1
|
Choi JH, Lee JS, Yang DH, Nah H, Min SJ, Lee SY, Yoo JH, Chun HJ, Moon HJ, Hong YK, Heo DN, Kwon IK. Development of a Temperature-Responsive Hydrogel Incorporating PVA into NIPAAm for Controllable Drug Release in Skin Regeneration. ACS OMEGA 2023; 8:44076-44085. [PMID: 38027389 PMCID: PMC10666273 DOI: 10.1021/acsomega.3c06291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Melanoma, a highly malignant and aggressive form of skin cancer, poses a significant global health threat, with limited treatment options and potential side effects. In this study, we developed a temperature-responsive hydrogel for skin regeneration with a controllable drug release. The hydrogel was fabricated using an interpenetrating polymer network (IPN) of N-isopropylacrylamide (NIPAAm) and poly(vinyl alcohol) (PVA). PVA was chosen for its adhesive properties, biocompatibility, and ability to address hydrophobicity issues associated with NIPAAm. The hydrogel was loaded with doxorubicin (DOX), an anticancer drug, for the treatment of melanoma. The NIPAAm-PVA (N-P) hydrogel demonstrated temperature-responsive behavior with a lower critical solution temperature (LCST) around 34 °C. The addition of PVA led to increased porosity and faster drug release. In vitro biocompatibility tests showed nontoxicity and supported cell proliferation. The N-P hydrogel exhibited effective anticancer effects on melanoma cells due to its rapid drug release behavior. This N-P hydrogel system shows great promise for controlled drug delivery and potential applications in skin regeneration and cancer treatment. Further research, including in vivo studies, will be essential to advance this hydrogel system toward clinical translation and impactful advancements in regenerative medicine and cancer therapeutics.
Collapse
Affiliation(s)
- Jae Hwan Choi
- Department
of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Biofirends
Inc., 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae Seo Lee
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Division
of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Dae Hyeok Yang
- Institute
of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Haram Nah
- Biofirends
Inc., 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department
of Dentistry, Graduate School, Kyung Hee
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sung Jun Min
- Department
of Dentistry, Graduate School, Kyung Hee
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Yeon Lee
- Department
of Dentistry, Graduate School, Kyung Hee
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji Hye Yoo
- Department
of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Heung Jae Chun
- Institute
of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ho-Jin Moon
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic
of Korea
| | - Young Ki Hong
- Department
of Biomedical Materials, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong Nyoung Heo
- Biofirends
Inc., 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic
of Korea
| | - Il Keun Kwon
- Department
of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Kyung
Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic
of Korea
| |
Collapse
|
2
|
Vinciguerra D, Gelb MB, Maynard HD. Synthesis and Application of Trehalose Materials. JACS AU 2022; 2:1561-1587. [PMID: 35911465 PMCID: PMC9327084 DOI: 10.1021/jacsau.2c00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Trehalose is a naturally occurring, nonreducing disaccharide that is widely used in the biopharmaceutical, food, and cosmetic industries due to its stabilizing and cryoprotective properties. Over the years, scientists have developed methodologies to synthesize linear polymers with trehalose units either in the polymer backbone or as pendant groups. These macromolecules provide unique properties and characteristics, which often outperform trehalose itself. Additionally, numerous reports have focused on the synthesis and formulation of materials based on trehalose, such as nanoparticles, hydrogels, and thermoset networks. Among many applications, these polymers and materials have been used as protein stabilizers, as gene delivery systems, and to prevent amyloid aggregate formation. In this Perspective, recent developments in the synthesis and application of trehalose-based linear polymers, hydrogels, and nanomaterials are discussed, with a focus on utilization in the biomedical field.
Collapse
Affiliation(s)
- Daniele Vinciguerra
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood
Plaza, Los Angeles, California 90095-1569, United States
| | - Madeline B. Gelb
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood
Plaza, Los Angeles, California 90095-1569, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood
Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
3
|
Hu N, Mi L, Metwalli E, Bießmann L, Herold C, Cubitt R, Zhong Q, Müller-Buschbaum P. Effect of Thermal Stimulus on Kinetic Rehydration of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)- block-poly(poly(ethylene glycol) methyl ether methacrylate) Thin Films Probed by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8094-8103. [PMID: 35732057 DOI: 10.1021/acs.langmuir.2c00940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetic rehydration of thin di-block copolymer poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate) (PO2-b-PO300) films containing two thermoresponsive components is probed by in situ neutron reflectivity (NR) with different thermal stimuli in the D2O vapor atmosphere. The transition temperatures (TTs) of PO2 and PO300 blocks are 25 and 60 °C, respectively. After the one-step stimulus (rapid decrease in temperature from 60 to 20 °C), the film directly switches from a collapsed to a fully swollen state. The rehydration process is divided into four steps: (a) D2O condensation, (b) D2O absorption, (c) D2O evaporation, and (d) film reswelling. However, the film presents a different rehydration behavior when the thermal stimulus is separated into two smaller steps (first decrease from 60 to 40 °C and then to 20 °C). The film first switches from a collapsed to a semiswollen state caused by the rehydrated PO300 blocks after the first step of thermal stimulus (60 to 40 °C) and then to a swollen state induced by the rehydrated PO2 blocks after the second step (40 to 20 °C). Thus, the kinetic responses are distinct from that after the one-step thermal stimulus. Both the time and extent of condensation as well as evaporation processes are significantly reduced in these two smaller steps. However, the final states of the rehydrated PO2-b-PO300 films are basically identical irrespective of the applied thermal stimulus. Thus, the final state of thermoresponsive di-block copolymer films is not affected by the external thermal stimuli, which is beneficial for the design and preparation of sensors or switches based on thermoresponsive polymer films.
