1
|
Bumbac M, Zaharescu T, Nicolescu CM, Borbath T, Borbath I. Chemiluminescence-based evaluation of styrene block copolymers' recyclability. Sci Rep 2024; 14:28221. [PMID: 39548291 PMCID: PMC11568120 DOI: 10.1038/s41598-024-79193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
The study presents the chemiluminescence based (CL) evaluation of the recyclability of linear styrene block copolymers. This analysis can provide insight into the material's degradation state and predict its suitability for further recycling cycles, helping to avoid unnecessary energy consumption during processing.The thermal stability of four similar copolymer structures - styrene-isoprene-styrene (SIS), styrene-butadiene-styrene (SBS) copolymers with different styrene/butadiene ratios, and styrene-ethylene-butadiene-styrene (SEBS) - was studied using isothermal and non-isothermal chemiluminescence (CL). The activation energies for oxidative degradation were calculated based on oxidation induction times indicated by the CL intensities evolution. The results, which highlight the influence of molecular structure on stability under aging conditions, as presented by the calculated for the activation energy (kJ mol-1), show the following sequence: SBS (styrene 30%) (117 kJ mol-1) ≈ SIS 120 (kJ mol-1) < SBS (styrene 40%) (176 kJ mol-1) < SEBS (180 kJ mol-1). The CL data were correlated with infrared (IR) spectroscopy and differential scanning calorimetry (DSC) data, providing a comprehensive understanding of the thermal stability and degradation mechanisms during recycling proces. The sequence of the composing units determines the degradation process, with weaker points predominantly attacked in the linear moieties of isoprene, butadiene, and vinyl segments. The experimental data indicate that SIS and SBS (30% styrene) copolymers degrade the fastest likely due to the rapid accumulation of hydroperoxide radicals. The SEBS copolymer also experiences significant degradation, but this occurs at higher temperatures (above 220 ⁰C) and progresses more gradually once it begins. In contrast, the SBS copolymer with 40% styrene content degrades more slowly and exhibits minimal mass loss, primarily due to the formation of less reactive keto degradation products.
Collapse
Grants
- Project contract no. 27/2020 Norway Grants
- Project contract no. 27/2020 Norway Grants
- Project contract no. 27/2020 Norway Grants
- via VUT Internal Competition-Research Equipment 2022, Policom project Valahia University of Târgoviște (VUT), Romania
- via VUT Internal Competition-Research Equipment 2022, Policom project Valahia University of Târgoviște (VUT), Romania
- via VUT Internal Competition-Research Equipment 2022, Policom project Valahia University of Târgoviște (VUT), Romania
- via VUT Internal Competition-Research Equipment 2022, Policom project Valahia University of Târgoviște (VUT), Romania
- via VUT Internal Competition-Research Equipment 2022, Policom project Valahia University of Târgoviște (VUT), Romania
Collapse
Affiliation(s)
- Marius Bumbac
- Faculty of Sciences and Art, Valahia University of Targoviste, 13 Aleea Sinaia, Targoviste, 130004, Romania
| | - Traian Zaharescu
- Radiochemistry Center, INCDIE ICPE CA, 313 Splaiul Unirii, Bucharest, 030138, Romania.
- ROSEAL SA, 5A Nicolae Bălcescu, Odorheiu Secuiesc, 535600, Romania.
| | - Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Aleea Sinaia, Targoviste, 130004, Romania.
