1
|
Liu C, Wang D, Li Y, Li H, He L, Wu M, Wei D, Pan H, Zhao Y, Zhang H. A new strategy for the preparation of polylactic acid composites with UV resistance, light conversion, and antibacterial properties. Int J Biol Macromol 2024; 278:135013. [PMID: 39181361 DOI: 10.1016/j.ijbiomac.2024.135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
A novel rare earth complex, Eu(IAA)2(phen)2 (EuIP), was synthesized by solution-based synthesis method. Then, EuIP and polylactic acid (PLA) were melt-blended at 190 °C to obtain a multifunctional PLA/EuIP composite. The incorporation of EuIP provided PLA/EuIP composites with good light conversion ability. Under UV irradiation, PLA/EuIP composites converted the absorbed UV light into red light. Moreover, the PLA/1.0EuIP composite exhibited excellent light transmittance of 88 % in the visible region and showed strong red emission under UV light. After UV irradiation for 96 h, the molecular weights and mechanical properties of neat PLA decreased dramatically. Interestingly, the molecular weights and mechanical properties of PLA/EuIP composites did not deteriorate after 96 h of UV irradiation. The reason was that EuIP could absorb UV light and utilize the absorbed energy to emit red fluorescence. Furthermore, PLA/EuIP composites showed good antibacterial activities against E. coli and S. aureus. In addition, in vitro cell experiments showed that PLA/EuIP composites was suitable for the growth of murine breast cancer (4 T1) cells. Besides, enzymatic degradation testing also proved that PLA/EuIP composites had good biodegradability. This work provides an ingenious design strategy for the preparation of PLA/EuIP composites possessing light conversion ability, UV resistance, and antibacterial properties.
Collapse
Affiliation(s)
- Chengkai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Dongmei Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; Hunan University, College of Chemistry and Chemical Engineering, Changsha 410082, China
| | - Yanbo Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huimin Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Liting He
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mi Wu
- Jihua Laboratory, Foshan 528200, China
| | - Deyu Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongwei Pan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Huiliang Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
2
|
Oschatz S, Schultz S, Fiedler N, Senz V, Schmitz KP, Grabow N, Koper D. Melt blending of poly(lactic acid) with biomedically relevant polyurethanes to improve mechanical performance. Heliyon 2024; 10:e26268. [PMID: 38444474 PMCID: PMC10912236 DOI: 10.1016/j.heliyon.2024.e26268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Minimally invasive surgery procedures are of utmost relevance in clinical practice. However, the associated mechanical stress on the material poses a challenge for new implant developments. In particular PLLA, one of the most widely used polymeric biomaterials, is limited in its application due to its high brittleness and low elasticity. In this context, blending is a conventional method of improving the performance of polymer materials. However, in implant applications and development, material selection is usually limited to the use of medical grade polymers. The focus of this work was to investigate the extent to which blending poly-l-lactide (PLLA) with low contents of a selection of five commercially available medical grade polyurethanes leads to enhanced material properties. The materials obtained by melt blending were characterized in terms of their morphology and thermal properties, and the mechanical performance of the blends was evaluated taking into account physiological conditions. From these data, we found that mixing PLLA with Pellethane 80A is a promising approach to improve the material's performance, particularly for stent applications. It was found that PLLA/Pellethane blend with 10% polyurethane exhibits considerable plastic deformation before fracture, while pure PLLA fractures with almost no deformation. Furthermore, the addition of Pellethane only leads to a moderate reduction in elongation at yield and yield stress. In addition, dynamic mechanical analysis for three different PLLA/Pellethane ratios was performed to investigate thermally induced shape retention and shape recovery of the blends.
