1
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
2
|
Schiff base-type copper(I) complexes exhibiting high molar extinction coefficients: Synthesis, characterization and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Zheng D, Huang TH, Luo C, Tang J. Structural characterization, DFT studies and luminescent properties of dinuclear copper(I)-diimine complexes with the S-shape configurations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Meyer M, Mardegan L, Tordera D, Prescimone A, Sessolo M, Bolink HJ, Constable EC, Housecroft CE. A counterion study of a series of [Cu(P^P)(N^N)][A] compounds with bis(phosphane) and 6-methyl and 6,6'-dimethyl-substituted 2,2'-bipyridine ligands for light-emitting electrochemical cells. Dalton Trans 2021; 50:17920-17934. [PMID: 34757348 PMCID: PMC8669729 DOI: 10.1039/d1dt03239a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
The syntheses and characterisations of a series of heteroleptic copper(I) compounds [Cu(POP)(Mebpy)][A], [Cu(POP)(Me2bpy)][A], [Cu(xantphos)(Mebpy)][A] and [Cu(xantphos)(Me2bpy)][A] in which [A]- is [BF4]-, [PF6]-, [BPh4]- and [BArF4]- (Mebpy = 6-methyl-2,2'-bipyridine, Me2bpy = 6,6'-dimethyl-2,2'-bipyridine, POP = oxydi(2,1-phenylene)bis(diphenylphosphane), xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane), [BArF4]- = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) are reported. Nine of the compounds have been characterised by single crystal X-ray crystallography, and the consequences of the different anions on the packing interactions in the solid state are discussed. The effects of the counterion on the photophysical properties of [Cu(POP)(N^N)][A] and [Cu(xantphos)(N^N)][A] (N^N = Mebpy and Me2bpy) have been investigated. In the solid-state emission spectra, the highest energy emission maxima are for [Cu(xantphos)(Mebpy)][BPh4] and [Cu(xantphos)(Me2bpy)][BPh4] (λemmax = 520 nm) whereas the lowest energy λemmax values occur for [Cu(POP)(Mebpy)][PF6] and [Cu(POP)(Mebpy)][BPh4] (565 nm and 563 nm, respectively). Photoluminescence quantum yields (PLQYs) are noticeably affected by the counterion; in the [Cu(xantphos)(Me2bpy)][A] series, solid-state PLQY values decrease from 62% for [PF6]-, to 44%, 35% and 27% for [BF4]-, [BPh4]- and [BArF4]-, respectively. This latter series of compounds was used as active electroluminescent materials on light-emitting electrochemical cells (LECs). The luminophores were mixed with ionic liquids (ILs) [EMIM][A] ([EMIM]+ = [1-ethyl-3-methylimidazolium]+) containing the same or different counterions than the copper(I) complex. LECs containing [Cu(xantphos)(Me2bpy)][BPh4] and [Cu(xantphos)(Me2bpy)][BArF4] failed to turn on under the LEC operating conditions, whereas those with the smaller [PF6]- or [BF4]- counterions had rapid turn-on times and exhibited maximum luminances of 173 and 137 cd m-2 and current efficiencies of 3.5 and 2.6 cd A-1, respectively, when the IL contained the same counterion as the luminophore. Mixing the counterions ([PF6]- and [BF4]-) of the active complex and the IL led to a reduction in all the figures of merit of the LECs.
Collapse
Affiliation(s)
- Marco Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Lorenzo Mardegan
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Daniel Tordera
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Michele Sessolo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Henk J Bolink
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Edwin C Constable
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| |
Collapse
|
5
|
Synthetic protocols and applications of copper(I) phosphine and copper(I) phosphine/diimine complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Zhang X, Wu Z, Xu JY, Li WX, Li XL. Synthesis, structures and naked-eye phosphorescence of 2-(6-Methoxynaphthyl)-1H-imidazo[4,5-f][1,10]phenanthroline-Cu(I) complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
He TF, Ren AM, Chen YN, Hao XL, Shen L, Zhang BH, Wu TS, Zhang HX, Zou LY. Molecular-Level Insight of Cu(I) Complexes with the 7,8-Bis(diphenylphosphino)-7,8-dicarba- nido-undecaborate Ligand as a Thermally Activated Delayed Fluorescence Emitter: Luminescent Mechanism and Design Strategy. Inorg Chem 2020; 59:12039-12053. [PMID: 32786269 DOI: 10.1021/acs.inorgchem.0c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Investigation of the clear structure-property relationship and microscopic mechanism of thermally activated delayed fluorescence (TADF) emitters with high emission quantum yield is a direction worthy of continuous efforts. The instructive theoretical principle of TADF material design is critical and challenging. Here, we carried out theoretical calculation on two experimental Cu(I) complexes with the same 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate (dppnc) but different N^N ligands [dmbpy = 6,6'-dimethyl-2,2'-bipyridine (1) or dmp = 2,9-dimethyl-1,10-phenanthroline (2)] to briefly elaborate the structure-TADF performance relationship and luminescence mechanism. It was found that enhanced rigidity by the fused benzene ring between two pyridyl units in complex 2 leads to (i) higher allowedness of S1 → S0, (ii) more effective reverse intersystem crossing (RISC), and (iii) better relative stability of the T1 state, which could be responsible for its excellent TADF behavior. Thus, a strategy of extending π conjugation in the N^N ligand could be deduced to further enhance the quantum yield. We validated it and have succeeded in designing analogue complex 4 by extending π conjugation with an electron-withdrawing pyrazinyl. Benefiting from the smaller energy gap (ΔEST) and plunged reorganization energy between the S1 and T1 states, the rate of RISC in complex 4 (1.05 × 108 s-1) increased 2 orders of magnitude relative to that of 2 (5.80 × 106 s-1), showing more superiority of the TADF behavior through a better balance of RISC, fluorescence, and phosphorescence decay. Meanwhile, the thermally activated temperature of 4 is only 165 K, implying that there is a low-energy barrier. All of these indicate that the designed complex 4 may be a potential TADF candidate.
Collapse
Affiliation(s)
- Teng-Fei He
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Yuan-Nan Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Xue-Li Hao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Lu Shen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Bo-Hua Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Tong-Shun Wu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Lu-Yi Zou
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
8
|
Alkan-Zambada M, Constable EC, Housecroft CE. The Role of Percent Volume Buried in the Characterization of Copper(I) Complexes for Lighting Purposes. Molecules 2020; 25:molecules25112647. [PMID: 32517264 PMCID: PMC7321245 DOI: 10.3390/molecules25112647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
The usefulness of percent volume buried (%Vbur) as a readily quantifiable property is investigated with regard to [Cu(NN)(PP)]+ complexes of interest for lighting purposes. Photoluminescence quantum yields (PLQYs) and single crystal X-ray structures of 100 reported compounds were assembled, %Vbur of the ligand systems were calculated and analyzed for correlations. We found that increased shielding of the central Cu(I) cation relying on shared contributions of both (NN) and (PP) ligand systems led to increased PLQYs. These findings are of relevance for future characterizations of Cu(I)-based complexes and their photophysical behavior in the solid-state.
Collapse
Affiliation(s)
- Murat Alkan-Zambada
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, 1015 Lausanne, Switzerland
- Correspondence:
| | - Edwin C. Constable
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; (E.C.C.); (C.E.H.)
| | - Catherine E. Housecroft
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; (E.C.C.); (C.E.H.)
| |
Collapse
|
9
|
Nine heteroleptic copper(I)/silver(I) complexes prepared from phosphine and diimine ligands: syntheses, structures and terahertz spectra. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|