1
|
Zhao M, Zhu X, Li B, Yan C, Wu C, He L, Cao J, Lu F, Chen H, Li W. Potent cancer therapy by liposome microstructure tailoring with active-to-passive targeting and shell-to-core thermosensitive features. Mater Today Bio 2024; 26:101035. [PMID: 38586871 PMCID: PMC10995888 DOI: 10.1016/j.mtbio.2024.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Liposomes have been widely studied as drug carriers for clinical application, and the key issue is how to achieve effective delivery through targeting strategies. Even though certain cell-level targeting or EPR effect designs have been developed, reaching sufficient drug concentration in intracellular regions remains a challenge due to the singularity of functionality. Herein, benefiting from the unique features of tumor from tissue to cell, a dual-thermosensitive and dual-targeting liposome (DTSL) was creatively fabricated through fine microstructure tailoring, which holds intelligent both tissue-regulated active-to-passive binding and membrane-derived homologous-fusion (HF) properties. At the micro level, DTSL can actively capture tumor cells and accompany the enhanced HF effect stimulated by self-constriction, which achieves a synergistic promotion effect targeting tissues to cells. As a result, this first active-then passive targeting process makes drug delivery more accurate and effective, and after dynamic targeting into cells, the nucleus of DTSL undergoes further thermally responsive contraction, fully releasing internal drugs. In vivo experiments showed that liposomes with dual targeting and dual thermosensitive features almost completely inhibited tumor growth. Summarized, these results provide a reference for a rational design and microstructural tailoring of the liposomal co-delivery system of drugs, suggesting that active-to-passive dual-targeting DTSL can function as a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Zhao
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Xiaodong Zhu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Bailing Li
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenyang Yan
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Cong Wu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Lei He
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingyi Cao
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Han Chen
- Department of General Surgery, 905th Hospital of People's Liberation Army Navy, Naval Medical University, Shanghai, 200433, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
2
|
Scacchi A, Hasheminejad K, Javan Nikkhah S, Sammalkorpi M. Controlling self-assembling co-polymer coatings of hydrophilic polysaccharide substrates via co-polymer block length ratio. J Colloid Interface Sci 2023; 640:809-819. [PMID: 36905890 DOI: 10.1016/j.jcis.2023.02.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
HYPOTHESIS The degree of polymerization of amphiphilic di-block co-polymers, which can be varied with ease in computer simulations, provides a means to control self-assembling di-block co-polymer coatings on hydrophilic substrates. SIMULATIONS We examine self-assembly of linear amphiphilic di-block co-polymers on hydrophilic surface via dissipative particle dynamics simulations. The system models a glucose based polysaccharide surface on which random co-polymers of styrene and n-butyl acrylate, as the hydrophobic block, and starch, as the hydrophilic block, forms a film. Such setups are common in e.g. hygiene, pharmaceutical, and paper product applications. FINDINGS Variation of the block length ratio (35 monomers in total) reveals that all examined compositions readily coat the substrate. However, strongly asymmetric block co-polymers with short hydrophobic segments are best in wetting the surface, whereas approximately symmetric composition leads to most stable films with highest internal order and well-defined internal stratification. At intermediate asymmetries, isolated hydrophobic domains form. We map the sensitivity and stability of the assembly response for a large variety of interaction parameters. The reported response persists for a wide polymer mixing interactions range, providing general means to tune surface coating films and their internal structure, including compartmentalization.
Collapse
Affiliation(s)
- Alberto Scacchi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland; Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Kourosh Hasheminejad
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Sousa Javan Nikkhah
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
3
|
Wang L, Xu H, Weng L, Sun J, Jin Y, Xiao C. Activation of cancer immunotherapy by nanomedicine. Front Pharmacol 2022; 13:1041073. [PMID: 36618938 PMCID: PMC9814015 DOI: 10.3389/fphar.2022.1041073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most difficult diseases to be treated in the world. Immunotherapy has made great strides in cancer treatment in recent years, and several tumor immunotherapy drugs have been approved by the U.S. Food and Drug Administration. Currently, immunotherapy faces many challenges, such as lacking specificity, cytotoxicity, drug resistance, etc. Nanoparticles have the characteristics of small particle size and stable surface function, playing a miraculous effect in anti-tumor treatment. Nanocarriers such as polymeric micelles, liposomes, nanoemulsions, dendrimers, and inorganic nanoparticles have been widely used to overcome deficits in cancer treatments including toxicity, insufficient specificity, and low bioavailability. Although nanomedicine research is extensive, only a few nanomedicines are approved to be used. Either Bottlenecks or solutions of nanomedicine in immunotherapy need to be further explored to cope with challenges. In this review, a brief overview of several types of cancer immunotherapy approaches and their advantages and disadvantages will be provided. Then, the types of nanomedicines, drug delivery strategies, and the progress of applications are introduced. Finally, the application and prospect of nanomedicines in immunotherapy and Chimeric antigen receptor T-cell therapy (CAR-T) are highlighted and summarized to address the problems of immunotherapy the overall goal of this article is to provide insights into the potential use of nanomedicines and to improve the efficacy and safety of immunotherapy.