| | - Tunde Borbath
- ROSEAL SA, 5A Nicolae Bălcescu, Odorheiu Secuiesc, 535600, Romania
| | - Istvan Borbath
- ROSEAL SA, 5A Nicolae Bălcescu, Odorheiu Secuiesc, 535600, Romania
| |
Collapse
|
2
|
Kaing V, Guo Z, Sok T, Kodikara D, Breider F, Yoshimura C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168539. [PMID: 37981156 DOI: 10.1016/j.scitotenv.2023.168539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Direct and indirect photolysis are important abiotic processes in aquatic environments through which plastics can be transformed physically and chemically. Transport of biodegradable plastics in water is influenced by vertical mixing and turbulent flow, which make biodegradable plastics remain susceptible to sunlight and photolysis despite their high density. In general, biodegradable plastics are composed of ester containing polymers (e.g., poly(butylene succinate), polyhydroxyalkanoate, and polylactic acid), whereas non-biodegradable plastics are composed of long chains of saturated aliphatic hydrocarbons in their backbones (e.g., polyethylene, polypropylene, and polystyrene). Based on the reviewed knowledge and discussion, we may hypothesize that 1) direct photolysis is more pronounced for non-biodegradation than for biodegradable plastics, 2) smaller plastics such as micro/nano-plastics are more prone to photodegradation and photo-transformation by direct and indirect photolysis, 3) the production rate of reactive oxygen species (ROS) on the surface of biodegradable plastics is higher than that of non-biodegradable plastics, 4) the photodegradation of biodegradable plastics may be promoted by ROS produced from biodegradable plastics themselves, and 5) the subsequent reactions of ROS are more active on biodegradable plastics than non-biodegradable plastics. Moreover, micro/nanoplastics derived from biodegradable plastics serve as more effective carriers of organic pollutants than those from non-biodegradable plastics and thus biodegradable plastics may not necessarily be more ecofriendly than non-biodegradable plastics. However, biodegradable plastics have been largely unexplored from the viewpoint of direct or indirect photolysis. Roles of reactive oxygen species originating from biodegradable plastics should be further explored for comprehensively understanding the photodegradation of biodegradable plastics.
Collapse
Affiliation(s)
- Vinhteang Kaing
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ty Sok
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia; Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Dilini Kodikara
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Florian Breider
- EPFL - Ecole Polytechnique Fédérale de Lausanne, Central Environmental Laboratory, Institute of Environmental Engineering, ENAC, station 2, CH-1015 Lausanne, Switzerland
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
3
|
Zaharescu T, Mirea R, Borbath T, Borbath I. Stability Qualification of Resins/Metallic Oxide Composites for Surface Oxidative Protection. Polymers (Basel) 2024; 16:333. [PMID: 38337222 DOI: 10.3390/polym16030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The accelerated degradation of alkyd resins via γ-irradiation is investigated using non-isothermal chemiluminescence. The stability qualification is possible through the comparison of emission intensities on a temperature range starting from 100 °C up to 250 °C under accelerated degradation caused by radiolysis scission. The measurements achieved in the samples of cured state resin modified by various inorganic oxides reveal the influence of metallic traces on the aging amplitude, when the thermal resistance increases as the irradiation dose is augmented. Even though the unirradiated samples present a prominent chemiluminescence intensity peak at 80 °C, the γ-processed specimens show less intense spectra under the pristine materials and the oxidation starts smoothly after 75 °C. The values of activation energies required for oxidative degradation of the sample subjected to 100 kGy are significantly higher in the composite states than in the neat resin. The degradation mechanism of polymerized resins is discussed taking into account the effects of fillers on the stability of studied epoxy resin at various temperatures when the degradation and crosslinking are in competition for the decay of free radical.
