1
|
Xing C, Chen H, Bi W, Lei T, Hang Z, Du H. Targeting 5-HT Is a Potential Therapeutic Strategy for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13446. [PMID: 39769209 PMCID: PMC11679250 DOI: 10.3390/ijms252413446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
There is increasing interest in the potential therapeutic role of 5-HT (serotonin) in the treatment of neurodegenerative diseases, which are characterized by the progressive degeneration and death of nerve cells. 5-HT is a vital neurotransmitter that plays a central role in regulating mood, cognition, and various physiological processes in the body. Disruptions in the 5-HT system have been linked to several neurological and psychiatric disorders, making it an attractive target for therapeutic intervention. Although the exact causes of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are not fully understood, researchers believe that regulating the 5-HT system could help alleviate symptoms and potentially slow the progression of these diseases. Here, we delve into the potential of harnessing 5-HT as a therapeutic target for the treatment of neurodegenerative diseases. It is important to note that the current clinical drugs targeting 5-HT are still limited in the treatment of these complex diseases. Therefore, further research and clinical trials are needed to evaluate the feasibility and effectiveness of its clinical application.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongyu Chen
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Wangyu Bi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Zhongci Hang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
2
|
Koyama E, Kant T, Takata A, Kennedy JL, Zai CC. Genetics of child aggression, a systematic review. Transl Psychiatry 2024; 14:252. [PMID: 38862490 PMCID: PMC11167064 DOI: 10.1038/s41398-024-02870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/13/2024] Open
Abstract
Excessive and persistent aggressiveness is the most common behavioral problem that leads to psychiatric referrals among children. While half of the variance in childhood aggression is attributed to genetic factors, the biological mechanism and the interplay between genes and environment that results in aggression remains elusive. The purpose of this systematic review is to provide an overview of studies examining the genetics of childhood aggression irrespective of psychiatric diagnosis. PubMed, PsycINFO, and MEDLINE databases were searched using predefined search terms for aggression, genes and the specific age group. From the 652 initially yielded studies, eighty-seven studies were systematically extracted for full-text review and for further quality assessment analyses. Findings show that (i) investigation of candidate genes, especially of MAOA (17 studies), DRD4 (13 studies), and COMT (12 studies) continue to dominate the field, although studies using other research designs and methods including genome-wide association and epigenetic studies are increasing, (ii) the published articles tend to be moderate in sizes, with variable methods of assessing aggressive behavior and inconsistent categorizations of tandem repeat variants, resulting in inconclusive findings of genetic main effects, gene-gene, and gene-environment interactions, (iii) the majority of studies are conducted on European, male-only or male-female mixed, participants. To our knowledge, this is the first study to systematically review the effects of genes on youth aggression. To understand the genetic underpinnings of childhood aggression, more research is required with larger, more diverse sample sets, consistent and reliable assessments and standardized definition of the aggression phenotypes. The search for the biological mechanisms underlying child aggression will also benefit from more varied research methods, including epigenetic studies, transcriptomic studies, gene system and genome-wide studies, longitudinal studies that track changes in risk/ameliorating factors and aggression-related outcomes, and studies examining causal mechanisms.
Collapse
Affiliation(s)
- Emiko Koyama
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Tuana Kant
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Zorc M, Horvat T, Tanšek A, Ferme T, Dovč P. Selection Signatures Reveal Candidate Genes for the Cornish Rex Breed-Specific Phenotype. Genes (Basel) 2024; 15:368. [PMID: 38540427 PMCID: PMC10969784 DOI: 10.3390/genes15030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Many coat color, behavioral and morphological traits are specific and fixed across cat breeds, with several variants influencing these traits being common among different breeds. In the domestic cat, rexoid mutations have been documented in several breeds. In the Cornish Rex, four bp deletion in the LPAR6 gene has been found to cause a frame shift and a premature stop codon. In addition to the rexoid coat, Cornish Rex cats also have a characteristic head, ear shape and body type. Analysis of the selection signatures in the Cornish Rex genome revealed several regions that are under selective pressure. One of these is located in CFA B4, in the region where the ALX1 gene is located. The ALX1 gene in Burmese cats disrupts the cranial morphogenesis and causes brachycephaly in the heterozygous state. In our study, we confirmed the presence of a deletion in LPAR6 in 20 Cornish Rex and in four F1 hybrids between Cornish Rex and domestic cat. However, we did not confirm the presence of the deletion in ALX1 in Cornish Rex cats. Genome-wide selection signature analysis was performed using ROH islands and integrated haplotype score (iHS) statistics based on publicly available SNP array data of 11 Cornish Rex cats. The selection signatures were detected on chromosomes A1, A3, C2, B1, B4 and D1.