Collapse
Affiliation(s)
- Lijuan Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Henan Xu
- The First Hospital of Jilin University, Changchun, China
| | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| |
Collapse
|
4
|
Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov Today 2022; 27:1495-1512. [DOI: 10.1016/j.drudis.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
|
5
|
Gharnas‐Ghamesh H, Masoumi M, Erfani‐Moghadam V. Synthesis of doxorubicin‐loaded
PBMA‐b‐POEGMA
micelles and assessment of its anticancer activity against breast cancer cells (4T1). J Appl Polym Sci 2022. [DOI: 10.1002/app.52162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hamideh Gharnas‐Ghamesh
- Department of Chemical Engineering, Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | - Mojtaba Masoumi
- Department of Chemical Engineering, Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | - Vahid Erfani‐Moghadam
- Medical Cellular and Molecular Research Center Golestan University of Medical Sciences Gorgan Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Golestan University of Medical Sciences Gorgan Iran
| |
Collapse
|
6
|
Zhang F, Hou Y, Zhu M, Deng B, Zhao M, Zhu X, Sun Y, Chen D, Jiang C, Wang L, Chen C, Chen H, Chen H, Zheng H, Li W. Death Pathways of Cancer Cells Modulated by Surface Molecule Density on Gold Nanorods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102666. [PMID: 34523247 PMCID: PMC8596106 DOI: 10.1002/advs.202102666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Indexed: 05/13/2023]
Abstract
Necrosis induces strong inflammation with undesirable implications in clinics compared with apoptosis. Fortunately, the switch between necrosis and apoptosis could be realized by tailoring the appropriate structural properties of gold nano rods (GNRs) that could precisely modulate cell death pathways. Herein, the intracellular interaction between GNRs and organelles is monitored and it is found that lysosomes dominates necrosis/apoptosis evoking. Then the surface molecule density of GNRs, which is first defined as ρsurf. molecule (Nsurf. molecules /(a × π × Diameter × Length)), mediates lysosome activities as the membrane permeabilization (LMP), the Cathepsin B and D release, the cross-talk between lysosome and different organelles, which selectively evokes apoptosis or necrosis and the production of TNF-α from macrophages. GNRs with small ρsurf. molecule mainly induce apoptosis, while with large ρsurf. molecule they greatly contribute to necrosis. Interestingly, necrosis can be suppressed by GNRs with higher ρsurf. molecule due to the overexpression of key protease caspase 8, which cleaves the RIP1-RIP3 complex and activates caspase 3 followed by necrosis to apoptosis transition. This investigation indicates that the ρsurf. molecule greatly affects the utility of nanomaterials and different structural properties of nanomaterials have different implications in clinics.
Collapse
Affiliation(s)
- Fulei Zhang
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Yi Hou
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Minhui Zhu
- Department of Otolaryngology Head & Neck SurgeryShanghai Changhai HospitalNaval Medical University168 Changhai RoadShanghai200433China
| | - Bo Deng
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan430073China
| | - Mengxin Zhao
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Xiandi Zhu
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Yun Sun
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Di Chen
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Cheng Jiang
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100049China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100049China
| | - Huaiwen Chen
- Department of Otolaryngology Head & Neck SurgeryShanghai Changhai HospitalNaval Medical University168 Changhai RoadShanghai200433China
| | - Han Chen
- Department of General SurgeryNavy No.905 Hospital of Chinese People's Liberation ArmyNaval Medical UniversityShanghai200050China
| | - Hongliang Zheng
- Department of Otolaryngology Head & Neck SurgeryShanghai Changhai HospitalNaval Medical University168 Changhai RoadShanghai200433China
| | - Wei Li
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| |
Collapse
|
7
|
Zhang L, Zhang Z, Wang W, Tabet A, Hanson S, Zhang L, Zhu D, Wang C. Polymer-Based Dual-Responsive Self-Emulsifying Nanodroplets as Potential Carriers for Poorly Soluble Drugs. ACS APPLIED BIO MATERIALS 2021; 4:4441-4449. [PMID: 35006856 DOI: 10.1021/acsabm.1c00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A biodegradable amphiphilic liquid polymer was designed to form self-emulsifying nanodroplets in water for delivering poorly soluble drugs. The polymer was composed of multiple short blocks of poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) connected through acid-labile acetal linkages. With an overall average molecular weight of over 18 kDa, the polymer remained as a viscous liquid under room and physiological temperatures. Dispersing the polymer in an aqueous buffer gave rise to highly stable micelle-like nanodroplets with an average size of approximately 15-20 nm. The nanodroplet dispersions underwent reversible temperature-sensitive aggregation with cloud points ranging from 45 to 50 °C, depending on polymer concentration. Nuclear magnetic resonance (NMR) and dynamic light scattering analyses revealed that while the nanodroplets were stable at pH 7.4 for several days, hydrolysis of the acetal linkages in the polymer backbone was much accelerated under mildly acidic pH 5.0, resulting in the formation of large microdroplets. Nile red (NR), a poorly water-soluble fluorophore, can be solubilized in the nanodroplets, and efficient intracellular delivery of NR was achieved. The hydrophobic indocyanine green (ICG) was also encapsulated in the nanodroplets. Near-infrared (NIR) fluorescence imaging and in vivo biocompatibility of the ICG-loaded nanodroplets were demonstrated in mice. In summary, the self-emulsifying nanodroplets of amphiphilic liquid polymer would be a promising material system for poorly soluble drug delivery and imaging in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhiming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Wenshou Wang
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Anthony Tabet
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Samuel Hanson
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021; 334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, Jaipur, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
9
|
Wang N, Shi J, Wu C, Chu W, Tao W, Li W, Yuan X. Design of DOX-GNRs-PNIPAM@PEG-PLA Micelle With Temperature and Light Dual-Function for Potent Melanoma Therapy. Front Chem 2021; 8:599740. [PMID: 33469525 PMCID: PMC7813802 DOI: 10.3389/fchem.2020.599740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023] Open
Abstract
Objective: The aim of this study was to construct light and temperature dual-sensitive micellar carriers loaded with doxorubicin (DOX) and gold nanorods (DOX-GNRs-PNIPAM@PEG-PLA, DAPP) for melanoma therapy. Methods: The DAPP self-assembled using fine-tuned physicochemical properties in water. The DAPP structure, temperature- and photo-sensitivity, drug-release, in-vitro serum stability, and cytotoxicity against melanoma B16F10 cells were evaluated in detail. The corresponding in-vitro and in-vivo therapeutic mechanisms were then evaluated using a B16F10-melanoma bearing BALB/c nude mouse model (B16F10). Results: The light and temperature sensitive micellar drug-delivery system assembled from block copolymer and gold nanorods exhibited a narrow particle size and size distribution, good biocompatibility, well-designed photo-temperature conversion, controlled drug release, and high serum stability. Compared with the free DOX- and PBS-treated groups, the cell endocytosis-mediated cytotoxicity and intra-tumor accumulation of DAPP was markedly enhanced by the NIR-light exposure and induced potent in-vivo tumor inhibitory activity. Conclusion: The design of DAPP, a dual-functional micellar drug-delivery system with temperature- and light-sensitive properties, offers a new strategy for skin-cancer therapy with a potent therapeutic index.
