.
Collapse
Affiliation(s)
- Zongshi Qin
- grid.11135.370000 0001 2256 9319Peking University Clinical Research Institute, Peking University, Beijing, China ,grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dong-Dong Shi
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Li
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dan Cheng
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ying-Dan Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bun Tsoi
- grid.16890.360000 0004 1764 6123Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jia Zhao
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Mood and behavior regulation: interaction of lithium and dopaminergic system. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02437-1. [PMID: 36843130 DOI: 10.1007/s00210-023-02437-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Lithium is one of the most effect mood-stabilizing drugs prescribed especially for bipolar disorder. Lithium has wide range effects on different molecular factors and neural transmission including dopaminergic signaling. On the other hand, mesolimbic and mesocortical dopaminergic signaling is significantly involved in the pathophysiology of neuropsychiatric disorders. This review article aims to study lithium therapeutic mechanisms, dopaminergic signaling, and the interaction of lithium and dopamine. We concluded that acute and chronic lithium treatments often reduce dopamine synthesis and level in the brain. However, some studies have reported conflicting results following lithium treatment, especially chronic treatment. The dosage, duration, and type of lithium administration, and the brain region selected for measuring dopamine level were not significant differences in different chronic treatments used in previous studies. It was suggested that lithium has various mechanisms affecting dopaminergic signaling and mood, and that many molecular factors can be involved, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), β-catenin, protein kinase B (Akt), and glycogen synthase kinase-3 beta (GSK-3β). Thus, molecular effects of lithium can be the most important mechanisms of lithium that also alter neural transmissions including dopaminergic signaling in mesolimbic and mesocortical pathways.
Collapse
|
12
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Šutulović N, Vesković M, Puškaš N, Zubelić A, Jerotić D, Šuvakov S, Despotović S, Grubač Ž, Mladenović D, Macut D, Rašić-Marković A, Simić T, Stanojlović O, Hrnčić D. Chronic Prostatitis/Chronic Pelvic Pain Syndrome Induces Depression-Like Behavior and Learning-Memory Impairment: A Possible Link with Decreased Hippocampal Neurogenesis and Astrocyte Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3199988. [PMID: 37064799 PMCID: PMC10101744 DOI: 10.1155/2023/3199988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 04/18/2023]
Abstract
Pathogenesis of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) remains unclear since it represents an interplay between immunological, endocrine, and neuropsychiatric factors. Patients suffering from CP/CPPS often develop mental health-related disorders such as anxiety, depression, or cognitive impairment. The aim of this study was to investigate depression-like behavior, learning, and memory processes in a rat model of CP/CPPS and to determine the alterations in hippocampal structure and function. Adult male Wistar albino rats (n = 6 in each group) from CP/CPPS (single intraprostatic injection of 3% λ-carrageenan, day 0) and Sham (0.9% NaCl) groups were subjected to pain threshold test (days 2, 3, and 7), depression-like behavior, and learning-memory tests (both on day 7). Decreased pain threshold in the scrotal region and histopathological presence of necrosis and inflammatory infiltrate in prostatic tissue confirmed the development of CP/CPPS. The forced swimming test revealed the depression-like behavior evident through increased floating time, while the modified elevated plus maze test revealed learning and memory impairment through prolonged transfer latency in the CP/CPPS group in comparison with Sham (p < 0.001 and p < 0.001, respectively). Biochemical analysis showed decreased serum levels of testosterone in CP/CPPS group vs. the Sham (p < 0.001). The CP/CPPS induced a significant upregulation of ICAM-1 in rat cortex (p < 0.05) and thalamus (p < 0.01) and increased GFAP expression in the hippocampal astrocytes (p < 0.01) vs. Sham, suggesting subsequent neuroinflammation and astrocytosis. Moreover, a significantly decreased number of DCX+ and Ki67+ neurons in the hippocampus was observed in the CP/CPPS group (p < 0.05) vs. Sham, indicating decreased neurogenesis and neuronal proliferation. Taken together, our data indicates that CP/CPPS induces depression-like behavior and cognitive declines that are at least partly mediated by neuroinflammation and decreased neurogenesis accompanied by astrocyte activation.
