1
|
Li X, Wu X, Lu T, Kuang C, Si Y, Zheng W, Li Z, Xue Y. Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:3412. [PMID: 38542386 PMCID: PMC10970535 DOI: 10.3390/ijms25063412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xue Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xianwen Wu
- Department of Laboratory Animal Sciences, Peking University Health Sciences Center, Beijing 100191, China;
| | - Tangsheng Lu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yue Si
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Zhonghao Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
| |
Collapse
|
2
|
Washburn S, Oñate M, Yoshida J, Vera J, Bhuvanasundaram R, Khatami L, Nadim F, Khodakhah K. The cerebellum directly modulates the substantia nigra dopaminergic activity. Nat Neurosci 2024; 27:497-513. [PMID: 38272967 PMCID: PMC11441724 DOI: 10.1038/s41593-023-01560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Evidence of direct reciprocal connections between the cerebellum and basal ganglia has challenged the long-held notion that these structures function independently. While anatomical studies have suggested the presence of cerebellar projections to the substantia nigra pars compacta (SNc), the nature and function of these connections (Cb-SNc) is unknown. Here we show, in mice, that Cb-SNc projections form monosynaptic glutamatergic synapses with dopaminergic and non-dopaminergic neurons in the SNc. Optogenetic activation of Cb-SNc axons in the SNc is associated with increased SNc activity, elevated striatal dopamine levels and increased locomotion. During behavior, Cb-SNc projections are bilaterally activated before ambulation and unilateral lever manipulation. Cb-SNc projections show prominent activation for water reward and higher activation for sweet water, suggesting that the pathway also encodes reward value. Thus, the cerebellum directly, rapidly and effectively modulates basal ganglia dopamine levels and conveys information related to movement initiation, vigor and reward processing.
Collapse
Affiliation(s)
- Samantha Washburn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maritza Oñate
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Leila Khatami
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Farzan Nadim
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Zamudio PA, Gioia D, Glaser C, Woodward JJ. Chemogenetic Perturbation of the Posterior But Not Anterior Cerebellum Reduces Voluntary Ethanol Consumption. eNeuro 2023; 10:ENEURO.0037-23.2023. [PMID: 37679043 PMCID: PMC10512884 DOI: 10.1523/eneuro.0037-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The cerebellum communicates with brain areas critically involved in control of goal-directed behaviors including the prefrontal and orbitofrontal cortices and midbrain and basal ganglia structures. In particular, the posterior cerebellum is important for cognitive flexibility and has been implicated in alcohol and drug-related memory. We hypothesized that the cerebellum, through its multiple connections to reward-related brain circuitry, regulates alcohol consumption. To test this, we expressed inhibitory designer receptors exclusively activated by designer drugs (DREADDs) in molecular layer interneurons (MLIs) in anterior (IV-V) or posterior (VI-VIII) cerebellar lobules of male and female mice and activated them during alcohol drinking sessions. In a home-cage drinking paradigm, alcohol consumption was significantly decreased by clozapine-N-oxide (CNO) or deschloroclozapine (DCZ) administration in male mice expressing DREADDs in posterior but not anterior lobules. CNO/DCZ injections did not affect drinking in DREADD expressing female mice or in male mice expressing the control vector. Activation of DREADDs expressed in anterior or posterior lobules had no effect on sucrose or quinine consumption in male or female mice. During operant self-administration sessions, DCZ decreased the number of licks and bouts in male but not female mice expressing DREADDs in posterior lobules with no effect in control vector mice. Performance on an accelerated rotarod was unaffected by chemogenetic manipulation while distance traveled in the open field was decreased by DREADD activation in anterior but not posterior lobules. These results indicate that neuronal activity within the posterior cerebellar cortex plays an important role in the control of alcohol consumption in male mice.
Collapse
Affiliation(s)
- Paula A Zamudio
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Dominic Gioia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Christina Glaser
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
4
|
Melchor-Eixea I, Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Pastor R, Miquel M. Putting forward a model for the role of the cerebellum in cocaine-induced pavlovian memory. Front Syst Neurosci 2023; 17:1154014. [PMID: 37388941 PMCID: PMC10303950 DOI: 10.3389/fnsys.2023.1154014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Substance Use Disorder (SUD) involves emotional, cognitive, and motivational dysfunction. Long-lasting molecular and structural changes in brain regions functionally and anatomically linked to the cerebellum, such as the prefrontal cortex, amygdala, hippocampus, basal ganglia, and ventral tegmental area, are characteristic of SUD. Direct and indirect reciprocal connectivity between the cerebellum and these brain regions can explain cerebellar roles in Pavlovian and reinforcement learning, fear memory, and executive functions. It is increasingly clear that the cerebellum modulates brain functions altered in SUD and other neuropsychiatric disorders that exhibit comorbidity with SUD. In the present manuscript, we review and discuss this evidence and present new research exploring the role of the cerebellum in cocaine-induced conditioned memory using chemogenetic tools (designer receptor exclusively activated by designer drug, DREADDs). Our preliminary data showed that inactivation of a region that includes the interposed and lateral deep cerebellar nuclei reduces the facilitating effect of a posterior vermis lesion on cocaine-induced preference conditioning. These findings support our previous research and suggest that posterior vermis damage may increase drug impact on the addiction circuitry by regulating activity in the DCN. However, they raise further questions that will also be discussed.