Collapse
Affiliation(s)
- Na Wang
- Department of Cosmetics, Shanghai Skin Disease Hospital, Shanghai, China
| | - Jing Shi
- Laboratory of Nano Biomedicine & Intentional Joint Cancer Institute, Second Military Medical University, Shanghai, China
| | - Cong Wu
- Laboratory of Nano Biomedicine & Intentional Joint Cancer Institute, Second Military Medical University, Shanghai, China
| | - Weiwei Chu
- Laboratory of Nano Biomedicine & Intentional Joint Cancer Institute, Second Military Medical University, Shanghai, China
| | - Wanru Tao
- Laboratory of Nano Biomedicine & Intentional Joint Cancer Institute, Second Military Medical University, Shanghai, China
| | - Wei Li
- Laboratory of Nano Biomedicine & Intentional Joint Cancer Institute, Second Military Medical University, Shanghai, China
| | - Xiaohai Yuan
- Department of Cosmetics, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
10
|
Nakayama M, Toyoshima Y, Kikuchi A, Okano T. Micropatterned Smart Culture Surfaces via Multi-Step Physical Coating of Functional Block Copolymers for Harvesting Cell Sheets with Controlled Sizes and Shapes. Macromol Biosci 2020; 21:e2000330. [PMID: 33369185 DOI: 10.1002/mabi.202000330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Cell micropatterning on micropatterned thermoresponsive polymer-based culture surfaces facilitates the creation of on-demand and functional cell sheets. However, the fabrication of micropatterned surfaces generally includes complicated procedures with multi-step chemical reactions. To overcome this issue, this study proposes a facile preparation of micropatterned thermoresponsive surfaces via a two-step physical coating of two different diblock copolymers. Both copolymers contain poly(butyl methacrylate) blocks as hydrophobic anchors for water-stable polymer deposition. At first, thermoresponsive polymer layers are constructed on cell culture dishes via spin-coating block copolymers containing poly(N-isopropylacrylamide) blocks that exhibit a transition temperature of ≈30 °C in aqueous media. To create polymer micropatterns on the thermoresponsive surfaces, microcontact printing of block copolymers containing hydrophilic poly(N-acryloylmorpholine) (PNAM) blocks is performed using polydimethylsiloxane stamps. Stamped PNAM-based block polymers are adsorbed to the outermost thermoresponsive surfaces, and increase the surface hydrophilicity with decreasing protein adsorption. Cells adhere and proliferate on the thermoresponsive domains at 37 °C, whereas the stamped hydrophilic domains remain cell-repellent for 7 days. At 20 °C, cell sheets with controlled sizes and shapes are harvested from the surfaces with the desired micropatterns. This technique is useful for the preparation of micropatterned polymer surfaces for various biomedical applications.
Collapse
Affiliation(s)
- Masamichi Nakayama
- Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo, 162-8666, Japan
| | - Yuki Toyoshima
- Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Akihiko Kikuchi
- Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Teruo Okano
- Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
11
|
Ma Q, Zhao Y, Guan Q, Zhao Y, Zhang H, Ding Z, Wang Q, Wu Y, Liu M, Han J. Amphiphilic block polymer-based self-assembly of high payload nanoparticles for efficient combinatorial chemo-photodynamic therapy. Drug Deliv 2020; 27:1656-1666. [PMID: 33233958 PMCID: PMC7717698 DOI: 10.1080/10717544.2020.1850921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Combinatorial chemo-photodynamic therapy is regared as effective cancer therapy strategy, which could be realized via multiple nano-drug delivery system. Herein, novel high payload nanoparticles stabilized by amphiphilic block polymer cholesterol-b-poly(ethylene glycol) (PEG)2000 (Chol-PEG2000) were fabricated for loading chemotherapeutic drug 10-hydroxycamptothecin (HCPT) and photosensitizer chlorin e6 (Ce6). The obtained HCPT/Ce6 NPs showed uniform rod-like morphology with a hydration diameter of 178.9 ± 4.0 nm and excellent stability in aqueous solution. HCPT and Ce6 in the NPs displayed differential release profile, which was benefit for preferentially exerting the photodynamic effect and subsequently enhancing the sensitivity of the cells to HCPT. Under laser irradiation, the NPs demonstrated fantastic in vitro and in vivo anticancer efficiency due to combinational chemo-photodynamic therapy, enhanced cellular uptake effectiveness, and superb intracellular ROS productivity. Besides, the NPs were proved as absent of systemic toxicity. In summary, this nanoparticle delivery system could be hopefully utilized as effective cancer therapy strategy for synergistically exerting combined chemo-photodynamic therapy in clinic.