Collapse
Affiliation(s)
- Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Aleksa Zubelić
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Djurdja Jerotić
- Institute of Clinical and Medical Biochemistry, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Sonja Šuvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA
| | - Sanja Despotović
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Željko Grubač
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Disease, University Clinical Centre of Serbia, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Aleksandra Rašić-Marković
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Tatjana Simić
- Institute of Clinical and Medical Biochemistry, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
14
|
In FUS[1−359]‐tg mice O,S-dibenzoyl thiamine reduces muscle atrophy, decreases glycogen synthase kinase 3 beta, and normalizes the metabolome. Biomed Pharmacother 2022; 156:113986. [DOI: 10.1016/j.biopha.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
15
|
Chatterjee D, Beaulieu JM. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 2022; 15:1028963. [PMID: 36504683 PMCID: PMC9731798 DOI: 10.3389/fnmol.2022.1028963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.
Collapse
Affiliation(s)
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Svirin E, Veniaminova E, Costa-Nunes JP, Gorlova A, Umriukhin A, Kalueff AV, Proshin A, Anthony DC, Nedorubov A, Tse ACK, Walitza S, Lim LW, Lesch KP, Strekalova T. Predation Stress Causes Excessive Aggression in Female Mice with Partial Genetic Inactivation of Tryptophan Hydroxylase-2: Evidence for Altered Myelination-Related Processes. Cells 2022; 11:1036. [PMID: 35326487 PMCID: PMC8947002 DOI: 10.3390/cells11061036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.
Collapse
Affiliation(s)
- Evgeniy Svirin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - João Pedro Costa-Nunes
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Institute of Molecular Medicine, New University of Lisbon, 1649-028 Lisbon, Portugal
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Allan V. Kalueff
- Neuroscience Program, Sirius University, 354340 Sochi, Russia;
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Institute of Natural Sciences, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | - Andrey Nedorubov
- Institute of Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia;
| | - Anna Chung Kwan Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Susanne Walitza
- Department for Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Lee Wei Lim
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| |
Collapse
|
17
|
Strekalova T, Pavlov D, Trofimov A, Anthony DC, Svistunov A, Proshin A, Umriukhin A, Lyundup A, Lesch KP, Cespuglio R. Hippocampal Over-Expression of Cyclooxygenase-2 (COX-2) Is Associated with Susceptibility to Stress-Induced Anhedonia in Mice. Int J Mol Sci 2022; 23:2061. [PMID: 35216176 PMCID: PMC8879061 DOI: 10.3390/ijms23042061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Dmitrii Pavlov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander Trofimov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Alexei Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| |
Collapse
|
18
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
19
|
Strekalova T, Svirin E, Veniaminova E, Kopeikina E, Veremeyko T, Yung AWY, Proshin A, Walitza S, Anthony DC, Lim LW, Lesch KP, Ponomarev ED. ASD-like behaviors, a dysregulated inflammatory response and decreased expression of PLP1 characterize mice deficient for sialyltransferase ST3GAL5. Brain Behav Immun Health 2021; 16:100306. [PMID: 34589798 PMCID: PMC8474501 DOI: 10.1016/j.bbih.2021.100306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 01/28/2023] Open
Abstract
Gangliosides are glycosphingolipids, which are abundant in brain, are known to modulate ion channels and cell-to-cell communication. Deficiencies can result in aberrant myelination and altered immune responses, which can give rise to neurodevelopmental psychiatric disorders. However, to date, little mechanistic data is available on how ganglioside deficiencies contribute to the behavioural disorders. In humans, the loss of lactosylceramide-alpha-2,3-sialyltransferase (ST3Gal5) leads to a severe neuropathology, but in ST3Gal5 knock-out (St3gal5−/−) mice the absence of GM3 and associated a-, b- and c-series gangliosides is partially compensated by 0-series gangliosides and there is no overt behavioural phenotype. Here, we sought to examine the behavioural and molecular consequences of GM3 loss more closely. Mutants of both sexes exhibited impaired conditioned taste aversion in an inhibitory learning task and anxiety-like behaviours in the open field, moderate motor deficits, abnormal social interactions, excessive grooming and rearing behaviours. Taken together, the aberrant behaviours are suggestive of an autism spectrum disorder (ASD)-like syndrome. Molecular analysis showed decreased gene and protein expression of proteolipid protein-1 (Plp1) and over expression of proinflammatory cytokines, which has been associated with ASD-like syndromes. The inflammatory and behavioural responses to lipopolysaccharide (LPS) were also altered in the St3gal5−/− mice compared to wild-type, which is indicative of the importance of GM3 gangliosides in regulating immune responses. Together, the St3gal5−/− mice display ASD-like behavioural features, altered response to systemic inflammation, signs of hypomyelination and neuroinflammation, which suggests that deficiency in a- and b-series gangliosides could contribute to the development of an ASD-like pathology in humans. St3gal5−/− mice exhibit aberrant social, motor and cognitive behavior that is reminiscent of ASD-like syndrome. Interleukin1β is upregulated in the brain and spleen of St3gal5−/− of both sexes. Mutants display reduced gene and protein expression of the myelin protein Plp1. LPS induces sex-dependent abnormalities in the inflammatory response and social behavior in the St3gal5−/− mice. St3gal5−/− mice can be used to study the behavioural consequence of a- and b-series ganglioside deficiency
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Evgeniy Svirin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Ekaterina Veniaminova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina Kopeikina
