1
|
Rudd ND, Reibarkh M, Fang R, Mittal S, Walsh PL, Brunskill APJ, Forrest WP. Interpreting In Vitro Release Performance from Long-Acting Parenteral Nanosuspensions Using USP-4 Dissolution and Spectroscopic Techniques. Mol Pharm 2020; 17:1734-1747. [PMID: 32267708 DOI: 10.1021/acs.molpharmaceut.0c00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Injectable sustained release dosage forms have emerged as desirable therapeutic routes for patients that require life-long treatments. The prevalence of drug molecules with low aqueous solubility and bioavailability has added momentum toward the development of suspension-based long-acting parenteral (LAP) formulations; the previously undesirable physicochemical properties of Biopharmaceutics Classification System (BCS) Class II/IV compounds are best suited for extended release applications. Effective in vitro release (IVR) testing of crystalline suspensions affirms product quality during early-stage development and provides connections with in vivo performance. However, before in vitro-in vivo correlations (IVIVCs) can be established, it is necessary to evaluate formulation attributes that directly affect IVR properties. In this work, a series of crystalline LAP nanosuspensions were formulated with different stabilizing polymers and applied to a continuous flow-through (USP-4) dissolution method. This technique confirmed the role of salt effects on the stability of polymer-coated nanoparticles through the detection of disparate active pharmaceutical ingredient (API) release profiles. The polymer stabilizers with extended hydrophilic chains exhibited elevated intrapolymer activity from the loss of hydrogen-bond cushioning in dissolution media with heightened ionic strength, confirmed through one-dimensional (1D) 1H NMR and two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) experiments. Thus, steric repulsion within the affected nanosuspensions was limited and release rates decreased. Additionally, the strength of interaction between hydrophobic polymer components and the API crystalline surface contributed to suspension dissolution properties, confirmed through solution- and solid-state spectroscopic analyses. This study provides a unique perspective on the dynamic interface between the crystalline drug and aqueous microenvironment during dissolution.
Collapse
Affiliation(s)
- Nathan D Rudd
- Analytical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rui Fang
- Sterile & Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sachin Mittal
- Sterile & Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul L Walsh
- Analytical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - William P Forrest
- Sterile & Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
2
|
Portnov IV, Potemkin II. Interpolyelectrolyte Complex Dissociation vs Polyelectrolyte Desorption from Oppositely Charged Surface upon Salt Addition. J Phys Chem B 2020; 124:914-920. [PMID: 31935090 DOI: 10.1021/acs.jpcb.9b10678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure of complexes formed by oppositely charged polyelectrolytes and adsorbed layers on charged surfaces is sensitive to low-molecular-weight salt. Furthermore, if the concentration exceeds some threshold value, the complexes and adsorbed chains can be "dissolved". This is due to the screening of the electrostatic interactions between charged units. In the current paper, we perform a comparative analysis of "dissolution" (dissociation) of complexes and layers upon addition of salt. For this, the conventional Brownian dynamics of computer simulations is used. We demonstrate that the complex based on linear chains dissociates at lower salt concentration than that required for desorption of equivalent chains from an oppositely charged surface. The physical reason is the difference in the symmetry of the electric field, which binds the chains into the complex (layer). In the salt-free regime, the intensity of the electric field (and attractive force) between two linear chains decays with the distance R between them, like for two spherical objects, ∼R-2, if R is bigger than the characteristic size of the chain. On the contrary, the attractive force of the chain to the infinite surface does not depend on the distance to the surface (the electric field is constant). Therefore, if attractive forces in the condensed states of the two systems are equal, one needs to add more salt to screen the constant force than the decaying one. The computer simulation results on the adsorption of the chains were compared with the experimental data obtained for adsorption of cationic poly(4-vinylpyridine) on the surface of anionic liposomes. Good quantitative agreement was achieved.
Collapse
Affiliation(s)
- Ivan V Portnov
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation.,DWI-Leibniz Institute for Interactive Materials , Aachen 52056 , Germany.,A. N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Moscow 119991 , Russian Federation
| | - Igor I Potemkin
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation.,DWI-Leibniz Institute for Interactive Materials , Aachen 52056 , Germany.,National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| |
Collapse
|
3
|
Wang L, Wang Z, Jiang R, Yin Y, Li B. Conformation transitions of a single polyelectrolyte chain in a poor solvent: a replica-exchange lattice Monte-Carlo study. SOFT MATTER 2017; 13:2216-2227. [PMID: 28247878 DOI: 10.1039/c6sm02540d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.