Collapse
Affiliation(s)
- Qisan Ma
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Qingran Guan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Yuping Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Huaizhen Zhang
- School of Environment and Planning, Liaocheng University, Liaocheng, Shandong, PR China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China.,School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, PR China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| |
Collapse
|
12
|
Chen D, Zhu X, Tao W, Kong Y, Huag Y, Zhang Y, Liu R, Jiang L, Tang Y, Yu H, Hao Q, Yang X, Zou H, Chen J, Lu Y, Zhang H, Li W. Regulation of pancreatic cancer microenvironment by an intelligent gemcitabine@nanogel system via in vitro 3D model for promoting therapeutic efficiency. J Control Release 2020; 324:545-559. [DOI: 10.1016/j.jconrel.2020.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
|
13
|
González García Á, Ianiro A, Beljon R, Leermakers FAM, Tuinier R. (Homo)polymer-mediated colloidal stability of micellar solutions. SOFT MATTER 2020; 16:1560-1571. [PMID: 31950966 DOI: 10.1039/c9sm01665a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite their wide range of applications, there is a remarkable lack of fundamental understanding about how micelles respond to other components in solution. The colloidal stability of micellar solutions in presence of (homo)polymers is investigated here following a theoretical bottom-up approach. A polymer-mediated micelle-micelle interaction is extracted from changes in the micelle-unimer equilibrium as a function of the inter-micelle distance. The homopolymer-mediated diblock copolymer micelle-micelle interaction is studied both for depletion and adsorption of the homopolymer. The fluffy nature of the solvophilic domain (corona) of the micelle weakens the depletion-induced destabilization. Accumulation of polymers into the corona induces bridging attraction between micelles. In fact, both depletion and adsorption phenomena are regulated by the coronal thickness relative to the size of the added polymer. Penetration of guest compounds into the coronal domain of crew-cut micelles, with a narrower yet denser corona, is less pronounced as for starlike micelles (with a more diffuse corona). Therefore, crew-cut micelles are less sensitive to the effect of added compounds, and hence more suitable for applications in multicomponent systems, such as industrial formulations or biological fluids. The trends observed for the colloidal stability of crew-cut micelles qualitatively match with our experimental observations on aqueous dispersions of polycaprolactone-polyethylene glycol (PCL-PEO) micellar suspensions with added PEO chains.
Collapse
Affiliation(s)
- Álvaro González García
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry & Debye Institute, Utrecht University, Padualaan 8, 3584 CH, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Zhao J, Han H, Wang Q, Yan C, Li D, Yang J, Feng X, Yang N, Zhao Y, Chen L. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
García Á, Ianiro A, Tuinier R. On the Colloidal Stability of Spherical Copolymeric Micelles. ACS OMEGA 2018; 3:17976-17985. [PMID: 30613816 PMCID: PMC6312634 DOI: 10.1021/acsomega.8b02548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Using self-consistent field (SCF) calculations, we systematically quantify the pair interactions between spherical diblock copolymer micelles following a bottom-up approach. From the equilibrium properties of self-assembling micelles at different separation distances, a simple yet insightful pair interaction can be extracted. The SCF results match with an analytical model based upon closed expressions for the free energy change per diblock copolymer in the micelle. To gain insights into the colloidal stability of dilute micelle suspensions, the second virial coefficient normalized by the undistorted micelle volume (B 2 *) is evaluated. For stable micelles (B 2 * ≳ -6), we find a weak dependence of B 2 * on solvophilic block length for varying core-forming block properties (core solvation and block length). The micelle suspension gets unstable (B 2 * ≲ -6) when the corona-forming block crosses Θ-solvent conditions toward poor solvency. In contrast with what is expected from models where the soft nature of the micelle is not taken into account, increasing the effective grafting density of solvophilic tails from the core then leads to colloidal destabilization of the micelle suspension.