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tatyana Veremeyko
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amanda W Y Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Susanne Walitza
- Department for Child and Adolescent Psychiatry and Psychotherapy of the University of Zurich and the University Hospital of Psychiatry, Zurich, Switzerland
| | - Daniel C Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Pharmacology, Oxford University, Oxford, United Kingdom
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Kunmin Institute of Zoology, Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunmin-Hong Kong, China
| |
Collapse
|
20
|
McCallum RT, Perreault ML. Glycogen Synthase Kinase-3: A Focal Point for Advancing Pathogenic Inflammation in Depression. Cells 2021; 10:cells10092270. [PMID: 34571919 PMCID: PMC8470361 DOI: 10.3390/cells10092270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the host immune response has a monumental role in the etiology of major depressive disorder (MDD), motivating the development of the inflammatory hypothesis of depression. Central to the involvement of chronic inflammation in MDD is a wide range of signaling deficits induced by the excessive secretion of pro-inflammatory cytokines and imbalanced T cell differentiation. Such signaling deficits include the glutamatergic, cholinergic, insulin, and neurotrophin systems, which work in concert to initiate and advance the neuropathology. Fundamental to the communication between such systems is the protein kinase glycogen synthase kinase-3 (GSK-3), a multifaceted protein critically linked to the etiology of MDD and an emerging target to treat pathogenic inflammation. Here, a consolidated overview of the widespread multi-system involvement of GSK-3 in contributing to the neuropathology of MDD will be discussed, with the feed-forward mechanistic links between all major neuronal signaling pathways highlighted.
Collapse
Affiliation(s)
- Ryan T. McCallum
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
21
|
Altered behaviour, dopamine and norepinephrine regulation in stressed mice heterozygous in TPH2 gene. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110155. [PMID: 33127424 DOI: 10.1016/j.pnpbp.2020.110155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/-) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/- mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/- mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/- mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/- mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions.
Collapse
|
22
|
de Munter J, Pavlov D, Gorlova A, Sicker M, Proshin A, Kalueff AV, Svistunov A, Kiselev D, Nedorubov A, Morozov S, Umriukhin A, Lesch KP, Strekalova T, Schroeter CA. Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant. Front Nutr 2021; 8:661455. [PMID: 33937310 PMCID: PMC8086427 DOI: 10.3389/fnut.2021.661455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of “emotional” ultrasound stress (US), mice were subjected to ultrasound frequencies of 16–20 kHz, mimicking rodent sounds of anxiety/despair and “neutral” frequencies of 25–45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.
Collapse
Affiliation(s)
- Johannes de Munter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dmitrii Pavlov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Sicker
- Rehabilitation Research Unit of Clinic of Bad Kreuzbach, Bad Kreuzbach, Germany
| | - Andrey Proshin
- PK Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Allan V Kalueff
- Ural Federal University, Yekaterinburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Neuroscience Program, Sirius University, Sochi, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrey Svistunov
- Institute for Translational Medicine and Biotechnology, Preclinical Research Center of Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daniel Kiselev
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Translational Medicine and Biotechnology, Preclinical Research Center of Sechenov First Moscow State Medical University, Moscow, Russia.,Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Andrey Nedorubov
- Institute for Translational Medicine and Biotechnology, Preclinical Research Center of Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Morozov
- Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Careen A Schroeter
- Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| |
Collapse
|
23
|
Wei W, Dong Q, Jiang W, Wang Y, Chen Y, Han T, Sun C. Dichloroacetic acid-induced dysfunction in rat hippocampus and the protective effect of curcumin. Metab Brain Dis 2021; 36:545-556. [PMID: 33411217 DOI: 10.1007/s11011-020-00657-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The present study was designed to evaluate the role of cAMP-PKA-CREB signaling in mediating the neuroprotective effects of curcumin against DCAA-induced oxidative stress, inflammation and impaired synaptic plasticity in rats. Sixty Sprague-Dawley rats were randomly divided into five groups, and we assessed the histomorphological, behavioral and biochemical characteristics to investigate the beneficial effects of different concentrations of curcumin against DCAA-induced neurotoxicity in rat hippocampus. The results indicated that animal weight gain and food consumption were not significantly affected by DCAA. However, behavioral tests, including morris water maze and shuttle box, showed varying degrees of alterations. Additionally, we found significant changes in hippocampal neurons by histomorphological observation. DCAA exposure could increase lipid peroxidation, reactive oxygen species (ROS), inflammation factors while reducing superoxide dismutase (SOD) activity and glutathione (GSH) level accompanied by DNA damage in the hippocampus. Furthermore, we found that DCAA exposure could cause a differential modulation of mRNA and proteins (cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response element-binding protein (CREB), p-CREB, brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), synaptophysin (SYP)). Conversely, various doses of curcumin attenuated DCAA-induced oxidative stress, inflammation response and impaired synaptic plasticity, while elevating cAMP, PKA, p-CREB, BDNF, PSD-95, SYP levels. Thus, curcumin could activate the cAMP-PKA-CREB signaling pathway, conferring neuroprotection against DCAA-induced neurotoxicity.