Collapse
Affiliation(s)
- Lang Wang
- The MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Zheng Wang
- The MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Run Jiang
- The MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Yuhua Yin
- The MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Baohui Li
- The MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Eleta-Lopez A, Calò A. Key factors of scanning a plant virus with AFM in air and aqueous solution. Microsc Res Tech 2016; 80:18-29. [DOI: 10.1002/jemt.22741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Aitziber Eleta-Lopez
- Self-Assembly Group; CIC nanoGUNE, Tolosa Hiribidea 76, Donostia-San Sebastian, Basque Country; 20018 Spain
| | - Annalisa Calò
- Nanoscience Iniciative; CUNY Advanced Science Research Center ASRC; 85 St. Nicholas Terrace New York New York 10031
| |
Collapse
|
5
|
Pensini E, Sleep BE, Yip CM, O’Carroll D. Forces of interactions between iron and aluminum silicates: Effect of water chemistry and polymer coatings. J Colloid Interface Sci 2013; 411:8-15. [DOI: 10.1016/j.jcis.2013.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/24/2013] [Indexed: 11/30/2022]
|
6
|
Borkovec M, Szilagyi I, Popa I, Finessi M, Sinha P, Maroni P, Papastavrou G. Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique. Adv Colloid Interface Sci 2012; 179-182:85-98. [PMID: 22795487 DOI: 10.1016/j.cis.2012.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/04/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Direct force measurements are used to obtain a comprehensive picture of interaction forces acting between charged colloidal particles in the presence of oppositely charged polyelectrolytes. These measurements are achieved by the multi-particle colloidal probe technique based on the atomic force microscope (AFM). This novel extension of the classical colloidal probe technique offers three main advantages. First, the technique works in a colloidal suspension with a huge internal surface area of several square meters, which simplifies the precise dosing of the small amounts of the polyelectrolytes needed and makes this approach less sensitive to impurities. Second, the particles are attached in-situ within the fluid cell, which avoids the formation of nanobubbles on the latex particles used. Third, forces between two similar particles from the same batch are being measured, which allows an unambiguous determination of the surface potential due to the symmetry of the system. Based on such direct force measurements involving positively and negatively charged latex particles and different polyelectrolytes, we find the following forces to be relevant. Repulsive electrostatic double-layer forces and attractive van der Waals forces as described by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) are both important in these systems, whereby the electrostatic forces dominate away from the isoelectric point (IEP), while at this point they vanish. Additional non-DLVO attractive forces are operational, and they have been identified to originate from the electrostatic interactions between the patch-charge heterogeneities of the adsorbed polyelectrolyte films. Highly charged polyelectrolytes induce strong patch-charge attractions, which become especially important at low ionic strengths and high molecular mass. More weakly charged polyelectrolytes seem to form more homogeneous films, whereby patch-charge attractions may become negligible. Individual bridging events could be only rarely identified from the retraction part of the force profiles, and therefore we conclude that bridging forces are unimportant in these systems.
Collapse
|
7
|
Pensini E, Yip CM, O'Carroll DM, Sleep BE. Effect of water chemistry and aging on iron-mica interaction forces: implications for iron particle transport. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10453-10463. [PMID: 22716956 DOI: 10.1021/la301539q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The transport of particles through groundwater systems is governed by a complex interplay of mechanical and chemical forces that are ultimately responsible for binding to geological substrates. To understand these forces in the context of zero valent iron particles used in the remediation of groundwater, atomic force microscopy (AFM)-based force spectroscopy was employed to characterize the interactions between AFM tips modified with either carbonyl iron particles (CIP) or electrodeposited Fe as a function of counterion valency, temperature, particle morphology, and age. The measured interaction forces were always attractive for both fresh and aged CIP and electrodeposited iron, except in 100 mM NaCl, as a consequence of electrostatic attraction between the negatively charged mica and positively charged iron. In 100 mM NaCl, repulsive hydration forces appeared to dominate. Good agreement was found between the experimental data and predictions based on the extended DLVO (XDLVO) theory. The effect of aging on iron particle composition and morphology was assessed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) revealing that the aged particles comprising a zero valent iron core passivated by a mixture of iron oxides and hydroxides. Force spectroscopy showed that aging caused variations in the adhesive force due to the changes in particle morphology and contact area.