Collapse
Affiliation(s)
- Álvaro
González García
- Van
’t Hoff Laboratory for Physical and Colloid Chemistry, Department
of Chemistry & Debye Institute, Utrecht
University, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry,
& Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Alessandro Ianiro
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry,
& Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Remco Tuinier
- Van
’t Hoff Laboratory for Physical and Colloid Chemistry, Department
of Chemistry & Debye Institute, Utrecht
University, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry,
& Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
16
|
Bagheri M, Bresseleers J, Varela-Moreira A, Sandre O, Meeuwissen SA, Schiffelers RM, Metselaar JM, van Nostrum CF, van Hest JCM, Hennink WE. Effect of Formulation and Processing Parameters on the Size of mPEG- b-p(HPMA-Bz) Polymeric Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15495-15506. [PMID: 30415546 PMCID: PMC6333397 DOI: 10.1021/acs.langmuir.8b03576] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Micelles composed of block copolymers of poly(ethylene glycol)- b-poly( N-2-benzoyloxypropyl methacrylamide) (mPEG- b-p(HPMA-Bz)) have shown great promise as drug-delivery carriers due to their excellent stability and high loading capacity. In the present study, parameters influencing micelle size were investigated to tailor sizes in the range of 25-100 nm. Micelles were prepared by a nanoprecipitation method, and their size was modulated by the block copolymer properties such as molecular weight, their hydrophilic-to-hydrophobic ratio, homopolymer content, as well as formulation and processing parameters. It was shown that the micelles have a core-shell structure using a combination of dynamic light scattering and transmission electron microscopy analysis. By varying the degree of polymerization of the hydrophobic block ( NB) between 68 and 10, at a fixed hydrophilic block mPEG5k ( NA = 114), it was shown that the hydrophobic core of the micelle was collapsed following the power law of ( NB × Nagg)1/3. Further, the calculated brush height was similar for all the micelles examined (10 nm), indicating that crew-cut micelles were made. Both addition of homopolymer and preparation of micelles at lower concentrations or lower rates of addition of the organic solvent to the aqueous phase increased the size of micelles due to partitioning of the hydrophobic homopolymer chains to the core of the micelles and lower nucleation rates, respectively. Furthermore, it was shown that by using different solvents, the size of the micelles substantially changed. The use of acetone, acetonitrile, ethanol, tetrahydrofuran, and dioxane resulted in micelles in the size range of 45-60 nm after removal of the organic solvents. The use of dimethylformamide and dimethylsulfoxide led to markedly larger sizes of 75 and 180 nm, respectively. In conclusion, the results show that by modulating polymer properties and processing conditions, micelles with tailorable sizes can be obtained.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jaleesa Bresseleers
- ChemConnection
BV, 5349 AB Oss, The Netherlands
- Department
of Bio-Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aida Varela-Moreira
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
- Department
of Clinical Chemistry and Haematology, University
Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Olivier Sandre
- Laboratoire
de Chimie de Polymères Organiques, Université de Bordeaux, UMR 5629 CNRS, 33607 Pessac, France
| | | | - Raymond M. Schiffelers
- Department
of Clinical Chemistry and Haematology, University
Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Josbert M. Metselaar
- Department
of Nanomedicine and Theranostics, Institute
for Experimental Molecular Imaging RWTH University Clinic, 52074 Aachen, Germany
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan C. M. van Hest
- Department
of Bio-Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
17
|
Cheng B, Xing YM, Shih NC, Weng JP, Lin HC. The formulation and characterization of 3D printed grafts as vascular access for potential use in hemodialysis. RSC Adv 2018; 8:15471-15479. [PMID: 35539472 PMCID: PMC9080031 DOI: 10.1039/c8ra01583j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Arteriovenous graft (AVG) failure continues to be a life-threatening problem in haemodialysis. Graft failure can occur if the implanted graft is not well-matched to the vasculature of the patient. Likewise, stenosis often develops at the vein-graft anastomosis, contributing to thrombosis and early graft failure. To address this clinical need, a novel ink formulation comprised of ACMO/TMPTA/TMETA for 3D printing a AVG was developed (ACMO-AVG), in which the printed AVG was biocompatible and did not induce cytotoxicity. The ease of customizing the ACMO-AVG according to different requirements was demonstrated. Furthermore, the AVG displayed similar mechanical properties to the commercially available arteriovenous ePTFE graft (ePTFE-AVG). Unlike ePTFE-AVG, the ACMO-AVG displayed excellent anti-fouling characteristics because no plasma protein adsorption and platelet adhesion were detected on the luminal surfaces after 2 h of incubation. Similarly, exposure to human endothelial cells and human vascular smooth muscle cells did not result in any cell detection on the surfaces of the ACMO-AVG. Thus, the present study demonstrates a newly developed 3D printing ink formulation that can be successfully 3D printed into a clinically applicable vascular access used for haemodialysis.
Collapse
Affiliation(s)
- Bill Cheng
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Yue-Min Xing
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Nai-Chia Shih
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Jen-Po Weng
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| |
Collapse
|
18
|
Gordon MR, Zhao B, Anson F, Fernandez A, Singh K, Homyak C, Canakci M, Vachet RW, Thayumanavan S. Matrix Metalloproteinase-9-Responsive Nanogels for Proximal Surface Conversion and Activated Cellular Uptake. Biomacromolecules 2018; 19:860-871. [PMID: 29360342 PMCID: PMC6298948 DOI: 10.1021/acs.biomac.7b01659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here, we have exploited the heightened extracellular concentration of matrix metalloproteinase-9 (MMP-9) to induce surface-conversional properties of nanogels with the aim of tumor-specific enhanced cellular uptake. A modular polymeric nanogel platform was designed and synthesized for facile formulation and validation of MMP-9-mediated dePEGylation and generation of polyamine-type surface characteristics through peptide N-termini. Nanogels containing MMP-9-cleavable motifs and different poly(ethylene glycol) corona lengths (350 and 750 g/mol) were prepared, and enzymatic surface conversional properties were validated by MALDI characterization of cleaved byproducts, fluorescamine assay amine quantification, and zeta potential. The nanogel with a shorter PEG length, mPEG350-NG, exhibited superior surface conversion in response to extracellular concentrations of MMP-9 compared to that of the longer PEG length, mPEG750-NG. Confocal microscopy images of HeLa cells incubated with both fluorescein-labeled nanogels and DiI-encapsulated nanogels demonstrated greater uptake following MMP-9 "activation" for mPEG350-NG compared to its nontreated "passive" mPEG350-NG parent, demonstrating the versatility of such systems to achieve stimuli-responsive uptake in response to cancer-relevant proteases.