Collapse
Affiliation(s)
- Traian Zaharescu
- INCDIE-ICPE CA, Radiochemical Center, 313 Splaiul Unirii, Ro 030138 Bucharest, Romania
- ROSEAL SA, 5A Nicolae Bălcescu, Harghita District, Ro 535600 Odorheiu Secuiesc, Romania
| | - Radu Mirea
- Romanian Research and Development Institute for Gas Turbines-COMOTI, 220D Iuliu Maniu Bd., Ro 061125 Bucharest, Romania
| | - Tunde Borbath
- ROSEAL SA, 5A Nicolae Bălcescu, Harghita District, Ro 535600 Odorheiu Secuiesc, Romania
| | - Istvan Borbath
- ROSEAL SA, 5A Nicolae Bălcescu, Harghita District, Ro 535600 Odorheiu Secuiesc, Romania
| |
Collapse
|
4
|
Vasile C, Pamfil D, Zaharescu T, Dumitriu RP, Pricope GM, Râpă M, Vasilievici G. Effect of Gamma Irradiation on the PLA-Based Blends and Biocomposites Containing Rosemary Ethanolic Extract and Chitosan. Polymers (Basel) 2022; 14:polym14071398. [PMID: 35406271 PMCID: PMC9002816 DOI: 10.3390/polym14071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/20/2022] Open
Abstract
The irradiation of polymeric materials with ionizing radiation (γ-rays, X-rays, accelerated electrons, ion beams, etc.) may lead to disproportion, hydrogen abstraction, arrangements, degradation, and/or the formation of new bonds. The purpose of this paper is to evaluate the effect of gamma irradiation on some new poly(lactic acid) (PLA)-based blends and biocomposites, which is crucial when they are used for food packaging or medical purposes. The polymeric blends and biocomposites based on PLA and rosemary ethanolic extract (R) and poly(ethylene glycol) (PEG) (20 wt%) plasticized PLA, chitosan (CS) (3–6 wt%) and R (0.5 wt%) biocomposites were subjected to gamma irradiation treatment using three low γ-doses of 10, 20, and 30 kGy. The effect of irradiation was evaluated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), thermogravimetry (TG), chemiluminescence method (CL), migration studies, and antibacterial activity tests. It was found that in comparison with neat PLA, the gamma irradiation in the oxidative conditions of the PLA-based blends and biocomposites, causes modifications in the structure, morphology, and thermal properties of the materials depending on irradiation dose and the presence of natural additives such as rosemary and chitosan. It was established that under a gamma-irradiation treatment with dose of 10–20 kGy, the PLA materials showed minor changes in structure and properties being suitable for application in packaging and in addition after irradiation with such doses their antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium is improved.
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemisytry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry (PPIMC), 700487 Iasi, Romania;
- Correspondence: (C.V.); (D.P.)
| | - Daniela Pamfil
- Physical Chemisytry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry (PPIMC), 700487 Iasi, Romania;
- Correspondence: (C.V.); (D.P.)
| | - Traian Zaharescu
- National Institute for Electrical Engineering (INCDIE ICPE CA), 030138 Bucharest, Romania;
| | - Raluca-Petronela Dumitriu
- Physical Chemisytry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry (PPIMC), 700487 Iasi, Romania;
| | - Gina Mihaela Pricope
- Veterinary and Food Safety Laboratory, Food Safety Department, 700489 Iasi, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest (UPB), 060042 Bucharest, Romania; or
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 060021 Bucharest, Romania;
| |
Collapse
|
5
|
Qiao R, Wang X, Qin G, Liu J, Cao A, Ouyang C, He W. Degradation Mode of PBAT Mulching Film and Control Methods During Its Degradation Induction Period. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x18666210813142022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The plastic film plays an important role in China's agricultural production. However, the large-scale use of plastic film has also produced a very serious problem of agricultural film pollution. Biodegradable polymers have attracted much attention because of the environmental pollution caused by traditional plastic mulching film. The most typical one is poly (butylene adipate co butylene terephthalate, PBAT). Poly (Butylene Adipate-co-Terephthalate) (PBAT) is a kind of aliphatic–aromatic polyesters with excellent biodegradability and mechanical processing properties. Therefore, it has been rapidly developed and widely used in the industry. However, there are clear requirements for the degradation period of agricultural film. At present, the degradable materials available on the market are difficult to meet the requirements of all crops for their degradation period. In this paper, the basic properties,degradation process and ways to delay the degradation of PBAT are reviewed to improve the degradation period of plastic film prepared by using this kind of material. Among them, the degradation process includes photodegradation, biodegradation and hydrolysis. The ways to delay the degradation include adding chain extender, light stabilizer, anti-hydrolysis agent and antibacterial agent. These can provide a theoretical basis for the research and development of biodegradable film with controllable degradation cycle. The future research and development of biodegradable polymers mainly focus on controllable degradation rate, stable degradation cycle, new materials and reducing research and development costs.