Collapse
Affiliation(s)
- Wei Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Qiuying Dong
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yue Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yingying Chen
- The first Psychiatric Hospital of Harbin, Harbin, 150056, Heilongjiang Province, China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
24
|
Sambon M, Gorlova A, Demelenne A, Alhama-Riba J, Coumans B, Lakaye B, Wins P, Fillet M, Anthony DC, Strekalova T, Bettendorff L. Dibenzoylthiamine Has Powerful Antioxidant and Anti-Inflammatory Properties in Cultured Cells and in Mouse Models of Stress and Neurodegeneration. Biomedicines 2020; 8:biomedicines8090361. [PMID: 32962139 PMCID: PMC7555733 DOI: 10.3390/biomedicines8090361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.
Collapse
Affiliation(s)
- Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.G.); (T.S.)
- Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, 4000 Liège, Belgium; (A.D.); (M.F.)
| | - Judit Alhama-Riba
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
- Faculty of Sciences, University of Girona, 17004 Girona, Spain
| | - Bernard Coumans
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cell, University of Liège, 4000 Liège, Belgium; (B.C.); (B.L.)
| | - Bernard Lakaye
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cell, University of Liège, 4000 Liège, Belgium; (B.C.); (B.L.)
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, Department of Pharmacy, University of Liège, 4000 Liège, Belgium; (A.D.); (M.F.)
| | - Daniel C. Anthony
- Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.G.); (T.S.)
- Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, 4000 Liège, Belgium; (M.S.); (J.A.-R.); (P.W.)
- Correspondence: ; Tel.: +32-4-366-5967
| |
Collapse
|
25
|
Gorlova A, Ortega G, Waider J, Bazhenova N, Veniaminova E, Proshin A, Kalueff AV, Anthony DC, Lesch KP, Strekalova T. Stress-induced aggression in heterozygous TPH2 mutant mice is associated with alterations in serotonin turnover and expression of 5-HT6 and AMPA subunit 2A receptors. J Affect Disord 2020; 272:440-451. [PMID: 32553388 DOI: 10.1016/j.jad.2020.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The contribution of gene-environment interactions that lead to excessive aggression is poorly understood. Environmental stressors and mutations of the gene encoding tryptophan hydroxylase-2 (TPH2) are known to influence aggression. For example, TPH2 null mutant mice (Tph2-/-) are naturally highly aggressive, while heterozygous mice (Tph2+/-) lack a behavioral phenotype and are considered endophenotypically normal. Here we sought to discover whether an environmental stressor would affect the phenotype of the genetically 'susceptible' heterozygous mice (Tph2+/-). METHODS Tph2+/- male mice or Tph2+/+ controls were subjected to a five-day long rat exposure stress paradigm. Brain serotonin metabolism and the expression of selected genes encoding serotonin receptors, AMPA receptors, and stress markers were studied. RESULTS Stressed Tph2+/- mice displayed increased levels of aggression and social dominance, whereas Tph2+/+ animals became less aggressive and less dominant. Brain tissue concentrations of serotonin, its precursor hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid were significantly altered in all groups in the prefrontal cortex, striatum, amygdala, hippocampus and dorsal raphe after stress. Compared to non-stressed animals, the concentration of 5-hydroxytryptophan was elevated in the amygdala though decreased in the other brain structures. The overexpression of the AMPA receptor subunit, GluA2, and downregulation of 5-HT6 receptor, as well as overexpression of c-fos and glycogen-synthase-kinase-3β (GSK3-β), were found in most structures of the stressed Tph2+/- mice. LIMITATIONS Rescue experiments would help to verify causal relationships of reported changes. CONCLUSIONS The interaction of a partial TPH2 gene deficit with stress results in pathological aggression and molecular changes, and suggests that the presence of genetic susceptibility can augment aggression in seemingly resistant phenotypes.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Natalia Bazhenova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Andrey Proshin
- PK Anokhin Research Institute of Normal Physiology, Moscow
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China with Ural Federal University, Ekaterinburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University and Almazov Medical Research Center, Institute of Experimental Medicine, St. Petersburg Russia
| | - Daniel C Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Pharmacology, Oxford University, Oxford, United Kingdom
| | - Klaus-Peter Lesch
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Institute of General Pathology and Pathophysiology, Moscow, Russia.