Collapse
Affiliation(s)
- Mallory R. Gordon
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Bo Zhao
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Francesca Anson
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Ann Fernandez
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Khushboo Singh
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Celia Homyak
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Mine Canakci
- Molecular and Cellular Biology Program, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Richard W. Vachet
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
- Molecular and Cellular Biology Program, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - S. Thayumanavan
- Department of Chemistry, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
- Molecular and Cellular Biology Program, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
19
|
Sobotta FH, Hausig F, Harz DO, Hoeppener S, Schubert US, Brendel JC. Oxidation-responsive micelles by a one-pot polymerization-induced self-assembly approach. Polym Chem 2018. [DOI: 10.1039/c7py01859b] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combining a sequential, one-pot RAFT polymerization with the polymerization-induced self-assembly process results in a versatile oxidation-responsive carrier system.
Collapse
Affiliation(s)
- Fabian H. Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Dominic O. Harz
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
20
|
Shen X, Xie T, Wang J, Wang F. Improved fouling resistance of poly(vinylidene fluoride) membrane modified with poly(acryloyl morpholine)-based amphiphilic copolymer. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4117-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Savage AM, Ullrich E, Kost C, Turner SR. Salt‐ and pH‐Responsive Semirigid/Flexible Double‐Hydrophilic Block Copolymers. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alice M. Savage
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| | - Elizabeth Ullrich
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| | - Caitlyn Kost
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| | - Sam Richard Turner
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
22
|
Zhang H, Li Q, Zhang Y, Xia Y, Yun L, Zhang Q, Zhang T, Chen X, Chen H, Li W. A nanogel with passive targeting function and adjustable polyplex surface properties for efficient anti-tumor gene therapy. RSC Adv 2016. [DOI: 10.1039/c6ra13707e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A dual responsive nanogel with tuneable polyplex properties was finely prepared. Its highin vivo/vitrogene transfection ability and passive cellular targeting function strongly promoted intratumor accumulation and tumor inhibition.
Collapse
Affiliation(s)
- Haizhou Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Qingbao Li
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Yingying Zhang
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Yu Xia
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Liang Yun
- Dalian Institute for Drug Control
- City of Dalian
- China
| | - Qian Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Tao Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Xia Chen
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Huaiwen Chen
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Wei Li
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| |
Collapse
|
23
|
Benedikt S, Wang J, Markovic M, Moszner N, Dietliker K, Ovsianikov A, Grützmacher H, Liska R. Highly efficient water-soluble visible light photoinitiators. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27903] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stephan Benedikt
- Division of Macromolecular Chemistry (Part of the CD-Laboratory for Digital and Restorative Dentistry); Institute of Applied Synthetic Chemistry, Vienna University of Technology; Getreidemarkt 9/163/MC Vienna A-1060 Austria
| | - Jieping Wang
- Department of Chemistry and Applied Biosciences; ETH (Swiss Federal Institute of Technology); Vladimir-Prelog-Weg 1 Zurich CH-8093 Switzerland
| | - Marica Markovic
- Institute of Materials Science and Technology; Vienna University of Technology; Getreidemarkt 9 Vienna A-1060 Austria
| | - Norbert Moszner
- IVOCLAR VIVADENT AG (Part of the CD-Laboratory for Digital and Restorative Dentistry); Bendererstrasse 2 Schaan FL-9494 Liechtenstein
| | - Kurt Dietliker
- Department of Chemistry and Applied Biosciences; ETH (Swiss Federal Institute of Technology); Vladimir-Prelog-Weg 1 Zurich CH-8093 Switzerland
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology; Vienna University of Technology; Getreidemarkt 9 Vienna A-1060 Austria
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences; ETH (Swiss Federal Institute of Technology); Vladimir-Prelog-Weg 1 Zurich CH-8093 Switzerland
| | - Robert Liska
- Division of Macromolecular Chemistry (Part of the CD-Laboratory for Digital and Restorative Dentistry); Institute of Applied Synthetic Chemistry, Vienna University of Technology; Getreidemarkt 9/163/MC Vienna A-1060 Austria
| |
Collapse
|
24
|
Li W, Wei H, Li H, Gao J, Feng SS, Guo Y. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology. Nanomedicine (Lond) 2015; 9:2587-605. [PMID: 25490427 DOI: 10.2217/nnm.14.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is a promising option for cancer treatment that might cure cancer with fewer side effects by primarily activating the host's immune system. However, the effect of traditional immunotherapy is modest, frequently due to tumor escape and resistance of multiple mechanisms. Pharmaceutical nanotechnology, which is also called cancer nanotechnology or nanomedicine, has provided a practical solution to solve the limitations of traditional immunotherapy. This article reviews the latest developments in immunotherapy and nanomedicine, and illustrates how nanocarriers (including micelles, liposomes, polymer-drug conjugates, solid lipid nanoparticles and biodegradable nanoparticles) could be used for the cellular transfer of immune effectors for active and passive nanoimmunotherapy. The fine engineering of nanocarriers based on the unique features of the tumor microenvironment and extra-/intra-cellular conditions of tumor cells can greatly tip the triangle immunobalance among host, tumor and nanoparticulates in favor of antitumor responses, which shows a promising prospect for nanoimmunotherapy.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Chen L, Chen F, Zhao M, Zhu X, Ke C, Yu J, Yan Z, Zhang F, Sun Y, Chen D, Jiang C, Zhao X, Gao Y, Guo S, Li W. A redox-sensitive micelle-like nanoparticle self-assembled from amphiphilic adriamycin-human serum albumin conjugates for tumor targeted therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:987404. [PMID: 26075280 PMCID: PMC4444569 DOI: 10.1155/2015/987404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 02/01/2023]