Collapse
Affiliation(s)
| | | | | | | | - Peter Dovč
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (M.Z.); (T.H.); (A.T.); (T.F.)
| |
Collapse
|
4
|
Dai Y, Zhang C, Zhang L, Wen C, Li H, Zhu T. Genetic polymorphism in HTR2A rs6313 is associated with internet addiction disorder. Front Psychiatry 2024; 15:1292877. [PMID: 38419907 PMCID: PMC10899489 DOI: 10.3389/fpsyt.2024.1292877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Internet addiction disorder (IAD) has grown into public health concern of global proportions. Previous studies have indicated that individuals with IAD may exhibit altered levels of serotonin and dopamine, which are known to play crucial roles in depression, anxiety, impulsivity, and addiction. Therefore, polymorphisms in the receptors that mediate the effects of serotonin and dopamine and affect their functional states as well as their activities are suspect. In this study, we aimed to investigate the association between IAD and rs6313 (T102C) polymorphism in the serotonin 2A receptor (5-HT2A) gene, (HTR2A). Methods Twenty patients with IAD and twenty healthy controls (HCs) were included in this study. Young's Internet Addiction Test (IAT), Self-Rating Anxiety Scale, Self-Rating Depression Scale, Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Barratt Impulse Scale, Pittsburgh Sleep Quality Index (PSQI), and Social Support Rating Scale (SSRS) were used to assess the severity of internet addiction, mental status, impulsive traits, sleep quality, and social support. Genotyping was performed to identify rs6313 polymorphisms in the HTR2A gene of all participants. Results The frequencies of the C and T alleles of HTR2A T102C were 28% and 72% in the IAD group and 53% and 47% in the HCs group, respectively, indicating that the differences between these two groups were significant. No significant difference was observed in the distribution of the CC, CT, and TT genotypes of HTR2A gene T102C between the IAD and the HCs groups. Additionally, there was no difference in the distribution of the frequencies of the HTR2A gene T102C CC and CT+TT genotypes between the two groups. However, the distribution between the TT and CC+CT genotypes showed an apparent statistical difference in the HTR2A gene T102C between the two groups. Correlation analysis indicated that the IAT score was positively correlated with the Y-BOCS and BIS scores for the CC+CT genotype in patients with IAD. Moreover, the IAT score was positively correlated with the PSQI score in patients with IAD carrying the TT genotype. Conclusion The present study demonstrates that rs6313 in HTR2A is associated with IAD, and that the T allele of rs6313 in HTR2A may be a risk factor for IAD.