| |
Collapse
|
26
|
Costa-Nunes JP, Gorlova A, Pavlov D, Cespuglio R, Gorovaya A, Proshin A, Umriukhin A, Ponomarev ED, Kalueff AV, Strekalova T, Schroeter CA. Ultrasound stress compromises the correlates of emotional-like states and brain AMPAR expression in mice: effects of antioxidant and anti-inflammatory herbal treatment. Stress 2020; 23:481-495. [PMID: 31900023 DOI: 10.1080/10253890.2019.1709435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The modern lifestyle is associated with exposure to "psychological" or "emotional" stress. A growing portion of the population is exposed to emotional stress that results in a high incidence of anxiety disorders, a serious social problem. With this rise, there is a need for understanding the neurobiological causes of stress-induced anxiety and to offer safe remedies for this condition. Side effects of existing pharmaceuticals necessitate the search for alternatives. Having fewer adverse effects than classic remedies, natural extract-based therapies can be a promising solution. Here, we applied a model of emotional stress in BALB/c mice using ultrasound exposure to evoke the signs of anxiety-like behavior. We examined the behavioral and molecular impact of ultrasound and administration of herbal antioxidant/anti-inflammatory treatment (HAT) on AMPA receptor expression, markers of plasticity, inflammation and oxidative stress. A 3-week ultrasound exposure increased scores of anxiety-like behaviors in the standard tests and altered hippocampal expression as well as internalization of AMPA receptor subunits GluA1-A3. Concomitant treatment with HAT has prevented increases of anxiety-like behaviors and other behavioral changes, normalized hippocampal malondialdehyde content, GSK3β and pro-inflammatory cytokines Il-1β and Il-6, and the number of Ki67-positive cells. Levels of malondialdehyde, a common measure of oxidative stress, significantly correlated with the investigated end-points in stressed, but not in non-stressed animals. Our results emphasize the role of oxidative stress in neurobiological abnormalities associated with experimentally induced condition mimicking emotional stress in rodents and highlight the potential therapeutic use of anti-oxidants like herbal compositions for management of stress-related emotional disturbances within the community.
Collapse
Affiliation(s)
- João Pedro Costa-Nunes
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Raymond Cespuglio
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, C. Bernard University of Lyon, Bron, France
| | - Anna Gorovaya
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrei Proshin
- Laboratory of Emotional Stress, Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Aleksei Umriukhin
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Emotional Stress, Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Eugene D Ponomarev
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Institute of Translational Biomedicine, St.Petersburg State University, St.-Petersburg, Russia
| | - Tatyana Strekalova
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Careen A Schroeter
- Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, The Netherlands
| |
Collapse
|
27
|
Pavlov D, Gorlova A, Bettendorff L, Kalueff AA, Umriukhin A, Proshin A, Lysko A, Landgraf R, Anthony DC, Strekalova T. Enhanced conditioning of adverse memories in the mouse modified swim test is associated with neuroinflammatory changes - Effects that are susceptible to antidepressants. Neurobiol Learn Mem 2020; 172:107227. [PMID: 32325189 DOI: 10.1016/j.nlm.2020.107227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 01/08/2023]
Abstract
Deficient learning and memory are well-established pathophysiologic features of depression, however, mechanisms of the enhanced learning of aversive experiences associated with this disorder are poorly understood. Currently, neurobiological mechanisms of enhanced retention of aversive memories during depression, and, in particular, their relation to neuroinflammation are unclear. As the association between major depressive disorder and inflammation has been recognized for some time, we aimed to address whether neuroinflammatory changes are involved in enhanced learning of adversity in a depressive state. To study this question, we used a recently described mouse model of enhanced contextual conditioning of aversive memories, the modified forced swim model (modFST). In this model, the classic two-day forced swim is followed by an additional delayed session on Day 5, where increased floating behaviour and upregulated glycogen synthase kinase-3 (GSK-3) are context-dependent. Here, increased time spent floating on Day 5, a parameter of enhanced learning of the adverse context, was accompanied by hypercorticosteronemia, increased gene expression of GSK-3α, GSK-3β, c-Fos, cyclooxygenase-1 (COX-1) and pro-inflammatory cytokines interleukin-1 beta (IL-1β), tumor necrosis factor (TNF), and elevated concentrations of protein carbonyl, a marker of oxidative stress, in the prefrontal cortex and hippocampus. There were significant correlations between cytokine levels and GSK-3β gene expression. Two-week administration of compounds with antidepressant properties, imipramine (7 mg/kg/day) or thiamine (vitamin B1; 200 mg/kg/day) ameliorated most of the modFST-induced changes. Thus, enhanced learning of adverse memories is associated with pro-inflammatory changes that should be considered for optimizing pharmacotherapy of depression associated with enhanced learning of aversive memories.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht University, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht University, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Allan A Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksei Umriukhin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Andrey Proshin
- Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Alexander Lysko
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Rainer Landgraf
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel C Anthony
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Pharmacology, Oxford University, Oxford, UK
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht University, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia.