Abstract
The application of chemotherapeutic drug adriamycin (ADR) in cancer therapy is limited by its side effects like high toxicity and insolubility. Nanomedicine offers new hope for overcoming the shortcomings. But how to increase in vivo stability and to control intracellular drug release is a key issue for nano-based formulations. Herein, the hydrophobic ADR was successfully linked to the biocompatible human serum albumin (HSA) by disulfide bond 3-(2-pyridyldithio) propionyl hydrazide (PDPH), resulting in amphiphilic HSA-ADR. The novel ADR-HSA micellar NPs which were thus assembled exhibited a well-defined stable core shell structure with glutathione (GSH) sensitive linkers. The stable PDPH linkers at extracellular level were broken by GSH at intracellular level with a controlled ADR release profile. The in vitro cytotoxicity against gastric cancer cells (NCI-N87) was obviously enhanced by such redox-sensitive ADR-HSA NPs. Additionally, as observed by IVIS Lumina II Imaging System (Xenogen), the intratumor accumulation of ADR-HSA NPs was much higher than that of HSA/ADR NPs due to its high stability. Consequently, the in vivo tumor inhibition was significantly promoted after intravenous administration to the Balb/c nude mice bearing gastric tumors. These in vitro/vivo results indicated that disulfide-bond-containing ADR-HSA NPs were an effective nanodrug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Oncology, East Hospital, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Feng Chen
- Department of Cardiology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Mengxin Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Xiandi Zhu
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Changhong Ke
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics, Shanghai 200062, China
| | - Fulei Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Yun Sun
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Di Chen
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Cheng Jiang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Yong Gao
- Department of Medical Oncology, East Hospital, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Shangjing Guo
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
26
|
Cao P, Sun X, Liang Y, Gao X, Li X, Li W, Song Z, Li W, Liang G. Gene delivery by a cationic and thermosensitive nanogel promoted established tumor growth inhibition. Nanomedicine (Lond) 2015; 10:1585-97. [PMID: 25706247 DOI: 10.2217/nnm.15.20] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: In vivo stability and consequent high tumor accumulation is highly desired for nonviral gene therapy. Materials & methods: Here, a well-defined cationic nanogel system (NPS) was facilely prepared for gastric tumor therapy. Results: The physical chemical properties of NPS were finely regulated and investigated. In vitro transfer efficiency of NPS was obviously promoted due to stable polyplex structure, small size, narrow size distribution and weak surface potential. Interestingly, the transfection was further enhanced by its passive targeting function. Intratumor accumulation was significantly promoted post intravenous administrated to Balb/c nude mice. Thus, the established gastric tumor (N87) growth was significantly inhibited by p53 as delivered by NPS. Conclusion: Such noncytotoxic cationic thermosensitive NPS can be effective for practicable gene therapy.
Collapse
Affiliation(s)
- Peng Cao
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Xudong Sun
- Key Laboratory for Anisotropy & Texture of Materials, Northeastern University, Shenyang, PR China
| | - Yong Liang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Xu Gao
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Xiaoming Li
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Wei Li
- Department of Geriatric Neurology, Nanjing Medical University Affiliated to Nanjing Brain Hospital, Nanjing, Jiangsu, PR China
| | - Zhenquan Song
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Wei Li
- International Joint Cancer Institute, Second Military Medical University, Shanghai, PR China
| | - Guobiao Liang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| |
Collapse
|
27
|
Nakayama M, Akimoto J, Okano T. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target 2015; 22:584-99. [PMID: 25012066 DOI: 10.3109/1061186x.2014.936872] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since the 1990s, nanoscale drug carriers have played a pivotal role in cancer chemotherapy, acting through passive drug delivery mechanisms and subsequent pharmaceutical action at tumor tissues with reduction of adverse effects. Polymeric micelles, as supramolecular assemblies of amphiphilic polymers, have been considerably developed as promising drug carrier candidates, and a number of clinical studies of anticancer drug-loaded polymeric micelle carriers for cancer chemotherapy applications are now in progress. However, these systems still face several issues; at present, the simultaneous control of target-selective delivery and release of incorporated drugs remains difficult. To resolve these points, the introduction of stimuli-responsive mechanisms to drug carrier systems is believed to be a promising approach to provide better solutions for future tumor drug targeting strategies. As possible trigger signals, biological acidic pH, light, heating/cooling and ultrasound actively play significant roles in signal-triggering drug release and carrier interaction with target cells. This review article summarizes several molecular designs for stimuli-responsive polymeric micelles in response to variation of pH, light and temperature and discusses their potentials as next-generation tumor drug targeting systems.
