1
|
Aprajita, Choudhary M. Design, synthesis and characterization of novel Ni(II) and Cu(II) complexes as antivirus drug candidates against SARS-CoV-2 and HIV virus. J Mol Struct 2022; 1263:133114. [PMID: 35465175 PMCID: PMC9017811 DOI: 10.1016/j.molstruc.2022.133114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 12/16/2022]
Abstract
This paper describes the structure-based design, synthesis and anti-virus effect of two new coordination complexes, a Ni(II) complex [Ni(L)2] (1) and a Cu(II) complex [Cu(L)2] (2) of (E)-N-phenyl-2-(thiophen-2-ylmethylene) hydrazine-1-carbothioamide(HL). The synthesized ligand was coordinated to metal ions through the bidentate-N, S donor atoms. The newly synthesized complexes were characterized by various spectroscopic and physiochemical methods, powdered XRD analysis and also X-ray crystallography study. Ni(II) complex [Ni(L)2](1) crystallize in orthorhombic crystal system with the space group Pbca with four molecules in the unit cell (a = 9.857(3) Å, b = 7.749(2) Å, c = 32.292(10) Å, α = 90°, β = 90°, γ = 90°, Z= 4) and reveals a distorted square planar geometry. A Hirshfeld surface and 2D fingerprint plot has been explored in the crystal structure of Ni(II) complex [Ni(L)2] (1). Energy framework computational analysia has also been explored. DFT based calculations have been performed on the Schiff base and its metal complexes to study the structure-property relationship. Furthermore, the molecular docking studies of the ligand and its metal complexes with SARS-CoV-2 virus (PDB ID: 7BZ5) and HIV-1 virus (PDB ID: 6MQA) are also investigated. The molecular docking calculations of the Ni(II) complex [Ni(L)2] (1) and a Cu(II) complex [Cu(L)2] (2) with SARS-CoV-2 virus revealed that the binding affinities at inhibition binding site of receptor protein are 9.7 kcal/mol and -9.3 kcal/mol, respectively. The molecular docking results showed that the binding affinities of Ni(II) complex (1) and Cu(II) complex (2) against SARS-CoV-2 virus were found comparatively higher than the HIV-1 virus (-8.5 kcal/mol and -8.2 kcal/mol, respectively). As potential drug candidates, Swiss-ADME predictions analyses are also studied and the results are compared with Chloroquine (CQ) and Hydroxychloroquine (HCQ) as anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Aprajita
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| |
Collapse
|
2
|
Mono- and binuclear copper(II) complexes with different structural motifs and geometries: Synthesis, spectral characterization, DFT calculations and superoxide dismutase enzymatic activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Patel SK, Patel RN, Patel AK, Patel N, Choquesillo-Lazarte D. Copper hydrazone complexes with different nuclearties and geometries: Synthesis, characterization, single crystal structures, Hirshfeld analysis and superoxide dismutase mimetic activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Travadi M, Jadeja R, Butcher RJ. Synthesis, covalency parameters, energy calculations and Crystal features of Acylpyrazolone derived Pentavalent Uranyl complex along with DFT and Hirshfeld analysis. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kumar S, Choudhary M. Copper(II) Schiff base complex derived from salen ligand: structural investigation, Hirshfeld surface analysis, anticancer and anti-SARS-CoV-2. J Biomol Struct Dyn 2022:1-24. [DOI: 10.1080/07391102.2022.2076155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
6
|
Haiduc I. Inverse coordination complexes with oxoanions as centroligands. A review of topologies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
New copper(II) μ-Alkoxo-μ-carboxylato double-bridged complexes as models for the active site of catechol oxidase: Synthesis, spectral characterization and DFT calculations. Heliyon 2022; 8:e09373. [PMID: 35592663 PMCID: PMC9113650 DOI: 10.1016/j.heliyon.2022.e09373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
A series of four copper(II) μ-Alkoxo-μ-carboxylato double bridged complexes, [{Cu2(L)}2][(μ–O2C–CO2] 1, [{Cu2(L)}2(μ–O2C–(CH2)CO2] 2, [{Cu2(L)}2(μ–O2C–CH2–CO2] 3 and [{Cu2(L)}2(μ–O2C–C6H4–CO2] 4 (H3L = 4-bromo-2-((E)-((3-(((E)-5-chloro-2-hydroxybenzylidene) amino)-2-hydroxypropyl) imino) methyl)-6-methoxyphenol and μ-dicarboxylate ions = oxalate, malonate, succinate and terephthalate) have been synthesized and characterized using several physicochemical techniques. The tridentate nature of H3L is interpreted from IR spectra. The Epr spectra of these complexes are characteristic of the quintet state (S = 2) in central features and the triplet state (S = 1) of these tetranuclear complexes. The electrochemical potential of these complexes was investigated using CV (cyclic voltammetry) and DPV (differential pulse voltammetry). All complexes showed quasi reversible reduction peaks in the cathodic region. To explore the stability of these complexes, quantum chemical parameters like electronegativity, ionization potential, electron affinity, global hardness and softness, and electrophilicity were estimated and discussed. The synthesized complexes have been designed as structural and functional models of the catechol oxidase enzymes to investigate the catecholase activity. Additionally, superoxide dismutase activity data of all complexes have also been evaluated and compared with known SOD mimics.
