1
|
Zink L, Morris C, Wood CM. Pulse exposure to microplastics depolarizes the goldfish gill: Interactive effects of DOC and differential degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125434. [PMID: 39622408 DOI: 10.1016/j.envpol.2024.125434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Microplastics (MPs) are constantly degrading while moving through aquatic systems as a result of mechanical abrasion, thermal fluctuations, UV light, and chemical exposure. As such, fish may experience pulse exposures to differentially degraded plastics. This study addresses how pulse exposures, over the course of minutes, to differentially degraded microplastics alters a key ionoregulatory property of the goldfish gill. We used transepithelial potential (TEP) across the gills, a diffusion potential resulting from the differential permeability of cations versus anions, as a sensitive indicator of potential ionoregulatory effects. Virgin (non-degraded) MPs along with mechanically, UV, and thermally degraded plastics immediately depolarized the gills (less negative TEP), whereas chemically degraded MPs resulted in no change to TEP. To further explore the physicochemical interaction between the surface of the gill and MPs, combinations of MPs and a single source of dissolved organic carbon (DOC) were tested and revealed that the presence of DOC negated the effects of MPs at the gill regardless of whether DOC or MPs were introduced first. This study suggests that while MPs have the ability to cause ionoregulatory effects at the gill, the effects of ambient water quality, specifically the presence of DOC, are of greater influence.
Collapse
Affiliation(s)
- Lauren Zink
- Department of Zoology, University of British, Columbia, Canada.
| | - Carolyn Morris
- Department of Zoology, University of British, Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British, Columbia, Canada
| |
Collapse
|
2
|
Zheng Y, Hamed M, De-la-Torre GE, Frias J, Jong MC, Kolandhasamy P, Chavanich S, Su L, Deng H, Zhao W, Shi H. Holes on surfaces of the weathered plastic fragments from coastal beaches. MARINE POLLUTION BULLETIN 2023; 193:115180. [PMID: 37352798 DOI: 10.1016/j.marpolbul.2023.115180] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The surface morphology of weathered plastics undergoes a variety of changes. In this study, 3950 plastic fragments from 26 beaches around the world, were assessed to identify holes. Holes were identified on 123 fragments on 20 beaches, with the highest frequency (10.3 %) being identified at Qesm AL Gomrok Beach in Egypt. The distribution of holes could be divided into even, single-sided, and random types. The external and internal holes were similar in size (37 ± 15 μm) of even type fragments. The external holes were larger than the internal holes in single-sided (516 ± 259 μm and 383 ± 161 μm) and random (588 ± 262 μm and 454 ± 210 μm) fragment types. The external hole sizes were positively correlated with the internal hole sizes for each type. This study reports a novel deformation phenomenon on the surface of weathered plastics and highlights their potential effects on plastics.
Collapse
Affiliation(s)
- Yifan Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mohamed Hamed
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Galway Campus, Dublin Road, Galway H91 T8NW, Ireland
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Prabhu Kolandhasamy
- Departmet of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hua Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenjun Zhao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Astner AF, Hayes DG, O'Neill H, Evans BR, Pingali SV, Urban VS, Schaeffer SM, Young TM. Assessment of cryogenic pretreatment for simulating environmental weathering in the formation of surrogate micro- and nanoplastics from agricultural mulch film. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161867. [PMID: 36716885 DOI: 10.1016/j.scitotenv.2023.161867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) from mulch films and other plastic materials employed in vegetable and small fruit production pose a major threat to agricultural ecosystems. For conducting controlled studies on MPs' and NPs' (MNPs') ecotoxicity to soil organisms and plants and fate and transport in soil, surrogate MNPs are required that mimic MNPs that form in agricultural fields. We have developed a procedure to prepare MPs from plastic films or pellets using mechanical milling and sieving, and conversion of the resultant MPs into NPs through wet grinding, both steps of which mimic the degradation and fragmentation of plastics in nature. The major goal of this study was to determine if cryogenic exposure of two biodegradable mulch films effectively mimics the embrittlement caused by environmental weathering in terms of the dimensional, thermal, chemical, and biodegradability properties of the formed MNPs. We found differences in size, surface charge, thermal and chemical properties, and biodegradability in soil between MNPs prepared from cryogenically treated vs. environmentally weathered films, related to the photochemical reactions occurring in the environment that were not mimicked by cryogenic treatment, such as depolymerization and cross-link formation. We also investigated the size reduction process for NPs and found that the size distribution was bimodal, with populations centered at 50 nm and 150-300 nm, and as the size reduction process progressed, the former subpopulation's proportion increased. The biodegradability of MPs in soil was greater than for NPs, a counter-intuitive trend since greater surface area exposure for NPs would increase biodegradability. The result isassociated with differences in surface and chemical properties and to minor components that are readily leached out during the formation of NPs. In summary, the use of weathered plastics as feedstock would likely produce MNPs that are more realistic than cryogenically-treated unweathered films for use in experimental studies.