| |
Collapse
|
28
|
Gorlova AV, Pavlov DA, Ushakova VM, Zubkov EA, Zorkina YA, Morozova AY, Inozemtsev AN, Chekhonin VP. The Induction of a Depression-Like State by Chronic Exposure to Ultrasound in Rats Is Accompanied by a Reduction in Gene Expression of GABAA-Receptor Subunits in the Brain. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: A review. Eur J Neurosci 2020; 53:151-171. [DOI: 10.1111/ejn.14720] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Pascal Barone
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Samuel Leman
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Thomas Desmidt
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Bruno Brizard
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Wissam El Hage
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Vincent Camus
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| |
Collapse
|
30
|
Pan MH, Zhu SR, Duan WJ, Ma XH, Luo X, Liu B, Kurihara H, Li YF, Chen JX, He RR. "Shanghuo" increases disease susceptibility: Modern significance of an old TCM theory. JOURNAL OF ETHNOPHARMACOLOGY 2019; 250:112491. [PMID: 31863858 DOI: 10.1016/j.jep.2019.112491] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shanghuo", a concept based on Traditional Chinese Medicine (TCM) theory, describes a status of Yin-Yang imbalance when Yang overwhelms Yin. The imbalance of Yin-Yang resembles the breaking of homeostasis and manifests by the impaired physiological functions, which leads to the onset, recurrence, and progression of diseases. Since ancient times, Chinese Materia Medica (CMM), such as herbal tea, has been applied as a treatment for "Shanghuo". AIM OF THE STUDY This review is aimed to describe the origin of "Shanghuo" from the Yin-Yang theory in TCM, as well as explore the relevance and correlations between "Shanghuo" and diseases susceptibility from the perspective of modern medicine. We also propose several strategies from CMM to improve the status of "Shanghuo" for the purpose of treating diseases. METHODS Systematic research of articles with keywords including Shanghuo, Yin-Yang, emotional stress and disease susceptibility was done by using the literature databases (Web of Science, Google Scholar, PubMed, CNKI). Related books, PhD and master's dissertations were also researched. Full scientific plant names were validated by "The Plant List" (www.theplantlist.org). RESULTS To date, a large number of publications have reported research on sub-health status, but studies about the theory or intervention of "Shanghuo" are rarely found. The articles we reviewed indicate that accumulated emotional stress is critical for the cause of "Shanghuo". As a status similar to sub-health, "Shanghuo" is also manifested by impaired physiological functions and decreased nonspecific resistance, which increase susceptibility to various diseases. What's more, some studies highlight the importance of TCM treatment towards "Shanghuo" in maintaining normal physiological functions, such as immunity, lipid metabolism and ROS clearance. CONCLUSIONS Researches on "Shanghuo" and its mechanism are every rare currently and are in need of investigation in the future. Studies on disease susceptibility recently are mostly about susceptible genes that relate to a few parts of people, however, for most of the people, accumulated emotional stress or other stressors is accountable for the susceptibility of diseases. Given that emotional stress plays an important factor in the causation of "Shanghuo", we reviewed the articles about this relevance and discussed the connection of "Shanghuo" with disease susceptibility in a novel perspective. In addition, we have reviewed the disease susceptibility model of restraint stress from its biochemical manifestation to application in CMM assessment. Although it would be a breakthrough in evaluating CMM efficacy of attenuating disease-susceptibility, understanding the comprehensive theory and establishing more models of "Shanghuo" would be required in further investigation.