Collapse
Affiliation(s)
- Runmeng Qiao
- Key Laboratory of Agricultural Film Pollution Prevention and Control, Ministry of Agriculture and Rural, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Wang
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China
| | - Guangjiong Qin
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China
| | - Jialei Liu
- Key Laboratory of Agricultural Film Pollution Prevention and Control, Ministry of Agriculture and Rural, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aocheng Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Canbin Ouyang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenqing He
- Key Laboratory of Agricultural Film Pollution Prevention and Control, Ministry of Agriculture and Rural, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Preparation of Organic Crystal Seed and Its Application in Improving the Functional Period of Biodegradable Agricultural Film. CRYSTALS 2021. [DOI: 10.3390/cryst11070826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
White pollution caused by agricultural films has recently attracted great attention. In some areas, the content of micro plastic in the soil has reached 30 kg/ha. The most effective way to solve this problem is to replace traditional polyethylene agricultural films with degradable agricultural films. The consistency between the degradation rate and the crop growth period has become the biggest obstacle for the wide application of such novel agricultural films. In this paper, crystallinity regulation is used to adjust the functional period of degradable agricultural films. In addition, an organic nucleating agent of polyethylenimine (PEI) is selected by doping it to poly(butylene adipate-co-terephthalate) (PBAT) polymers using a double-screw extruder. The PBAT doped with 1 wt% PEI films revealed a significant increase in mechanical properties, water holding capacity, and crystallinity compared with the pure PBAT film. There was a 31.9% increase in tensile strength, a 30.5% increase in elongation at break, a 29.6% increase in tear resistance, a 30.9% decrease in water vapor permeability, and a 3.1% increase in crystallinity. Furthermore, the induction period of PBAT doped with 1 wt% PEI under photoaging (without soil) was about 160 h longer than PBAT film, and the experienced biodegradation in soil (without light) was 1 week longer than PBAT film. Experimental results exhibited that the change of degradation degree was linearly proportional to the degree of crystallinity. This study proposes a convenient, low-cost, and effective method to adjust the crystallinity and change the degradation rate.
Collapse
|
7
|
Thermal initiation of the oxidation of thermoplastic polymers (Polyamides, Polyesters and UHMwPE). Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li R, Liu Y, Sheng Y, Xiang Q, Zhou Y, Cizdziel JV. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113988. [PMID: 32369895 DOI: 10.1016/j.envpol.2020.113988] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
Microplastic pollution is a major global environmental problem in both aquatic and terrestrial environments. Pesticides are frequently applied to agricultural soil to reduce the effects of pests on crops, but may also affect the degradation of plastics. In this study, we generated microplastics from polyethylene (PE) film and biodegradable poly(butylene adipate-co-terephthalate) (PBAT) film and determined (1) the effect of prothioconazole on degradation of the microplastics, and (2) the adsorption and release characteristics of heavy metals (Cr, Cu, As, Pb, Ba, and Sn) by the microplastics during degradation process. Changes of surface functional groups and morphologies were measured by FTIR and SEM, while metal concentrations were determined by ICPMS. Prothioconazole was found to promote plastic degradation. PBAT degraded faster and adsorbed more heavy metals from the soil than PE. Whether the microplastics adsorb or release heavy metals depended on the metal and their concentrations. Prothioconazole inhibited the adsorption of Cr, As, Pb and Ba by microplastics, promoted the adsorption of Cu, and had no significant effect for Sn. These results can help to assess the ecological risk of microplastic pollution from plastic mulch when combined with heavy metals.
Collapse
Affiliation(s)
- Ruojia Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yi Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yingfei Sheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qingqing Xiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014, China; Environmental Microplastic Pollution Research Center, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - James V Cizdziel
- Department of Chemistry and Biochemistry, University of Mississippi University, MS, 38677, USA
| |
Collapse
|
9
|
Development of Bionanocomposites Based on PLA, Collagen and AgNPs and Characterization of Their Stability and In Vitro Biocompatibility. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bionanocomposites including poly(lactic acid) (PLA), collagen, and silver nanoparticles (AgNPs) were prepared as biocompatible and stable films. Thermal properties of the PLA-based bionanocomposites indicated an increase in the crystallinity of PLA plasticized due to a small quantity of AgNPs. The results on the stability study indicate the promising contribution of the AgNPs on the durability of PLA-based bionanocomposites. In vitro biocompatibility conducted on the mouse fibroblast cell line NCTC, clone 929, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed high values of cell viability (>80%) after cell cultivation in the presence of bionanocomposite formulations for 48 h, while the percentages of lactate dehydrogenase (LDH) released in the culture medium were reduced (<15%), indicating no damages of the cell membranes. In addition, cell cycle analysis assessed by flow cytometry indicated that all tested bionanocomposites did not affect cell proliferation and maintained the normal growth rate of cells. The obtained results recommend the potential use of PLA-based bionanocomposites for biomedical coatings.