Collapse
Affiliation(s)
- Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Selina Schultz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Nicklas Fiedler
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Klaus-Peter Schmitz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
- Institute for ImplantTechnology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119, Rostock, Warnemünde, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, 18051, Rostock, Germany
| | - Daniela Koper
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
- Institute for ImplantTechnology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119, Rostock, Warnemünde, Germany
| |
Collapse
|
3
|
Maraveas C, Kyrtopoulos IV, Arvanitis KG, Bartzanas T. The Aging of Polymers under Electromagnetic Radiation. Polymers (Basel) 2024; 16:689. [PMID: 38475374 DOI: 10.3390/polym16050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Polymeric materials degrade as they react with environmental conditions such as temperature, light, and humidity. Electromagnetic radiation from the Sun's ultraviolet rays weakens the mechanical properties of polymers, causing them to degrade. This study examined the phenomenon of polymer aging due to exposure to ultraviolet radiation. The study examined three specific objectives, including the key theories explaining ultraviolet (UV) radiation's impact on polymer decomposition, the underlying testing procedures for determining the aging properties of polymeric materials, and appraising the current technical methods for enhancing the UV resistance of polymers. The study utilized a literature review methodology to understand the aging effect of electromagnetic radiation on polymers. Thus, the study concluded that using additives and UV absorbers on polymers and polymer composites can elongate the lifespan of polymers by shielding them from the aging effects of UV radiation. The findings from the study suggest that thermal conditions contribute to polymer degradation by breaking down their physical and chemical bonds. Thermal oxidative environments accelerate aging due to the presence of UV radiation and temperatures that foster a quicker degradation of plastics.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Ioannis Vasileios Kyrtopoulos
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Konstantinos G Arvanitis
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Thomas Bartzanas
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| |
Collapse
|
4
|
Rathore A, Shah D, Kaur H. Recent advances in metal oxide/polylactic acid nanocomposites and their applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anuradha Rathore
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dipen Shah
- Department of Chemistry, Shri T. S. Patel P.G. Science College, Ambaliyara, Bayad, India
| | - Harjinder Kaur
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
5
|
Teamsinsungvon A, Ruksakulpiwat C, Ruksakulpiwat Y. Effects of Titanium-Silica Oxide on Degradation Behavior and Antimicrobial Activity of Poly (Lactic Acid) Composites. Polymers (Basel) 2022; 14:polym14163310. [PMID: 36015567 PMCID: PMC9416649 DOI: 10.3390/polym14163310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
A mixed oxide of titania-silica oxides (TixSiy oxides) was successfully prepared via the sol-gel technique from our previous work. The use of TixSiy oxides to improve the mechanical properties, photocatalytic efficiency, antibacterial property, permeability tests, and biodegradability of polylactic acid (PLA) was demonstrated in this study. The influence of different types and contents of TixSiy oxides on crystallization behavior, mechanical properties, thermal properties, and morphological properties was presented. In addition, the effect of using TixSiy oxides as a filler in PLA composites on these properties was compared with the use of titanium dioxide (TiO2), silicon dioxide (SiO2), and TiO2SiO2. Among the prepared biocomposite films, the PLA/TixSiy films showed an improvement in the tensile strength and Young's modulus (up to 5% and 31%, respectively) in comparison to neat PLA films. Photocatalytic efficiency to degrade methylene blue (MB), hydrolytic degradation, and in vitro degradation of PLA are significantly improved with the addition of TixSiy oxides. Furthermore, PLA with the addition of TixSiy oxides exhibited an excellent antibacterial effect on Gram-negative bacteria (Escherichia coli or E. coli) and Gram-positive bacteria (Staphylococcus aureus or S. aureus), indicating the improved antimicrobial effectiveness of PLA composites. Importantly, up to 5% TixSiy loading could promote more PLA degradation via the water absorption ability of mixed oxides. According to the research results, the PLA composite films produced with TixSiy oxide were transparent, capable of screening UV radiation, and exhibited superior antibacterial efficacy, making them an excellent food packaging material.
Collapse
Affiliation(s)
- Arpaporn Teamsinsungvon
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-44-22-3033
| |
Collapse
|
6
|
Developing a cerium lactate antibacterial nucleating agent for multifunctional polylactic acid packaging film. Int J Biol Macromol 2022; 220:56-66. [PMID: 35973481 DOI: 10.1016/j.ijbiomac.2022.08.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
With the rapid development of the packaging industry, people have high requirements for the functionality of packaging materials. As a representative biodegradable packaging material, polylactic acid (PLA) still has some problems. Multifunctional additives in PLA are an effective modification method. In this paper, cerium lactate (Ce-LA) was synthesized by a precipitation method and integrated into PLA to prepare a functional PLA composite. The results showed that Ce-LA not only significantly improved the crystallinity but also imparted antibacterial ability to PLA. When the concentration of Ce-LA was 0.9 %, the crystallinity of PLA reached 39.35 %, which was 77 % higher than that of pure PLA. When the addition of Ce-LA was 1.8 %, the antibacterial rates of PLA against Staphylococcus aureus and Escherichia coli reached 93 % and 85 %, respectively. This study provides a beneficial solution for the development of PLA packaging materials with high crystallinity and antibacterial properties.