Collapse
Affiliation(s)
- Erica Pensini
- Department of Civil Engineering, University of Toronto, Toronto (ON) M5S 1A4, Canada
| | | | | | | |
Collapse
|
8
|
Trotsenko O, Roiter Y, Minko S. Conformational transitions of flexible hydrophobic polyelectrolytes in solutions of monovalent and multivalent salts and their mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6037-6044. [PMID: 22413781 DOI: 10.1021/la300584k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Conformations of cationic polyelectrolytes (PEs), a weak poly(2-vinylpyridine) (P2VP) and a strong poly(N-methyl-2-vinylpyridinium iodide) (qP2VP), adsorbed on mica from saline solutions in the presence of counterions of different valences are studied using in situ atomic force microscopy (AFM). Quantitative characteristics of chain conformations are analyzed using AFM images of the adsorbed molecules. The results of the statistical analysis of the chain contour reveal collapse of the PE coils when ionic strength is in a range from tens to hundreds of millimoles per kilogram and re-expansion of the coils with a further increase of ionic strength up to a region of the saturated saline solutions. The competition between monovalent and multivalent counterions simultaneously present in solutions strongly affects conformations of PE chains even at a very small fraction of multivalent counterions. Shrinkage of PE coils is steeper for multivalent counterions than for monovalent counterions. However, the re-expansion is only incremental in the presence of multivalent counterions. Extended adsorbed coils at low salt concentrations and at very high concentrations of monovalent salt exhibit conformation corresponding to a 2D coil with 0.95 fraction of bound segments (segments in "trains") in the regime of diluted surface concentration of the PE. Shrunken coils in the intermediate range of ionic strength resemble 3D-globules with 0.8 fraction of trains. The incrementally re-expanded PE coils at a high ionic strength remain unchanged at higher multivalent salt concentrations up to the solubility limit of the salt. The formation of a strong PE complex with multivalent counterions at high ionic strength is not well understood yet. A speculative explanation of the observed experimental result is based on possible stabilization of the complex due to hydrophobic interactions of the backbone.
Collapse
Affiliation(s)
- Oleksandr Trotsenko
- Department of Chemistry, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, USA
| | | | | |
Collapse
|
9
|
Porus M, Maroni P, Borkovec M. Structure of adsorbed polyelectrolyte monolayers investigated by combining optical reflectometry and piezoelectric techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5642-5651. [PMID: 22283688 DOI: 10.1021/la204855j] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyelectrolyte monolayers on solid substrates are studied with optical reflectivity and the quartz crystal microbalance (QCM). In particular, we investigate the adsorption of anionic poly(styrene sulfonate) (PSS) on amino-functionalized silica as well as cationic poly(allylamine hydrochloride) (PAH) and poly-L-lysine (PLL) on bare silica. By comparing the dry and wet masses measured on identical substrates with these two techniques, we obtain information on the layer thickness and water content of these layers. Monolayers typically feature an adsorbed dry mass of about 0.1-2 mg/m(2), a layer thickness of 0.5-2 nm, and a water content of 20-50%. One finds that the layer thickness increases with increasing concentrations of monovalent salts and polyelectrolytes.
Collapse
Affiliation(s)
- Maria Porus
- Departement of Inorganic, Analytical and Applied Chemistry, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
10
|
Mureşan L, Sinha P, Maroni P, Borkovec M. Adsorption and surface-induced precipitation of poly(acrylic acid) on calcite revealed with atomic force microscopy. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.09.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Koestner R, Roiter Y, Kozhinova I, Minko S. AFM imaging of adsorbed Nafion polymer on mica and graphite at molecular level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10157-10166. [PMID: 21736314 DOI: 10.1021/la201283a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Perfluorosulfonic acid ionomer (PFSA, specifically Nafion at EW = 975 g/mol) was visualized at the single molecule level using atomic force microscopy (AFM) in liquid. The diluted commercial Nafion dispersion shows an apparent M(w) = 1430 kg/mol and M(w)/M(n) = 3.81, which is assigned to chain aggregation. PFSA aggregates, imaged on mica and HOPG during adsorption from EtOH-H(2)O solvent at pH(e) 3.0 (below isoelectric point), showed a stable, segmented rod-like conformation. This structure is consistent with earlier NMR, SAXS/SANS, and TEM results that support a stiff helical Nafion conformation with long persistence length, a sharp solvent-polymer interface, and an extension of the sulfonated side chain into solution. Adsorption of Nafion structures on HOPG was observed at even higher pH(e) from EtOH due to screening of the repulsive electrostatic interaction in lower dielectric constant solvent, while the chain adopted an expanded coil conformation. These measurements provided direct evidence of the chain aggregation in EtOH-H(2)O solution and revealed their equilibrium conformations for adsorption on two model surfaces, highly ordered pyrolitic graphite (HOPG) and mica. The commercial Nafion dispersion was autoclaved at 0.10% w/w in nPrOH/H(2)O = 4:1 v/v solvent at 230 °C for 6 h to give a single-chain dispersion with M(w) = 310 kg/mol and M(w)/M(n) = 1.60. The autoclaved chains adopt an electrostatically stabilized compact globule conformation as observed by AFM imaging of the single PFSA molecules after rapid deposition on mica and HOPG at a low surface coverage.