Collapse
Affiliation(s)
- Ming-Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Rui Zhu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, Guangzhou, 510006, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- College of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
31
|
Veniaminova E, Oplatchikova M, Bettendorff L, Kotenkova E, Lysko A, Vasilevskaya E, Kalueff AV, Fedulova L, Umriukhin A, Lesch KP, Anthony DC, Strekalova T. Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sci 2019; 241:117163. [PMID: 31837337 DOI: 10.1016/j.lfs.2019.117163] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
AIMS The high sugar and lipid content of the Western diet (WD) is associated with metabolic dysfunction, non-alcoholic steatohepatitis, and it is an established risk factor for neuropsychiatric disorders. Our previous studies reported negative effects of the WD on rodent emotionality, impulsivity, and sociability in adulthood. Here, we investigated the effect of the WD on motor coordination, novelty recognition, and affective behavior in mice as well as molecular and cellular endpoints in brain and peripheral tissues. MAIN METHODS Female C57BL/6 J mice were fed the WD for three weeks and were investigated for glucose tolerance, insulin resistance, liver steatosis, and changes in motor coordination, object recognition, and despair behavior in the swim test. Lipids and liver injury markers, including aspartate-transaminase, alanine-transaminase and urea were measured in blood. Serotonin transporter (SERT) expression, the density of Iba1-positive cells and concentration of malondialdehyde were measured in brain. KEY FINDINGS WD-fed mice exhibited impaired glucose tolerance and insulin resistance, a loss of motor coordination, deficits in novel object exploration and recognition, increased helplessness, dyslipidemia, as well as signs of a non-alcoholic steatohepatitis (NASH)-like syndrome: liver steatosis and increased liver injury markers. Importantly, these changes were accompanied by decreased SERT expression, elevated numbers of microglia cells and malondialdehyde levels in, and restricted to, the prefrontal cortex. SIGNIFICANCE The WD induces a spectrum of behaviors that are more reminiscent of ADHD and ASD than previously recognized and suggests that, in addition to the impairment of impulsivity and sociability, the consumption of a WD might be expected to exacerbate motor dysfunction that is also known to be associated with adult ADHD and ASD.
Collapse
Affiliation(s)
- Ekaterina Veniaminova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Margarita Oplatchikova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium
| | - Elena Kotenkova
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Alexander Lysko
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia
| | - Ekaterina Vasilevskaya
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, 400715 Chongqing, China; Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Nab. 7-9, 199034 St. Petersburg, Russia; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia
| | - Liliya Fedulova
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Daniel C Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT Oxford, UK
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany.
| |
Collapse
|
32
|
Cui W, Li H, Guan R, Li M, Yang B, Xu Z, Lin M, Tian L, Zhang X, Li B, Liu W, Dong Z, Wang Z, Zheng T, Zhang W, Lin G, Guo Y, Xin Z. Efficacy and safety of novel low-intensity pulsed ultrasound (LIPUS) in treating mild to moderate erectile dysfunction: a multicenter, randomized, double-blind, sham-controlled clinical study. Transl Androl Urol 2019; 8:307-319. [PMID: 31555554 DOI: 10.21037/tau.2019.07.03] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background In our previous study, a novel low-intensity pulsed ultrasound (LIPUS) therapeutic device has been shown to improve erectile function non-invasively in a diabetic-induced erectile dysfunction (ED) animal model. Methods In order to investigate the efficacy and safety of LIPUS in the clinical treatment of patients with ED, a multicenter, randomized, double-blind, sham-treated, controlled clinical study was conducted at five medical centers, and 120 patients with mild to moderate ED were enrolled in the study. Patients were randomized into a sham-treated control group (40 patients) or a LIPUS-treated group (80 patients). LIPUS or sham treatment was applied to both sides of the penis shaft and crus for 5 min in each area, twice a week for four weeks. Assessment of efficacy and safety were evaluated using IIEF-5, Sexual Encounter Profile (SEP)-questionnaires 2/3, Global Assessment Question (GAQ), Erectile Hardness Score (EHS), Erection Quality Scale (EQS) score, and pain assessment [Visual Analogue Scale/Score (VAS)]. Results Ten patients in LIPUS treatment group and 6 patients in sham treatment control group were excluded and the dropout rate is 13.33%. Response to treatment was identified as IIEF-5 score increased more than 2/3/4 points of post-treatment (12W) compared to pre-treatment (0W). The response rate in treatment group was 54/80 (67.50%), which was significantly higher than control group 8/40 (20.00%) at 12 weeks (FAS analysis). The percentage of patients with positive answers to SEP-3 (successful vaginal intercourse) were 58.97%, 64.1%, and 73.08% 4, 8, and 12 weeks after treatment which were significantly higher than 28.95%, 31.58%, and 28.95% respectively in control group (FAS, P<0.05). The positive responsive rates for GAQ in treatment group were about 2 to 3 times of that in control group (P<0.05). No treatment-related adverse events (AEs) were found, including local petechia or ecchymosis and hematuria. Conclusions Current study indicates that LIPUS can safely and effectively treat patients with mild to moderate ED without significant AEs, which is related to the mechanical force of LIPUS and can restore the pathological changes of the corpus cavernosum. LIPUS is a promising alternative treatment for ED treatment in the near future, while further research is remanded.
