1
|
Zhang B, Long S, Feng R, Yu MJ, Xu BC, Tao H. Thiolated dextrin nanoparticles for curcumin delivery: Stability, in vitro release, and binding mechanism. Food Chem 2025; 463:141501. [PMID: 39395353 DOI: 10.1016/j.foodchem.2024.141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
To achieve the effective loading and delivery of curcumin, novel disulfide-crosslinked nanoparticles based on modified dextrin were developed for the encapsulation of curcumin. Thiolated dextrin (Dt-SH) was obtained via sodium periodate oxidation and cysteamine grafting. The Dt-SH exhibited a rough, flake-like morphology, was classified as an amorphous material and demonstrated enhanced enzyme resistance. Subsequently, spherical nanoparticles with sizes ranging from 92.52 to 157.12 nm and zeta potentials between +23.59 and + 29.90 mV were self-assembled in an aqueous solution. Thiol modification promoted interconnection and aggregation of the nanoparticles. These nanoparticles exhibited pH-dependent size variations. Taking curcumin as a hydrophobic model, nanoparticles showed intestinal targeted release in vitro. Fluorescence spectroscopy and thermodynamic analysis indicated that curcumin bound to Dt-SH nanoparticles primarily through hydrogen bonding and van der Waals forces, with hydrophobic interactions contributing. These findings supported the potential of thiolated dextrin nanoparticles in the effective delivery of hydrophobic compounds.
Collapse
Affiliation(s)
- Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Shen Long
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jie Yu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
2
|
Hu H, Luan Q, Li J, Lin C, Ouyang X, Wei DQ, Wang J, Zhu J. High-Molecular-Weight and Light-Colored Disulfide-Bond-Embedded Polyesters: Accelerated Hydrolysis Triggered by Redox Responsiveness. Biomacromolecules 2023; 24:5722-5736. [PMID: 37946491 DOI: 10.1021/acs.biomac.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Disulfide bonds have attracted considerable attention due to their reduction responsiveness, but it is crucial and challenging to prepare disulfide-bond-based polyesters by melt polycondensation. Herein, the inherently poor thermal stability of the S-S bond in melting polycondensation was overcome. Moreover, poly(butylene succinate-co-dithiodipropionate) (PBSDi) with a light color and high molecular weights (Mn values up to 84.7 kg/mol) was obtained. These polyesters can be applied via melt processing with Td,5% > 318 °C. PBSDi10-PBSDi40 shows good crystallizability (crystallinity 56-38%) and compact lamellar thickness (2.9-3.2 nm). Compared with commercial poly(butylene adipate-co-terephthalate) (PBAT), the elevated mechanical and barrier performances of PBSDi make them better packaging materials. For the degradation behavior, the disulfide monomer obviously accelerates the enzyme degradation but has a weaker effect on hydrolysis. In 0.1 mol/L or higher concentrations of H2O2 solutions, the oxidation of disulfide bonds to sulfoxide and sulfone groups can be realized. This process results in a stronger nucleophilic attack, as confirmed by the Fukui function and DFT calculations. Additionally, the greater polarity and hydrophilicity of oxidation products, proved by noncovalent interaction analysis, accelerate the hydrolysis of polyesters. Moreover, glutathione-responsive breakage, from polymers to oligomers, is confirmed by an accelerated decline in molecular weight. Our research offers fresh perspectives on the effective synthesis of the disulfide polyester and lays a solid basis for the creation of high-performance biodegradable polyesters that degrade on demand.
Collapse
Affiliation(s)
- Han Hu
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qingyang Luan
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Lin
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientifc Park, Nanyang 473006, Henan, China
- Peng Cheng Laborator, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, Guangdong, China
| | - Jinggang Wang
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Bloise N, Fassina L, Focarete ML, Lotti N, Visai L. Haralick's texture analysis to predict cellular proliferation on randomly oriented electrospun nanomaterials. NANOSCALE ADVANCES 2022; 4:1330-1335. [PMID: 36133676 PMCID: PMC9419736 DOI: 10.1039/d1na00890k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/24/2022] [Indexed: 05/13/2023]
Abstract
Using a computer vision approach we have extracted the Haralick's texture features of randomly oriented electrospun nanomaterials in order to predict the proliferative behavior of cells which were subsequently seeded onto the nanosurfaces.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia 27100 Pavia Italy
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician", INSTM UdR of Bologna, University of Bologna 40126 Bologna Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna 40131 Bologna Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna 40131 Bologna Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| |
Collapse
|
4
|
K S S, Ravji Paghadar B, Kumar SP, R L J. Polybutylene Succinate, A potential bio-degradable polymer: Synthesis, copolymerization And Bio-degradation. Polym Chem 2022. [DOI: 10.1039/d2py00204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate) is one of the emerging bio-degradable polymer, which has huge potential to be employed in a wide range of applications. Further, it is also recognized as one of...