Collapse
Affiliation(s)
- Yu Dai
- Department of Traditional Chinese Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenchen Zhang
- Department of Rehabilitation, Traditional Chinese Medicine Hospital of Longquanyi District, Chengdu, China
| | - Lingrui Zhang
- Department of Medicine, Leshan Vocational and Technical College, Leshan, China
| | - Chao Wen
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongya Li
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianmin Zhu
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Corva DM, Doeven EH, Parke B, Adams SD, Tye SJ, Hashemi P, Berk M, Kouzani AZ. SmartFSCV: An Artificial Intelligence Enabled Miniaturised FSCV Device Targeting Serotonin. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:75-85. [PMID: 38487099 PMCID: PMC10939322 DOI: 10.1109/ojemb.2024.3356177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 03/17/2024] Open
Abstract
Goal: Dynamically monitoring serotonin in real-time within target brain regions would significantly improve the diagnostic and therapeutic approaches to a variety of neurological and psychiatric disorders. Current systems for measuring serotonin lack immediacy and portability and are bulky and expensive. Methods: We present a new miniaturised device, named SmartFSCV, designed to monitor dynamic changes of serotonin using fast-scan cyclic voltammetry (FSCV). This device outputs a precision voltage potential between -3 to +3 V, and measures current between -1.5 to +1.5 μA with nano-ampere accuracy. The device can output modifiable arbitrary waveforms for various measurements and uses an N-shaped waveform at a scan-rate of 1000 V/s for sensing serotonin. Results: Four experiments were conducted to validate SmartFSCV: static bench test, dynamic serotonin test and two artificial intelligence (AI) algorithm tests. Conclusions: These tests confirmed the ability of SmartFSCV to accurately sense and make informed decisions about the presence of serotonin using AI.
Collapse
Affiliation(s)
- Dean M. Corva
- School of EngineeringDeakin UniversityGeelongVIC3216Australia
| | - Egan H. Doeven
- School of Life and Environmental SciencesDeakin UniversityGeelongVIC3216Australia
| | - Brenna Parke
- Department of BioengineeringImperial College LondonSW7 2AZLondonU.K.
| | - Scott D. Adams
- School of EngineeringDeakin UniversityGeelongVIC3216Australia
| | - Susannah J. Tye
- Queensland Brain InstituteThe University of QueenslandSt. LuciaQLD4072Australia
| | - Parastoo Hashemi
- Department of BioengineeringImperial College LondonSW7 2AZLondonU.K.
| | - Michael Berk
- School of Medicine, IMPACTDeakin UniversityGeelongVIC3216Australia
| | | |
Collapse
|
6
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
7
|
The Predictive Value of Monocyte/High-Density Lipoprotein Ratio (MHR) and Positive Symptom Scores for Aggression in Patients with Schizophrenia. Medicina (B Aires) 2023; 59:medicina59030503. [PMID: 36984504 PMCID: PMC10055014 DOI: 10.3390/medicina59030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Background and Objectives: Schizophrenia with aggression often has an inflammatory abnormality. The monocyte/high-density lipoprotein ratio (MHR), neutrophil/high-density lipoprotein ratio (NHR), platelet/high-density lipoprotein ratio (PHR) and lymphocyte/high-density lipoprotein ratio (LHR) have lately been examined as novel markers for the inflammatory response. The objective of this study was to assess the relationship between these new inflammatory biomarkers and aggression in schizophrenia patients. Materials and Methods: We enrolled 214 schizophrenia inpatients in our cross-sectional analysis. They were divided into the aggressive group (n = 94) and the non-aggressive group (n = 120) according to the Modified Overt Aggression Scale (MOAS). The severity of schizophrenia was assessed using the Positive and Negative Syndrome Scale (PANSS). The numbers of platelets (PLT), neutrophils (NEU), lymphocytes (LYM), monocytes (MON) and the high-density lipoprotein (HDL) content from subjects were recorded. The NHR, PHR, MHR and LHR were calculated. We analyzed the differences between those indexes in these two groups, and further searched for the correlation between inflammatory markers and aggression. Results: Patients with aggression had higher positive symptom scores (p = 0.002). The values of PLT, MON, MHR and PHR in the aggressive group were considerably higher (p < 0.05). The NHR (r = 0.289, p < 0.01), LHR (r = 0.213, p < 0.05) and MHR (r = 0.238, p < 0.05) values of aggressive schizophrenia patients were positively correlated with the total weighted scores of the MOAS. A higher MHR (β = 1.529, OR = 4.616, p = 0.026) and positive symptom scores (β = 0.071, OR = 1.047, p = 0.007) were significant predictors of aggression in schizophrenia patients. Conclusions: The MHR and the positive symptom scores may be predictors of aggressive behavior in schizophrenia patients. The MHR, a cheap and simple test, may be useful as a clinical tool for risk stratification, and it may direct doctors’ prevention and treatment plans in the course of ordinary clinical care.