Collapse
Affiliation(s)
- A F Astner
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America
| | - D G Hayes
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America.
| | - H O'Neill
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - B R Evans
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - S V Pingali
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - V S Urban
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - S M Schaeffer
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America
| | - T M Young
- The University of Tennessee, School of Natural Resources, 2505 E.J. Chapman Dr, Knoxville, TN 37996, United States of America
| |
Collapse
|
4
|
Lange K, Furén R, Österlund H, Winston R, Tirpak RA, Nordqvist K, Smith J, Dorsey J, Viklander M, Blecken GT. Abundance, distribution, and composition of microplastics in the filter media of nine aged stormwater bioretention systems. CHEMOSPHERE 2023; 320:138103. [PMID: 36775039 DOI: 10.1016/j.chemosphere.2023.138103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Bioretention systems are designed for quality treatment of stormwater. Particulate contaminants are commonly treated efficiently and accumulate mainly in the surface layer of the bioretention filter material. However, concerns exist that microplastic particles may not show equal accumulation behavior as other sediment particles. So far only two field and two laboratory studies are available on the fate of microplastics in few relatively newly built bioretention systems. Therefore, this study investigated the abundance and distribution of microplastics in nine 7-12 years old stormwater bioretention systems. It was found that microplastics generally accumulate on the surface of bioretention systems. Microplastic median particle concentrations decreased significantly from the surface layer (0-5 cm) of the filter material to the 10-15 cm depth layer from 448 to 136 particles/100 g, respectively. The distance to the inlet did not significantly affect the surface accumulation of microplastic particles, suggesting modest spatial variability in microplastics accumulation in older bioretention systems. Further, this study investigated the polymer composition in bioretention systems. It was shown that PP, EVA, PS and EPDM rubber are the most abundant polymer types in bioretention systems. Also, it was found that large percentages of microplastic particles are black particles (median percentage of black particles: 39%) which were found in 28 of the 33 investigated samples. This underlines the importance of including black particles in microplastic studies on stormwater, which has been overlooked in most previous studies.
Collapse
Affiliation(s)
- Katharina Lange
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| | - Robert Furén
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden; NCC Sverige AB, Department of Research and Innovation, Herrjärva Torg 4, 170 80, Solna, Sweden
| | - Helene Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Ryan Winston
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA; Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, USA; Core Faculty, Sustainability Institute, Ohio State University, 3018 Smith Lab 174 W, 18th Avenue, Columbus, OH, 43210, USA
| | - R Andrew Tirpak
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA
| | - Kerstin Nordqvist
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Joseph Smith
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA
| | - Jay Dorsey
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building AE, Building 298, 590 Woody Hayes Dr, Columbus, OH, 43210, USA
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
5
|
Nikolaivits E, Pantelic B, Azeem M, Taxeidis G, Babu R, Topakas E, Brennan Fournet M, Nikodinovic-Runic J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Front Bioeng Biotechnol 2021; 9:696040. [PMID: 34239864 PMCID: PMC8260098 DOI: 10.3389/fbioe.2021.696040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Brana Pantelic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Aghilinasrollahabadi K, Salehi M, Fujiwara T. Investigate the influence of microplastics weathering on their heavy metals uptake in stormwater. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124439. [PMID: 33183838 DOI: 10.1016/j.jhazmat.2020.124439] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Plastic debris as the main portion of urban litters could be transported via storm runoff to the water resources. In this study the influence of microplastics (MPs) weathering on their Pb2+ and Zn2+ uptake in stormwater was examined. Low-density polyethylene (LDPE) and polyethylene terephthalate (PET) MPs were subjected to weathering through mechanical interaction with a mixture of silt/sand, and in synthetic stormwater. The surface analysis revealed significant physio-chemistry alterations of LDPE MPs due to the silt/sand weathering. However, this weathering mostly resulted in the surface morphology alterations of PET MPs. The kinetics of heavy metals adsorptions onto the new and stormwater weathered LDPE MPs were best described by pseudo 1st and 2nd models, respectively. Despite increasing Pb2+ uptake by weathered PET MPs, Zn2+ uptake by both new and weathered PET MPs was below the detection limit. Both Pb2+ and Zn2+ were released from new and silt/sand weathered LDPE MPs during five days exposure to the synthetic stormwater. This study underscores the critical role of plastic type and weathering conditions on heavy metal transport by MPs from the urban environment to the water resources.