Collapse
Affiliation(s)
- Roland Koestner
- Electrochemical Energy Research Laboratory, GM Research and Development, 10 Carriage Street, Honeoye Falls, New York 14472-1039, United States
| | | | | | | |
Collapse
|
12
|
Gallyamov MO. Scanning Force Microscopy as Applied to Conformational Studies in Macromolecular Research. Macromol Rapid Commun 2011; 32:1210-46. [DOI: 10.1002/marc.201100150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/06/2011] [Indexed: 01/17/2023]
|
13
|
Water-soluble copolymers in conjunction with ultrafiltration membranes to remove arsenate ions. Polym Bull (Berl) 2010. [DOI: 10.1007/s00289-010-0393-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Hierrezuelo J, Szilagyi I, Vaccaro A, Borkovec M. Probing Nanometer-Thick Polyelectrolyte Layers Adsorbed on Oppositely Charged Particles by Dynamic Light Scattering. Macromolecules 2010. [DOI: 10.1021/ma1014462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José Hierrezuelo
- Department of Inorganic, Analytical, and Applied Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Istvan Szilagyi
- Department of Inorganic, Analytical, and Applied Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Andrea Vaccaro
- Department of Inorganic, Analytical, and Applied Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Michal Borkovec
- Department of Inorganic, Analytical, and Applied Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Roiter Y, Trotsenko O, Tokarev V, Minko S. Single Molecule Experiments Visualizing Adsorbed Polyelectrolyte Molecules in the Full Range of Mono- and Divalent Counterion Concentrations. J Am Chem Soc 2010; 132:13660-2. [DOI: 10.1021/ja106065g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuri Roiter
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699
| | - Oleksandr Trotsenko
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699
| | - Viktor Tokarev
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699
| | - Sergiy Minko
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699
| |
Collapse
|
16
|
Jiang M, Popa I, Maroni P, Borkovec M. Adsorption of poly(l-lysine) on silica probed by optical reflectometry. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.01.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Measurement of interaction forces between fibrinogen coated probes and mica surface with the atomic force microscope: The pH and ionic strength effect. Biointerphases 2010; 3:1-8. [PMID: 20408656 DOI: 10.1116/1.2840052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study of protein-surface interactions is of great significance in the design of biomaterials and the evaluation of molecular processes in tissue engineering. The authors have used atomic force microscopy (AFM) to directly measure the force of attraction/adhesion of fibrinogen coated tips to mica surfaces and reveal the effect of the surrounding solution pH and ionic strength on this interaction. Silica colloid spheres were attached to the AFM cantilevers and, after plasma deposition of poly(acrylic acid), fibrinogen molecules were covalently bound on them with the help of the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of N-hydroxysulfosuccinimide (sulfo-NHS). The measurements suggest that fibrinogen adsorption is controlled by the screening of electrostatic repulsion as the salt concentration increases from 15 to 150 mM, whereas at higher ionic strength (500 mM) the hydration forces and the compact molecular conformation become crucial, restricting adsorption. The protein attraction to the surface increases at the isoelectric point of fibrinogen (pH 5.8), compared with the physiological pH. At pH 3.5, apart from fibrinogen attraction to the surface, evidence of fibrinogen conformational changes is observed, as the pH and the ionic strength are set back and forth, and these changes may account for fibrinogen aggregation in the protein solution at this pH.