Collapse
|
8
|
Braccagni G, Scheggi S, Bortolato M. Elevated levels of serotonin 5-HT 2A receptors in the orbitofrontal cortex of antisocial individuals. Eur Arch Psychiatry Clin Neurosci 2023; 273:411-425. [PMID: 36094569 PMCID: PMC10831872 DOI: 10.1007/s00406-022-01480-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Antisocial behavior (ASB) is characterized by frequent violations of the rights and properties of others, as well as aggressive conduct. While ample evidence points to a critical role of serotonin in the emotional modulation of social responses, the implication of this neurotransmitter in ASB is unclear. Here, we performed the first-ever postmortem analysis of serotonergic markers in the orbitofrontal cortex (OFC) of male subjects with ASB (n = 9). We focused on this brain region, given its well-recognized role in social response and ASB pathophysiology. Given that all individuals also had a substance use disorder (SUD) diagnosis, two age-matched control groups were used: SUD only and unaffected controls. Tissues were processed for immunoblotting analyses on eight key serotonergic targets: tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of brain serotonin synthesis; serotonin transporter (SERT), the primary carrier for serotonin uptake; monoamine oxidase A (MAOA), the primary enzyme for serotonin catabolism; and five serotonin receptors previously shown to influence social behavior: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, and 5-HT4. Our analyses documented a significant increase in 5-HT2A receptor levels in the ASB + SUD group compared to SUD-only controls. Furthermore, TPH2 levels were significantly reduced in the SUD group (including SUD only and ASB + SUD) compared to unaffected controls. No difference was detected in the expression of any other serotonergic target. These results are in keeping with previous evidence showing high 5-HT2A receptor binding in the OFC of pathologically aggressive individuals and point to this molecule as a potential target for ASB treatment.
Collapse
Affiliation(s)
- Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, Room 3916, 30 S 2000 E, Salt Lake City, UT, 84112, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, Room 3916, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
9
|
Sotille R, Singh H, Weisman A, Vida T. Unraveling the Mysteries of Mental Illness With Psilocybin. Cureus 2022; 14:e25414. [PMID: 35769681 PMCID: PMC9233936 DOI: 10.7759/cureus.25414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Current medications have not been effective in reducing the prevalence of mental illness worldwide. The prevalence of illnesses such as treatment-resistant depression has increased despite the widespread use of a broad set of psychopharmaceuticals. Transcranial magnetic stimulation and ketamine therapy are making great strides in improving treatment-resistant depression outcomes but they have limitations. New psychotherapeutics are required that specifically target the underlying cellular pathologies leading to neuronal atrophy. This neuronal atrophy model is supplanting the long-held neurotransmitter deficit hypothesis to explain mental illness. Interest in psychedelics as therapeutic molecules to treat mental illness is experiencing a 21st-century reawakening that is on the cusp of a transformation. Psilocybin is a pro-drug, found in various naturally occurring mushrooms, that is dephosphorylated to produce psilocin, a classic tryptamine psychedelic functional as a 5-hydroxytryptamine 2A receptor agonist. We have focused this review to include studies in the last two years that suggest psilocybin promotes neuronal plasticity, which may lead to changes in brain network connectivity. Recent advancements in clinical trials using pure psilocybin in therapy suggest that it may effectively relieve the symptoms of depression in patients diagnosed with major depressive disorder and treatment-resistant depression. Sophisticated cellular and molecular experiments at the systems level have produced evidence that demonstrates psilocybin promotes neuritogenesis in the mouse brain - a mechanism that may address the root cause of depression at the cellular level. Finally, studies with psilocybin therapy for major depressive disorder suggest that this ancient molecule can promote functionally connected intrinsic networks in the human brain, resulting in durable improvements in the severity of depressive symptoms. Although further research is necessary, the prospect of using psilocybin for the treatment of mental illness is an enticing possibility.
Collapse
Affiliation(s)
- Robert Sotille
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| | - Herpreet Singh
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| | - Anne Weisman
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| | - Thomas Vida
- Medical Education, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, USA
| |
Collapse
|