Collapse
|
7
|
Cui R, Fan C, Dong X, Fang K, Li L, Qin Y. Effect of ultrahigh-pressure treatment on the functional properties of poly(lactic acid)/ZnO nanocomposite food packaging film. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4925-4933. [PMID: 33543471 DOI: 10.1002/jsfa.11136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Our living environment is being increasingly polluted by petroleum-based plastics and there is an increasing demand for biodegradable food packaging. In this study, the effect of various ultrahigh-pressure (UHP) treatments (0, 200 and 400 MPa) on the microstructure and thermal, barrier and mechanical properties of poly(lactic acid) (PLA)/ZnO nanocomposite films was studied. RESULTS The film-forming solution was processed using UHP technology. The crystallinity, strength and stiffness of the composite film after UHP treatment increased. In addition, barrier property analysis showed that the UHP treatment significantly (P < 0.05) reduced the oxygen permeability and water vapor permeability (WVP) coefficient of the PLA/ZnO nanocomposite film. Furthermore, the WVP value of the film treated at 400 MPa (50 g kg-1 nano-ZnO content) was the lowest and reduced by 47.3% compared with that of pure PLA film. The improvement in these properties might be due to the interaction between nano-ZnO and PLA matrix promoted by UHP treatment. CONCLUSIONS Therefore, the application of UHP technology on the film-forming solution could improve the crystallinity and functional properties of the nanocomposite film, and has great potential in the production of food packaging films with ideal functions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Cui
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Chunli Fan
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuelan Dong
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ke Fang
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lin Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles: Effects of Specific Surface Area-dependent Interfacial Selective Distribution of Silica. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2565-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Wang P, Xiong Z, Xiong H, Cai J. Synergistic effects of modified TiO
2
/multifunctionalized graphene oxide nanosheets as functional hybrid nanofiller in enhancing the interface compatibility of PLA/starch nanocomposites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengkai Wang
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan People's Republic of China
| | - ZhouYi Xiong
- Fisheries Research InstituteWuhan Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Hanguo Xiong
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan People's Republic of China
| | - Jie Cai
- School of Food Science and EngineeringWuhan Polytechnic University Wuhan China
| |
Collapse
|
10
|
Xunwen S, Liqun Z, Weiping L, Huicong L, Hui Y. The synthesis of monodispersed M-CeO 2/SiO 2nanoparticles and formation of UV absorption coatings with them. RSC Adv 2020; 10:4554-4560. [PMID: 35495236 PMCID: PMC9049191 DOI: 10.1039/c9ra08975f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 11/25/2022] Open
Abstract
CeO2/polymer nanoparticles have drawn considerable attention for their excellent UV absorption properties. However, many challenges still exist in the successful incorporation of ceria into the polymer matrix for the easy agglomeration and photocatalytic activity of CeO2 nanoparticles. Herein, we address these issues by constructing three-layer structured nanoparticles (M-CeO2@SiO2) and incorporating them into a polymer matrix through a mini-emulsion polymerization process. During this process, small-sized nano-ceria became uniformly anchored on the surfaces of monodisperse silica particles first, and then the particles were coated with an MPS/SiO2 shield. The morphology and dispersion of the nanoparticles were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The performance of the hybrid films was characterized using UV-vis absorption spectroscopy (UV-vis) and water contact angle (WCA) measurements. Results showed that the M-CeO2@SiO2 nanoparticles exhibited a three-layer structure with a mean diameter of 360 nm, and they possess good compatibility with acrylic monomers. After the addition of M-CeO2@SiO2, hybrid films exhibited enhanced UV absorption capacity as expected, accompanied by an obvious improvement in hydrophobicity (the water contact angle increased from 84.2° to 98.2°). The results showed that the hybrid films containing M-CeO2@SiO2 particles possess better global performance as compared with those containing no particles. Herein, we report the synthesis of monodispersed M-CeO2/SiO2 nanoparticles and their use in the construction of a UV absorption coating.![]()
Collapse
Affiliation(s)
- Su Xunwen
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education)
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Zhu Liqun
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education)
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Li Weiping
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education)
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Liu Huicong
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education)
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Ye Hui
- Aerospace Research Institute of Materials and Processing Technology
- Beijing
- China
| |
Collapse
|
11
|
Greco A, Ferrari F, Maffezzoli A. Mechanical properties of poly(lactid acid) plasticized by cardanol derivatives. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Andrady AL, Pandey KK, Heikkilä AM. Interactive effects of solar UV radiation and climate change on material damage. Photochem Photobiol Sci 2019; 18:804-825. [DOI: 10.1039/c8pp90065e] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Solar UV radiation adversely affects the properties of organic materials used in construction, such as plastics and wood.