Collapse
|
18
|
Trotsenko O, Roiter Y, Minko S. Structure of salted and discharged globules of hydrophobic polyelectrolytes adsorbed from aqueous solutions. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/polb.21970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Sinha P, Lages S, Kiriy A, Huber K, Stamm M. Adsorption behavior of partially collapsed polyacrylate coils on mica surfaces: A reciprocal space approach. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/polb.21959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Valtiner M, Grundmeier G. Single molecules as sensors for local molecular adhesion studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:815-820. [PMID: 19685886 DOI: 10.1021/la9022322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An experimental approach is presented that allows the measurement of interactions of single macromolecules at the electrolyte/single-crystal interfaces under the continuous variation of electrolyte composition. Single polyelectrolyte desorption experiments with poly(acrylic acid) were performed on atomically defined single-crystal ZnO(0001)-Zn surfaces in aqueous electrolytes of varying pH and constant ionic strength. The corresponding characterized single-crystalline surface structures were proven to be stable in the pH range of 4-11, enabling the analysis of desorption forces on both surface terraces and step edges as a function of pH. Thereby, contributions of electrostatic and van der Waals forces as well as contributions of coordinative interfacial bonds could be distinguished. The results showed that carboxylic acid functionalities adsorb weakly to hydroxide-stabilized polar ZnO(0001)-Zn surfaces with forces in the range of 60-80 pN, whereas they strongly bind to the separating step-edges between the polar terraces, most probably via coordinative bonds exhibiting forces of up to 700 pN. Thus, by means of single-molecule desorption spectroscopy individual binding sites could be readily identified by distinct features in the force-distance profiles. Moreover, the measurement of desorption forces on the large atomically flat terraces at varying pH proved that a maximum molecular desorption force occurs at pH 7 as a result of increasing repulsive interactions at pH values above the surface point of zero charge and decreasing electrostatic interactions when shifting the pH in the direction of the pK(A) of the poly(acrylic acid).
Collapse
Affiliation(s)
- Markus Valtiner
- Christian Doppler Laboratory for Polymer/Metal Interfaces, Max-Planck-Insitut für Eisenforschung GmbH, Max-Planck-Strasse 1, D-40237 Düsseldorf, Germany
| | | |
Collapse
|
21
|
Coulter MM, Dinglasan JA, Goh JB, Nair S, Anderson DJ, Dong VM. Preparing water-dispersed palladium nanoparticles via polyelectrolyte nanoreactors. Chem Sci 2010. [DOI: 10.1039/c0sc00314j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Schappacher M, Deffieux A. Imaging of Catenated, Figure-of-Eight, and Trefoil Knot Polymer Rings. Angew Chem Int Ed Engl 2009; 48:5930-3. [DOI: 10.1002/anie.200900704] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Schappacher M, Deffieux A. Imaging of Catenated, Figure-of-Eight, and Trefoil Knot Polymer Rings. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S. Interaction of lipid membrane with nanostructured surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6287-6299. [PMID: 19466783 DOI: 10.1021/la900119a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tiny details of the phospholipid (DMPC) membrane morphology in close vicinity to nanostructured silica surfaces have been discovered in the atomic force microscopy experiments. The structural features of the silica surface were varied in the experiments by the deposition of silica nanoparticles of different diameter on plane and smooth silica substrates. It was found that, due to the barrier function of the lipid membrane, only particles larger than 22 nm in diameter with a smooth surface were completely enveloped by the lipid membrane. However, nanoparticles with bumpy surfaces (curvature diameter of bumps as that of particles <22 nm) were only partially enveloped by the lipid bilayer. For the range of nanostructure dimensions between 1.2 and 22 nm, the lipid membrane underwent structural rearrangements by forming pores (holes). The nanoparticles were accommodated into the pores but not enveloped by the lipid bilayer. The study also found that the lipid membrane conformed to the substrate with surface structures of dimensions less than 1.2 nm without losing the membrane integrity. The experimental results are in accord with the analytical free energy model, which describes the membrane coverage, and numerical simulations which evaluate adhesion of the membrane and dynamics as a function of surface topology. The results obtained in this study are useful for the selection of dimensions and shapes for drug-delivery cargo and for the substrate for supported lipid bilayers. They also help in qualitative understanding the role of length scales involved in the mechanisms of endocytosis and cytotoxicity of nanoparticles. These findings provide a new approach for patterning supported lipid membranes with well-defined features in the 1.2-22 nm range.