Collapse
Affiliation(s)
- Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ezzeldin Metwalli
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Lorenz Bießmann
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Christian Herold
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, Grenoble 38000, France
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, Garching 85748, Germany
| |
Collapse
|
4
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Alameda BM, Murphy JS, Barea-López BL, Knox KD, Sisemore JD, Patton DL. Hydrolyzable Poly(β-Thioether Ester Ketal) Thermosets via Acyclic Ketal Monomers. Macromol Rapid Commun 2022; 43:e2200028. [PMID: 35146833 DOI: 10.1002/marc.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Hydrolytically degradable poly(β-thioether ester ketal) thermosets are synthesized via radical-mediated thiol-ene photopolymerization using three novel dialkene acyclic ketal monomers and a mercaptopropionate based tetrafunctional thiol. For all thermoset compositions investigated, degradation behavior is highly tunable based on the structure of the incorporated ketal and pH. Complete degradation of the thermosets is observed upon exposure to acidic and neutral pH, and under high humidity conditions. Polymer networks comprised of crosslink junctions based on acyclic dimethyl ketals degrade the quickest, whereas networks containing acyclic cyclohexyl ketals undergo hydrolytic degradation on a longer timescale. Thermomechanical analysis revealed low glass transition temperatures and moduli typical of thioether-based thermosets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Benjamin M Alameda
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - J Scott Murphy
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Bernardo L Barea-López
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Karly D Knox
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Jonathan D Sisemore
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
6
|
Trehalose-Rich, Degradable Hydrogels Designed for Trehalose Release under Physiologically Relevant Conditions. Polymers (Basel) 2019; 11:polym11122027. [PMID: 31817772 PMCID: PMC6960900 DOI: 10.3390/polym11122027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
Trehalose, a natural disaccharide, is primarily known for its ability to protect proteins from inactivation and denaturation caused by a variety of stress conditions. Furthermore, over the past few years, it has emerged as a promising therapeutic candidate for treatment of neurodegenerative diseases. Herein, we examine the attachment of trehalose to polymers for release under selected physiologically relevant conditions. The proposed strategies are evaluated specifically using hydrogels undergoing simultaneous degradation during trehalose release. These materials are fabricated via copolymerization of the appropriate acrylamide-type monomers with polymerizable trehalose esters or benzylidene acetals. This provides trehalose release in a slightly alkaline (i.e., pH 7.4) or mildly acidic (i.e., pH 5.0) environment, respectively. Using this method materials containing up to 51.7 wt% of trehalose are obtained. The presented results provide a solid basis for future studies on polymeric materials intended for trehalose release in biological systems.
Collapse
|
7
|
Burek M, Kubic K, Nabiałczyk I, Waśkiewicz S, Wandzik I. Study on protein release from hydrolytically degradable hydrogels governed by substituent effects in trehalose-based crosslinker and network properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Pereira BHDA, Marques NDN, Lima BLBD, Villetti MA, Balaban RDC. Study of the thermoassociative process in carboxymethylcellulose derivatives. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Burek M, Waśkiewicz S, Lalik A, Student S, Bieg T, Wandzik I. Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture. Biomater Sci 2018; 5:234-246. [PMID: 27921099 DOI: 10.1039/c6bm00624h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of thermoresponsive glycomicrogels with trehalose in the cross-links or with trehalose in the cross-links and as pending moieties was synthesized. These materials were obtained by surfactant-free precipitation copolymerization of N-isopropylacrylamide and various amounts of trehalose monomers. The resultant particles showed a spherical shape and a submicrometer hydrodynamic size with a narrow size distribution. At 25 °C, glycomicrogels in solutions with physiological ionic strength formed stable colloids, which further gelled upon heating to physiological temperature forming a macroscopic hydrogel with an interconnected porous structure. These extremely soft matrices with dynamic storage modulus in the range of 9-70 Pa were examined in 3D culture systems for HeLa cell culture in comparison to traditional 2D mode. They showed relatively low syneresis over time, especially when glycomicrogels with a high content of hydrophilic trehalose were used as building blocks. An incorporated pending trehalose composed of two α,α'-1,1'-linked d-glucose moieties was used with the intention of providing multivalent interactions with glucose transporters (GLUTs) expressed on the cell surface. A better cell viability was observed when a soft hydrogel with the highest content of trehalose and the lowest syneresis was used as a matrix compared to a 2D control assay.