Collapse
Affiliation(s)
| | - Maryam Salehi
- Department of Civil Engineering, University of Memphis, Memphis, TN, USA.
| | - Tomoko Fujiwara
- Department of Chemistry, University of Memphis, Memphis, TN, USA
| |
Collapse
|
7
|
Jimenez‐Francisco M, Carrillo JG, Garcia‐Cerda LA. Mechanochemical tuning of molecular weight distribution of styrene homopolymers as postpolymerization modification in solvent‐free solid‐state. J Appl Polym Sci 2021. [DOI: 10.1002/app.49628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Luis Alfonso Garcia‐Cerda
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Coahuila Mexico
| |
Collapse
|
8
|
Astner AF, Hayes DG, O'Neill H, Evans BR, Pingali SV, Urban VS, Young TM. Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1097-1106. [PMID: 31390700 DOI: 10.1016/j.scitotenv.2019.06.241] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Release of microplastics (MPs) and nanoplastics (NPs) into agricultural fields is of great concern due to their reported ecotoxicity to organisms that provide beneficial service to the soil such as earthworms, and the potential ability of MPs and NPs to enter the food chain. Most fundamental studies of the fate and transport of plastic particulates in terrestrial environments employ idealized MP materials as models, such as monodisperse polystyrene spheres. In contrast, plastics that reside in agricultural soils consist of polydisperse fragments resulting from degraded films employed in agriculture. There exists a need for more representative materials in fundamental studies of the fate, transport, and ecotoxicity of MPs and NPs in soil ecosystems. The objective of this study was therefore to develop a procedure to produce MPs and NPs from agricultural plastics (a mulch film prepared biodegradable polymer polybutyrate adipate-co-terephthalate (PBAT) and low-density PE [LDPE]), and to characterize the resultant materials. Soaking of PBAT films under cryogenic conditions promoted embrittlement, similar to what occurs through environmental weathering. LDPE and cryogenically-treated PBAT underwent mechanical milling followed by sieve fractionation into MP fractions of 840 μm, 250 μm, 106 μm, and 45 μm. The 106 μm fraction was subjected to wet grinding to produce NPs of average particle size 366.0 nm and 389.4 nm for PBAT and LDPE, respectively. A two-parameter Weibull model described the MPs' particle size distributions, while NPs possessed bimodal distributions. Size reduction did not produce any changes in the chemical properties of the plastics, except for slight depolymerization and an increase of crystallinity resulting from cryogenic treatment. This study suggests that MPs form from cutting and high-impact mechanical degradation as would occur during the tillage into soil, and that NPs form from the MP fragments in regions of relative weakness that possess lower molecular weight polymers and crystallinity.
Collapse
Affiliation(s)
- A F Astner
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America
| | - D G Hayes
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America.
| | - H O'Neill
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - B R Evans
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - S V Pingali
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - V S Urban
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - T M Young
- The University of Tennessee, Center for Renewable Carbon, 2506 Jacob Dr, Knoxville, TN 37996, United States of America
| |
Collapse
|