Collapse
|
10
|
Zaharescu T, Râpă M, Lungulescu EM, Butoi N. Filler effect on the degradation of γ-processed PLA/vinyl POSS hybrid. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Darie-Niţă RN, Vasile C, Stoleru E, Pamfil D, Zaharescu T, Tarţău L, Tudorachi N, Brebu MA, Pricope GM, Dumitriu RP, Leluk K. Evaluation of the Rosemary Extract Effect on the Properties of Polylactic Acid-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1825. [PMID: 30257509 PMCID: PMC6213757 DOI: 10.3390/ma11101825] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 11/26/2022]
Abstract
New multifunctional materials containing additives derived from natural resources as powdered rosemary ethanolic extract were obtained by melt mixing and processed in good conditions without degradation and loss of additives. Incorporation of powdered rosemary ethanolic extract (R) into poly(lactic acid) (PLA) improved elongation at break, rheological properties, antibacterial and antioxidant activities, in addition to the biocompatibility. The good accordance between results of the chemiluminescence method and radical scavenging activity determination by chemical method evidenced the increased thermoxidative stability of the PLA biocomposites with respect to neat PLA, with R acting as an antioxidant. PLA/R biocomposites also showed low permeability to gases and migration rates of the bioactive compounds and could be considered as high-performance materials for food packaging. In vitro biocompatibility based on the determination of surface properties demonstrated a good hydrophilicity, better spreading and division of fibroblasts, and increased platelet cohesion. The implantation of PLA/R pellets, was proven to possess a good in vivo biocompatibility, and resulted in similar changes in blood parameters and biochemical responses with the control group, suggesting that these PLA-based materials demonstrate very desirable properties as potential biomaterials, useful in human medicine for tissue engineering, wound management, orthopedic devices, scaffolds, drug delivery systems, etc. Therefore, PLA/R-based materials show promising properties for applications both in food packaging and as bioactive biomaterials.
Collapse
Affiliation(s)
- Raluca Nicoleta Darie-Niţă
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Cornelia Vasile
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Elena Stoleru
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Daniela Pamfil
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Traian Zaharescu
- National Institute for Electrical Engineering (INCDIE ICPE CA), 313 Splaiul Unirii, P.O. Box 149, 030138 Bucharest, Romania.
| | - Liliana Tarţău
- Grigore T. Popa University of Medicine and Pharmacy Iasi, 16 University Street, 700115 Iasi, Romania.
| | - Niţă Tudorachi
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Mihai Adrian Brebu
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Gina Mihaela Pricope
- Veterinary and Food Safety Laboratory, Department of Food Safety, 700115 Iasi, Romania.
| | - Raluca Petronela Dumitriu
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Karol Leluk
- Institute of Environmental Protection Engineering, Wroclaw University of Technology, Plac Grunwaldzki 9, 50-377 Wroclaw, Poland.
| |
Collapse
|
12
|
Garrison TF, Murawski A, Quirino RL. Bio-Based Polymers with Potential for Biodegradability. Polymers (Basel) 2016; 8:E262. [PMID: 30974537 PMCID: PMC6432354 DOI: 10.3390/polym8070262] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 01/20/2023] Open
Abstract
A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid) (PLA), widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.
Collapse
Affiliation(s)
- Thomas F Garrison
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Amanda Murawski
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30460, USA.
| | - Rafael L Quirino
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30460, USA.
| |
Collapse
|