Collapse
Affiliation(s)
- Wanshou Cui
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Huixi Li
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Ruili Guan
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Meng Li
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Bicheng Yang
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Zhanwei Xu
- Wanbeili Medical instrument Co., Ltd., Beijing 102200, China
| | - Maofan Lin
- Wanbeili Medical instrument Co., Ltd., Beijing 102200, China
| | - Long Tian
- Department of Urology, Beijing Chaoyang Hospital, Beijing 100020, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Beijing 100020, China
| | - Bao Li
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Weiguang Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Tao Zheng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weixing Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yinglu Guo
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Zhongcheng Xin
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
33
|
Gorlova A, Pavlov D, Anthony DC, Ponomarev ED, Sambon M, Proshin A, Shafarevich I, Babaevskaya D, Lesсh KP, Bettendorff L, Strekalova T. Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice. Neuropharmacology 2019; 156:107543. [PMID: 30817932 DOI: 10.1016/j.neuropharm.2019.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
- Anna Gorlova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, 119991, Moscow, Russia
| | - Dmitrii Pavlov
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, 119991, Moscow, Russia; Institute of General Pathology and Pathophysiology, Baltiiskaya Str, 8, 125315, Moscow, Russia
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT, Oxford, United Kingdom
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium
| | - Andrey Proshin
- Research Institute of Normal Physiology, Baltiiskaya Str, 8, 125315, Moscow, Russia
| | - Igor Shafarevich
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Diana Babaevskaya
- Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Klaus-Peter Lesсh
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Josef-Schneider-Straße 2, 97080, Wuerzburg, Germany
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Institute of General Pathology and Pathophysiology, Baltiiskaya Str, 8, 125315, Moscow, Russia.
| |
Collapse
|
34
|
Dukhinova M, Veremeyko T, Yung AWY, Kuznetsova IS, Lau TYB, Kopeikina E, Chan AML, Ponomarev ED. Fresh evidence for major brain gangliosides as a target for the treatment of Alzheimer's disease. Neurobiol Aging 2019; 77:128-143. [PMID: 30797170 DOI: 10.1016/j.neurobiolaging.2019.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
Although it was suggested that gangliosides play an important role in the binding of amyloid fragments to neuronal cells, the exact role of gangliosides in Alzheimer's disease (AD) pathology remains unclear. To understand the role of gangliosides in AD pathology in vivo, we crossed st3gal5-deficient (ST3-/-) mice that lack major brain gangliosides GM1, GD1a, GD3, GT1b, and GQ1b with 5XFAD transgenic mice that overexpress 3 mutant human amyloid proteins AP695 and 2 presenilin PS1 genes. We found that ST3-/- 5XFAD mice have a significantly reduced burden of amyloid depositions, low level of neuroinflammation, and did not exhibit neuronal loss or synaptic dysfunction. ST3-/- 5XFAD mice performed significantly better in a cognitive test than wild-type (WT) 5XFAD mice, which was comparable with WT nontransgenic mice. Treatment of WT 5XFAD mice with the sialic acid-specific Limax flavus agglutinin resulted in substantial improvement of AD pathology to a level of ST3-/- 5XFAD mice. Thus, our findings highlight an important role for gangliosides as a target for the treatment of AD.
Collapse
Affiliation(s)
- Marina Dukhinova
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Tatyana Veremeyko
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Amanda W Y Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Inna S Kuznetsova
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Thomas Y B Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ekaterina Kopeikina
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Andrew M L Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Kunming Institute of Zoology, Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunmin-Hong Kong, China.
| |
Collapse
|