Collapse
Affiliation(s)
- A. L. Andrady
- Department of Chemical and Biomolecular Engineering
- North Carolina State Univ
- Raleigh
- USA
| | - K. K. Pandey
- Institute of Wood Science and Technology
- Bengaluru
- India
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research
- Helsinki
- Finland
| |
Collapse
|
13
|
Wang Y, Hu Q, Li T, Ma P, Zhang S, Du M, Chen M, Zhang H, Dong W. Core–Shell Starch Nanoparticles and Their Toughening of Polylactide. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qiongen Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengwen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
14
|
Holman BWB, Kerry JP, Hopkins DL. Meat packaging solutions to current industry challenges: A review. Meat Sci 2018; 144:159-168. [PMID: 29724528 DOI: 10.1016/j.meatsci.2018.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Many advances have occurred in the field of smart meat packaging, and the potential for these to be used as tools that respond to challenges faced by industry is exciting. Here, we review packaging solutions to several immediate concerns, encompassing dark cutting, purge and yield losses, product traceability and provenance, packaging durability, microbial spoilage and safety, colour stability, environmental impacts, and the preservation of eating quality. Different active and intelligent packaging approaches to each of these were identified and are discussed in terms of their usefulness - to processors, retailers and/or consumers. From this, it became apparent that prior to selecting a packaging solution, industry should first define their criteria for success (e.g. How much purge is too much? What is a reasonable shelf-life to facilitate product turnover? Is the customer willing to pay for this?), and understand that packaging is not the sole solution, but acts as part of a holistic response to these issues.
Collapse
Affiliation(s)
- Benjamin W B Holman
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, NSW 2794, Australia.
| | - Joseph P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, National University of Ireland, Cork, Ireland
| | - David L Hopkins
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, NSW 2794, Australia
| |
Collapse
|
15
|
Bais F, Luca RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM, Robinson SA, Ballaré CL, Flint SD, Neale PJ, Hylander S, Rose KC, Wängberg SÅ, Häder DP, Worrest RC, Zepp RG, Paul ND, Cory RM, Solomon KR, Longstreth J, Pandey KK, Redhwi HH, Torikai A, Heikkilä AM. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 2018; 17:127-179. [PMID: 29404558 PMCID: PMC6155474 DOI: 10.1039/c7pp90043k] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.
Collapse
Affiliation(s)
- F. Bais
- Aristotle Univ. of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | - R. M. Luca
- National Centre for Epidemiology and Population Health, Australian National Univ., Canberra, Australia
| | - J. F. Bornman
- Curtin Univ., Curtin Business School, Perth, Australia
| | | | - B. Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A. T. Austin
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. R. Wilson
- School of Chemistry, Centre for Atmospheric Chemistry, Univ. of Wollongong, Wollongong, Australia
| | - A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State Univ., Raleigh, NC, USA
| | - G. Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA
| | | | - P. J. Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - S. Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R. E. Neale
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - S. Yazar
- Univ. of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Perth, Australia
| | | | - F. R. de Gruijl
- Department of Dermatology, Leiden Univ. Medical Centre, Leiden, The Netherlands
| | - M. Norval
- Univ. of Edinburgh Medical School, UK
| | - Y. Takizawa
- Akita Univ. School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program, Loyola Univ., New Orleans, USA
| | - T. M. Robson
- Research Programme in Organismal and Evolutionary Biology, Viikki Plant Science Centre, Univ. of Helsinki, Finland
| | - S. A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, Univ. of Wollongong, Wollongong, NSW 2522, Australia
| | - C. L. Ballaré
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. D. Flint
- Dept of Forest, Rangeland and Fire Sciences, Univ. of Idaho, Moscow, ID, USA
| | - P. J. Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - S. Hylander
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus Univ., Kalmar, Sweden
| | - K. C. Rose
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S.-Å. Wängberg
- Dept Marine Sciences, Univ. of Gothenburg, Göteborg, Sweden
| | - D.-P. Häder
- Friedrich-Alexander Univ. Erlangen-Nürnberg, Dept of Biology, Möhrendorf, Germany
| | - R. C. Worrest
- CIESIN, Columbia Univ., New Hartford, Connecticut, USA
| | - R. G. Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N. D. Paul
- Lanter Environment Centre, Lanter Univ., LA1 4YQ, UK
| | - R. M. Cory
- Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA
| | - K. R. Solomon
- Centre for Toxicology, School of Environmental Sciences, Univ. of Guelph, Guelph, ON, Canada
| | - J. Longstreth
- The Institute for Global Risk Research, Bethesda, MD, USA
| | - K. K. Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - H. H. Redhwi
- Chemical Engineering Dept, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - A. Torikai
- Materials Life Society of Japan, Kayabacho Chuo-ku, Tokyo, Japan
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research, Helsinki, Finland
| |
Collapse
|