Collapse
Affiliation(s)
- Małgorzata Burek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44 100 Gliwice, Poland.
| | - Sylwia Waśkiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44 100 Gliwice, Poland
| | - Anna Lalik
- Systems Engineering Group, Institute of Automatic Control, Silesian University of Technology, B. Krzywoustego 8, 44 100 Gliwice, Poland
| | - Sebastian Student
- Systems Engineering Group, Institute of Automatic Control, Silesian University of Technology, B. Krzywoustego 8, 44 100 Gliwice, Poland
| | - Tadeusz Bieg
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44 100 Gliwice, Poland.
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44 100 Gliwice, Poland.
| |
Collapse
|
10
|
Kang JH, Hwang JY, Seo JW, Kim HS, Shin US. Small intestine- and colon-specific smart oral drug delivery system with controlled release characteristic. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:247-254. [PMID: 30033252 DOI: 10.1016/j.msec.2018.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
Abstract
In recent years, there has been a significant increase in strategies for the development of small intestine (and colon)-specific oral drug-delivery systems to maximize the efficiency of therapeutic agents and reduce side effects. However, only a few strategies are capable of working in the complicated environment of the human intestinal tract. In this study, the preparation of a basic pH/temperature-responsive co-polymer (p-NIVIm) and its in-vitro-drug delivery function in the pH range of 1-8 and temperature range of 25-42 °C are reported. The basic copolymer was prepared by radical copolymerization of N-isopropyl acryl amide (NIPAAm) and N-vinylimidazole (VIm). The lower critical solution temperature (LCST) of p-NIVIm was higher in stomach pH (~1.0) conditions (36.5-42 °C) and lower in small intestine and/or colon pH (~8.0) conditions (35.8-38.2 °C). The ability to uptake a model protein (BSA) at body temperature and to release it in conditions of 37 °C and pH 1-8 was determined. The drug loading capacity (0.231 mg per 1.0 mg copolymer) and efficiency (92.4%) were high at 37 °C/pH 7. The drug carrier showed a slow release pattern at pH 1 (~0.084 mg; ~35%) and then a sudden release pattern (~0.177 mg; ~73%) at pH 8. The cytotoxicity of p-NIVIm to MCF-7 cells in vitro was minimal at concentrations <168.9 μg/mL after 72 h. The prepared copolymer with its pH-/temperature-responsive protein-entrapping and -releasing behavior at body temperature may potentially be applied as a novel small intestine (and colon)-specific oral drug delivery system.
Collapse
Affiliation(s)
- Ji-Hye Kang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea
| | - Ji-Young Hwang
- Department of Biomedical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | - Jae-Won Seo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea
| | - Han-Sem Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea
| | - Ueon Sang Shin
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
11
|
Chatterjee S, Hui PCL, Kan CW. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. Polymers (Basel) 2018; 10:E480. [PMID: 30966514 PMCID: PMC6415431 DOI: 10.3390/polym10050480] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 01/19/2023] Open
Abstract
Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature) hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
12
|
Burek M, Wandzik I. Synthetic Hydrogels with Covalently Incorporated Saccharides Studied for Biomedical Applications – 15 Year Overview. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1443122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Małgorzata Burek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
| |
Collapse
|
13
|
Burek M, Waśkiewicz S, Lalik A, Wandzik I. Hydrogels with novel hydrolytically labile trehalose-based crosslinks: small changes – big differences in degradation behavior. Polym Chem 2018. [DOI: 10.1039/c8py00488a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel crosslinkers based on trehalose diacetals were synthesized and applied to the fabrication of degradable polyacrylamide-type hydrogels with pH-dependent degradation characteristics at around physiological pH.
Collapse
Affiliation(s)
- Małgorzata Burek
- Department of Organic Chemistry
- Bioorganic Chemistry and Biotechnology
- Faculty of Chemistry
- Silesian University of Technology
- 44 100 Gliwice
| | - Sylwia Waśkiewicz
- Department of Physical Chemistry and Technology of Polymers
- Faculty of Chemistry
- Silesian University of Technology
- 44 100 Gliwice
- Poland
| | - Anna Lalik
- Systems Engineering Group
- Institute of Automatic Control
- Silesian University of Technology
- 44 100 Gliwice
- Poland
| | - Ilona Wandzik
- Department of Organic Chemistry
- Bioorganic Chemistry and Biotechnology
- Faculty of Chemistry
- Silesian University of Technology
- 44 100 Gliwice
| |
Collapse
|
14
|
Poly (MAH-β-cyclodextrin-co-NIPAAm) hydrogels with drug hosting and thermo/pH-sensitive for controlled drug release. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Burek M, Waśkiewicz S, Awietjan S, Wandzik I. Thermoresponsive hydrogels with covalently incorporated trehalose as protein carriers. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|