Collapse
|
8
|
Patel AK, Patel N, Jadeja RN, Patel SK, Patel RN, Kumar S, Kapavarapu R. Interaction of pseudohalides copper(II) complexes of hydrazide ligand with DNA: synthesis, spectral characterization, molecular docking simulations and superoxide dismutase activity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abhay K. Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Neetu Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - R. N. Jadeja
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - S. K. Patel
- Department of Chemistry, APS University, Rewa, India
| | - R. N. Patel
- Department of Chemistry, APS University, Rewa, India
| | - S. Kumar
- Division of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - R. Kapavarapu
- Nirmala college of Pharmacy, Mangalagiri, Andhra Pradesh, India
| |
Collapse
|
9
|
Structural diversity of copper(II) complexes with three dimensional network: Crystal structure, Hirshfeld surface analysis, DFT calculations and catalytic activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Mariwamy VH, Kollur SP, Shivananda B, Begum M, Shivamallu C, Dharmashekara C, Pradeep S, Jain AS, Prasad SK, Syed A, Elgorban AM, Al-Rejaie S, Ortega-Castro J, Frau J, Flores-Holguín N, Glossman-Mitnik D. N-((1 H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations. Molecules 2022; 27:1436. [PMID: 35209226 PMCID: PMC8880514 DOI: 10.3390/molecules27041436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.
Collapse
Affiliation(s)
- Vinusha H. Mariwamy
- Department of Chemistry, Sri Jayachamarajendra College of Enegineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India; (V.H.M.); (B.S.); (M.B.)
| | - Shiva Prasad Kollur
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), Laucala Campus, The University of the South Pacific, Suva, Fiji
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru Campus, Amrita Vishwa Vidyapeetham, Mysore 570 026, Karnataka, India
| | - Bindya Shivananda
- Department of Chemistry, Sri Jayachamarajendra College of Enegineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India; (V.H.M.); (B.S.); (M.B.)
| | - Muneera Begum
- Department of Chemistry, Sri Jayachamarajendra College of Enegineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India; (V.H.M.); (B.S.); (M.B.)
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Anisha S. Jain
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Salim Al-Rejaie
- Department of Pharmacology and Toxicology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain; (J.O.-C.); (J.F.)
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain; (J.O.-C.); (J.F.)
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| |
Collapse
|
11
|
Patel AK, Jadeja RN, Patel N, Patel RN, Patel SK, Butcher R, Kumar S, Kumar G. Copper(II) hydrazone complexes derived from (Z)-N′-{(2-hydroxynapthalen-1-yl}methylene)acetohydrazide: Synthesis, spectral characterization, electrochemical behaviour, density functional study, in vitro catalytic activity and molecular docking. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Kumar S, Choudhary M. Synthesis and characterization of novel copper(ii) complexes as potential drug candidates against SARS-CoV-2 main protease. NEW J CHEM 2022. [DOI: 10.1039/d2nj00283c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two novel copper(ii) Schiff base complexes, [Cu(L1)2] (1) and [Cu(L2)(CH3OH)(Cl)] (2) of [(Z)-(5-chloro-2-((3,5-dichloro-2-hydroxybenzylidene)amino)phenyl)(phenyl)methanone (L1H) and (Z)-(2((5-bromo-2-hydroxybenzylidene)amino-5-chlorophenyl)(phenyl)methanone)(L2H)], have been designed, synthesized and characterized.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar), India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar), India
| |
Collapse
|
13
|
Patel SK, Patel RN, Patel AK, Patel N, Coloma I, Cortijo M, Herrero S, Choquesillo-Lazarte D. Synthesis, single crystal structures, DFT and in vitro anti oxidant superoxide dismutase studies of copper(II) complexes derived from the di-(2-picolyl)amine and co-ligands: Promising antioxidants. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Patel AK, Jadeja RN, Butcher R, Kumar A. Mononuclear copper(II) complexes with (Z)-N′-{(2-hydroxynapthalen-1-yl}methylene)acetohydrazide: X-ray single-crystal structures, Hirshfeld analysis, X-band epr spectra, DFT calculations and SOD mimetic activity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Copper triazine polycarboxylic acid crystalline framework materials: Synthesis, structure and multifunctional properties with the luminescent and catalytic reduction of 4-NP. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Patel AK, Jadeja RN, Butcher R, Kesharwani MK, Kästner J, Muddassir M. New copper(II) complexes with (Z)-N′-{(2-hydroxynaphthalen-1-yl}methylene)acetohydrazide]: X-ray structure, Hirshfeld analysis, X-band electron paramagnetic resonance spectra, TD-DFT calculations and superoxide dismutase mimetic activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
da Silva TU, Pougy KDC, da Silva ET, Lima CHDS, Machado SDP. Electronic investigation of the effect of substituents on the SOD mimic activity of copper (II) complexes with 8-hydroxyquinoline-derived ligands. J Inorg Biochem 2021; 217:111359. [PMID: 33578252 DOI: 10.1016/j.jinorgbio.2021.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/04/2023]
Abstract
Density functional theory (DFT) calculations were used to study the superoxide dismutase (SOD) mimic activity of two Cu2+ complexes with ligands derived from 8-hydroxyquinoline (8-HQ). Electron-donating and -withdrawing substituent groups were inserted into the structures to verify changes in the reactivity. The theoretical parameters obtained were compared and validated with the experimental data available. The results showed that the reduction process occurs with greater participation of the 8-HQ ligand and the oxidation step occurs with participation of the copper atom in the complexes, where the electron received during the reduction step is used to reduce the Cu2+ to Cu+. The calculated electronic affinity showed good correlation with the experimental mimetic activity, and the analysis of this property, of total charge and of molecular orbitals indicated an increase in the mimetic activity with the insertion of electron-withdrawing substituent groups in the structures.
Collapse
Affiliation(s)
- Talis Uelisson da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil.
| | - Karina de Carvalho Pougy
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| | - Everton Tomaz da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil; Instituto Federal do Rio de Janeiro, 25050-100 Caxias, RJ, Brazil
| | | | - Sérgio de Paula Machado
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| |
Collapse
|