Collapse
|
5
|
Rodríguez-Borillo O, Roselló-Jiménez L, Guarque-Chabrera J, Palau-Batet M, Gil-Miravet I, Pastor R, Miquel M, Font L. Neural correlates of cocaine-induced conditioned place preference in the posterior cerebellar cortex. Front Behav Neurosci 2023; 17:1174189. [PMID: 37179684 PMCID: PMC10169591 DOI: 10.3389/fnbeh.2023.1174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Addictive drugs are potent neuropharmacological agents capable of inducing long-lasting changes in learning and memory neurocircuitry. With repeated use, contexts and cues associated with consumption can acquire motivational and reinforcing properties of abused drugs, triggering drug craving and relapse. Neuroplasticity underlying drug-induced memories takes place in prefrontal-limbic-striatal networks. Recent evidence suggests that the cerebellum is also involved in the circuitry responsible for drug-induced conditioning. In rodents, preference for cocaine-associated olfactory cues has been shown to correlate with increased activity at the apical part of the granular cell layer in the posterior vermis (lobules VIII and IX). It is important to determine if the cerebellum's role in drug conditioning is a general phenomenon or is limited to a particular sensory modality. Methods The present study evaluated the role of the posterior cerebellum (lobules VIII and IX), together with the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc) using a cocaine-induced conditioned place preference procedure with tactile cues. Cocaine CPP was tested using ascending (3, 6, 12, and 24 mg/kg) doses of cocaine in mice. Results Compared to control groups (Unpaired and Saline animals), Paired mice were able to show a preference for the cues associated with cocaine. Increased activation (cFos expression) of the posterior cerebellum was found in cocaine CPP groups and showed a positive correlation with CPP levels. Such increases in cFos activity in the posterior cerebellum significantly correlated with cFos expression in the mPFC. Discussion Our data suggest that the dorsal region of the cerebellum could be an important part of the network that mediates cocaine-conditioned behavior.
Collapse
Affiliation(s)
| | | | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - María Palau-Batet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raúl Pastor
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Laura Font
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
6
|
Brown TE, Sorg BA. Net gain and loss: influence of natural rewards and drugs of abuse on perineuronal nets. Neuropsychopharmacology 2023; 48:3-20. [PMID: 35568740 PMCID: PMC9700711 DOI: 10.1038/s41386-022-01337-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Overindulgence, excessive consumption, and a pattern of compulsive use of natural rewards, such as certain foods or drugs of abuse, may result in the development of obesity or substance use disorder, respectively. Natural rewards and drugs of abuse can trigger similar changes in the neurobiological substrates that drive food- and drug-seeking behaviors. This review examines the impact natural rewards and drugs of abuse have on perineuronal nets (PNNs). PNNs are specialized extracellular matrix structures that ensheathe certain neurons during development over the critical period to provide synaptic stabilization and a protective microenvironment for the cells they surround. This review also analyzes how natural rewards and drugs of abuse impact the density and maturation of PNNs within reward-associated circuitry of the brain, which may contribute to maladaptive food- and drug-seeking behaviors. Finally, we evaluate the relatively few studies that have degraded PNNs to perturb reward-seeking behaviors. Taken together, this review sheds light on the complex way PNNs are regulated by natural rewards and drugs and highlights a need for future studies to delineate the molecular mechanisms that underlie the modification and maintenance of PNNs following exposure to rewarding stimuli.
Collapse
Affiliation(s)
- Travis E Brown
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, 97232, USA
| |
Collapse
|
7
|
Yoshida J, Oñate M, Khatami L, Vera J, Nadim F, Khodakhah K. Cerebellar Contributions to the Basal Ganglia Influence Motor Coordination, Reward Processing, and Movement Vigor. J Neurosci 2022; 42:8406-8415. [PMID: 36351826 PMCID: PMC9665921 DOI: 10.1523/jneurosci.1535-22.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Both the cerebellum and the basal ganglia are known for their roles in motor control and motivated behavior. These two systems have been classically considered as independent structures that coordinate their contributions to behavior via separate cortico-thalamic loops. However, recent evidence demonstrates the presence of a rich set of direct connections between these two regions. Although there is strong evidence for connections in both directions, for brevity we limit our discussion to the better-characterized connections from the cerebellum to the basal ganglia. We review two sets of such connections: disynaptic projections through the thalamus and direct monosynaptic projections to the midbrain dopaminergic nuclei, the VTA and the SNc. In each case, we review the evidence for these pathways from anatomic tracing and physiological recordings, and discuss their potential functional roles. We present evidence that the disynaptic pathway through the thalamus is involved in motor coordination, and that its dysfunction contributes to motor deficits, such as dystonia. We then discuss how cerebellar projections to the VTA and SNc influence dopamine release in the respective targets of these nuclei: the NAc and the dorsal striatum. We argue that the cerebellar projections to the VTA may play a role in reward-based learning and therefore contribute to addictive behavior, whereas the projection to the SNc may contribute to movement vigor. Finally, we speculate how these projections may explain many of the observations that indicate a role for the cerebellum in mental disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maritza Oñate
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Leila Khatami
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Farzan Nadim
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
8
|
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology 2022; 218:109210. [PMID: 35985392 DOI: 10.1016/j.neuropharm.2022.109210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
Abstract
Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|