Collapse
|
5
|
|
6
|
Guidotti G, Soccio M, Bondi E, Posati T, Sotgiu G, Zamboni R, Torreggiani A, Corticelli F, Lotti N, Aluigi A. Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications. Biomolecules 2021; 11:biom11081194. [PMID: 34439860 PMCID: PMC8392087 DOI: 10.3390/biom11081194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years there has been a growing interest in the use of proteins as biocompatible and environmentally friendly biomolecules for the design of wound healing and drug delivery systems. Keratin is a fascinating protein, obtainable from several keratinous biomasses such as wool, hair or nails, with intrinsic bioactive properties including stimulatory effects on wound repair and excellent carrier capability. In this work keratin/poly(butylene succinate) blend solutions with functional properties tunable by manipulating the polymer blending ratios were prepared by using 1,1,1,3,3,3-hexafluoroisopropanol as common solvent. Afterwards, these solutions doped with rhodamine B (RhB), were electrospun into blend mats and the drug release mechanism and kinetics as a function of blend composition was studied, in order to understand the potential of such membranes as drug delivery systems. The electrophoresis analysis carried out on keratin revealed that the solvent used does not degrade the protein. Moreover, all the blend solutions showed a non-Newtonian behavior, among which the Keratin/PBS 70/30 and 30/70 ones showed an amplified orientation ability of the polymer chains when subjected to a shear stress. Therefore, the resulting nanofibers showed thinner mean diameters and narrower diameter distributions compared to the Keratin/PBS 50/50 blend solution. The thermal stability and the mechanical properties of the blend electrospun mats improved by increasing the PBS content. Finally, the RhB release rate increased by increasing the keratin content of the mats and the drug diffused as drug-protein complex.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (M.S.); (E.B.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (M.S.); (E.B.)
| | - Edoardo Bondi
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (M.S.); (E.B.)
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy; (T.P.); (G.S.); (R.Z.); (A.T.)
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy; (T.P.); (G.S.); (R.Z.); (A.T.)
- Kerline srl, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy; (T.P.); (G.S.); (R.Z.); (A.T.)
| | - Armida Torreggiani
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy; (T.P.); (G.S.); (R.Z.); (A.T.)
| | - Franco Corticelli
- Institute for Microelectronics and Microsystems, National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (M.S.); (E.B.)
- Correspondence: (N.L.); (A.A.)
| | - Annalisa Aluigi
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy; (T.P.); (G.S.); (R.Z.); (A.T.)
- Kerline srl, Via Piero Gobetti 101, 40129 Bologna, Italy
- Correspondence: (N.L.); (A.A.)
| |
Collapse
|
7
|
Shi H, Liang N, Liu J, Li S, Gong X, Yan P, Sun S. AIE-active polymeric micelles based on modified chitosan for bioimaging-guided targeted delivery and controlled release of paclitaxel. Carbohydr Polym 2021; 269:118327. [PMID: 34294339 DOI: 10.1016/j.carbpol.2021.118327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
In this study, a novel polymer based on aggregation-induced emission (AIE) fluorogen, biotin and disulfide bonds modified chitosan (TPE-bi(SS-CS-Bio)) was designed and synthesized. The polymer could self-assemble into micelles in aqueous media and encapsulate paclitaxel (PTX) into the core with high drug loading. Fluorescence study indicated that the micelles exhibited excellent AIE feature with intense blue fluorescence emitted. In vitro drug release study indicated that the micelles could disassemble rapidly in the presence of high level of glutathione. The modification by biotin could enhance the cellular uptake of the micelles. The drug-loaded micelles possessed remarkable cytotoxicity against MCF-7 cells, and their distribution in the cells could be traced due to the excellent AIE feature. In vivo antitumor efficacy study demonstrated the superior antitumor activity of the PTX-loaded TPE-bi(SS-CS-Bio) micelles. These results indicated that TPE-bi(SS-CS-Bio) has the ability of biological imaging and can be used as a potential carrier for PTX.
Collapse
Affiliation(s)
- Haohui Shi
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Jiyang Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Siyi Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xianfeng Gong
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|