Collapse
Affiliation(s)
- Yuri Roiter
- Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, New York 13699-5810, USA
| | | | | | | | | | | |
Collapse
|
25
|
Tokarev I, Motornov M, Minko S. Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b906765e] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Hoda N, Kumar S. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow: Effects of solvent quality and charge patterning. J Chem Phys 2008; 128:164907. [DOI: 10.1063/1.2901052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Yokota S, Ueno T, Kitaoka T, Tatsumi D, Wariishi H. Morphological Imaging of Single Methylcellulose Chains and Their Thermoresponsive Assembly on a Highly Oriented Pyrolytic Graphite Surface. Biomacromolecules 2007; 8:3848-52. [DOI: 10.1021/bm700819f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shingo Yokota
- Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomotsugu Ueno
- Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Takuya Kitaoka
- Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Daisuke Tatsumi
- Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroyuki Wariishi
- Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
28
|
Roiter Y, Minko S. Adsorption of Polyelectrolyte versus Surface Charge: in Situ Single-Molecule Atomic Force Microscopy Experiments on Similarly, Oppositely, and Heterogeneously Charged Surfaces. J Phys Chem B 2007; 111:8597-604. [PMID: 17555343 DOI: 10.1021/jp070518q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the effect of the pH and surface charge of mica on the adsorption of the positively charged weak polyelectrolyte (PE) poly(2-vinylpyridine) (P2VP) using atomic force microscopy (AFM) single-molecule experiments. These AFM experiments were performed in situ directly under aqueous media. If the mica's surface and the PE are oppositely charged (pH > 3), the PE forms a flat adsorbed layer of two-dimensionally (2D) equilibrated self-avoiding random walk coils. The adsorbed layer's structure remains almost unchanged if the pH is decreased to pH 3 (the mica's surface is weakly charged). At pH 2 (the mica surface is decorated by spots of different electrical charges), the polyelectrolyte chains take the form of a 2D compressed coil. In this pH range, at an increased P2VP concentration in solution, the PE segments preferentially adsorb onto the top of previously adsorbed segments, rather than onto an unoccupied surface. We explain this behavior as being caused by the heterogeneous character of the charged surface and the competitive adsorption of hydronium ions. The further increase of polymer concentration results in a complete coverage of the mica substrate and the charge overcompensation by P2VP chains adsorbed on the similarly charged substrate, due to van der Waals forces.
Collapse
Affiliation(s)
- Yuri Roiter
- Clarkson University, Department of Chemistry and Biomolecular Science, 8 Clarkson Avenue, Potsdam, New York 13699-5810, USA
| | | |
Collapse
|
29
|
Kosovan P, Limpouchova Z, Prochazka K. Conformational Behavior of Comb-like Polyelectrolytes in Selective Solvent: Computer Simulation Study. J Phys Chem B 2007; 111:8605-11. [PMID: 17547454 DOI: 10.1021/jp072894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present molecular dynamics simulations of comb-like polyelectrolytes in selective solvent. The studied polymers have a neutral backbone and polyelectrolyte side chains. The solvent is poor for the backbone and the theta solvent for the side chains. The polymers are modeled on a coarse-grained level with implicit solvent. The simulations show that the comb-like polyelectrolytes tend to form intramolecular self-organized structures of the pearl necklace type. This type of conformational behavior has been predicted by Borisov and Zhulina (Borisov, O. V.; Zhulina, E. B. Macromolecules 2005, 38, 2506) for neutral comb-like copolymers in selective solvent. The present study shows that comb-like polyelectrolytes in selective solvent exhibit the same type of behavior; however, it can be controlled by one additional parameter, the degree of dissociation of the grafts. The local conformational characteristics are studied using the ensemble-averaged bond angle cosines as functions of monomer position in the chain, which reveal structural details invisible by other means.
Collapse
Affiliation(s)
- Peter Kosovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic.
| | | | | |
Collapse
|
30
|
Wang S, Zhao J. First-order conformation transition of single poly(2-vinylpyridine) molecules in aqueous solutions. J Chem Phys 2007; 126:091104. [PMID: 17362096 DOI: 10.1063/1.2711804] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By measuring diffusion rate, the conformation change of single poly(2-vinylpyridine) chain in aqueous solution was studied by fluorescence correlation spectroscopy. The data showed a stepwise change of hydrodynamic radius when pH value was tuned, reflecting a sign of first-order conformation transition, and a continuous change was found at varying salt concentration.
Collapse
Affiliation(s)
- Shengqin Wang
- Beijing National Laboratory of Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
31
|
Gallyamov MO, Starodubtsev SG, Bragina TP, Dubrovina LV, Potemkin II, Marti O, Khokhlov AR. Conformational Behaviour of Comb-Like Poly(4-vinylpyridinium) Salts and their Complexes with Surfactants in Solution and on a Flat Surface. MACROMOL CHEM PHYS 2007. [DOI: 10.1002/macp.200600450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|