Collapse
Affiliation(s)
- Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns) , Kawada-Cho, Shinjuku-ku, Tokyo , Japan
| | | | | |
Collapse
|
28
|
Rasolonjatovo B, Gomez JP, Même W, Gonçalves C, Huin C, Bennevault-Celton V, Le Gall T, Montier T, Lehn P, Cheradame H, Midoux P, Guégan P. Poly(2-methyl-2-oxazoline)-b-poly(tetrahydrofuran)-b-poly(2-methyl-2-oxazoline) Amphiphilic Triblock Copolymers: Synthesis, Physicochemical Characterizations, and Hydrosolubilizing Properties. Biomacromolecules 2015; 16:748-56. [DOI: 10.1021/bm5016656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bazoly Rasolonjatovo
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587 UEVE-CNRS-CEA, Evry, France
| | - Jean-Pierre Gomez
- Centre
de Biophysique Moléculaire, CNRS UPR4301 and Université d’Orléans, France
| | - William Même
- Centre
de Biophysique Moléculaire, CNRS UPR4301 and Université d’Orléans, France
| | - Cristine Gonçalves
- Centre
de Biophysique Moléculaire, CNRS UPR4301 and Université d’Orléans, France
| | - Cécile Huin
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587 UEVE-CNRS-CEA, Evry, France
| | - Véronique Bennevault-Celton
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587 UEVE-CNRS-CEA, Evry, France
| | - Tony Le Gall
- INSERM
U613, Hôpital Morvan - CHU Brest - I3S, Brest, France
| | - Tristan Montier
- INSERM
U613, Hôpital Morvan - CHU Brest - I3S, Brest, France
| | - Pierre Lehn
- INSERM
U613, Hôpital Morvan - CHU Brest - I3S, Brest, France
| | - Hervé Cheradame
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587 UEVE-CNRS-CEA, Evry, France
| | - Patrick Midoux
- Centre
de Biophysique Moléculaire, CNRS UPR4301 and Université d’Orléans, France
| | - Philippe Guégan
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, Chimie des Polyméres, F-75005, Paris, France
- CNRS, UMR 8232, IPCM, Chimie des Polyméres, F-75005, Paris, France
| |
Collapse
|
29
|
Liang Y, Peng X, Chen Y, Deng X, Gao W, Cao J, Chang J, Gu Z, He B. Chain length effect on drug delivery of chrysin modified mPEG–PCL micelles. RSC Adv 2015. [DOI: 10.1039/c5ra09650b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The chain length effect of chrysin modified mPEG–PCL micelles with exciting doxorubicin loading capacity on drug delivery was investigated.
Collapse
Affiliation(s)
- Yan Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xinyu Peng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ying Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xin Deng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Wenxia Gao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- College of Chemistry & Materials Engineering
| | - Jun Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jing Chang
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Bin He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
30
|
Zhou X, Luo S, Tang R, Wang R, Wang J. Diblock Copolymers of Polyethylene Glycol and a Polymethacrylamide with Side-Chains Containing TwinOrthoEster Rings: Synthesis, Characterization, and Evaluation as Potential pH-Responsive Micelles. Macromol Biosci 2014; 15:385-94. [DOI: 10.1002/mabi.201400395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/09/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaojing Zhou
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
| | - Shi Luo
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
| | - Rupei Tang
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
- Engineering Research Center for Biomedical Materials; School of Life Science, Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| | - Rui Wang
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
| | - Jun Wang
- Engineering Research Center for Biomedical Materials; School of Life Science, Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| |
Collapse
|
31
|
Nishida T, Tanaka S, Nogami M. Synthesis and adsorptivity of acryloylmorpholine resin to various fission product elements in nitric acid media. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Synthesis and characterization of double hydrophilic block copolymers containing semi-rigid and flexible segments. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Akimoto J, Nakayama M, Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J Control Release 2014; 193:2-8. [PMID: 25037017 DOI: 10.1016/j.jconrel.2014.06.062] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/09/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
Targeting to solid tumors is the most challenging issue in the drug delivery field. To obtain the ideal pharmacodynamics of administrated drugs, drug carriers must suppress drug release and interactions with non-target tissues while circulating in the bloodstream, yet actively release the incorporated drug and interact with target cells after delivery to the tumor tissue. To handle this situation, stimuli-responsive drug carriers are extremely useful, because carriers change their physicochemical properties to control the drug release rate and interaction with cells in response to the surrounding environmental conditions or applied physical signals. The current review focuses on the strategy and availability of temperature-responsive (TR) polymeric micelles as a next-generation drug carrier. In particular, we discuss the unique properties of TR polymeric micelles, such as temperature-triggered drug release and intracellular uptake system. In addition, we explore the methodology for integrating other targeting systems into TR micelles to pursue the ideal pharmacodynamics in conjunction with thermal therapy as a future prospective of the TR system.
Collapse
Affiliation(s)
- Jun Akimoto
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
34
|
Han X, Feng J, Dong F, Zhang X, Liu H, Hu Y. Thermo-/pH-responsive behaviours of base-rich diblock polyampholytes in aqueous solution: experiment and simulation. Mol Phys 2014. [DOI: 10.1080/00268976.2014.882523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Makino A, Hara E, Hara I, Ozeki E, Kimura S. Size control of core-shell-type polymeric micelle with a nanometer precision. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:669-674. [PMID: 24372167 DOI: 10.1021/la404488n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Amphiphilic polydepsipeptides having a hydrophobic poly(L-lactic acid) block and varying numbers of a hydrophilic poly(sarcosine) block ranging from 1 to 3, AB-, A2B-, and A3B-type, were prepared and studied on their molecular assemblies. The morphologies were found to be polymeric micelles for the AB- and the A3B-type polydepsipeptides, but worm-like micelles for the A2B-type polydepsipeptide. The hydrodynamic diameter of the A3B-type polydepsipeptide (22 nm) became smaller than the AB-type polydepsipeptide (34 nm). The polymeric micelle sizes composed of the AB-type polydepsipeptide were adjustable up to ca. 100 nm with incorporation of poly(L-lactic acid) into the hydrophobic core. On the other hand, with varying mixing ratio of the AB-type and A3B-type polydepsipeptides, the hydrodynamic diameters were tunable to become smaller sizes with a precise control in the range from 22 to 34 nm. The polydispersity indices of the polymeric micelles were less than 0.1, indicating that we can obtain the homogeneous polymeric micelles with diameters in the range from 20 to 100 nm under a precise control.
Collapse
Affiliation(s)
- Akira Makino
- Biomedical Imaging Research Center, University of Fukui , 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | | | | | | | | |
Collapse
|
36
|
Liu J, Shen X, Zhao Y, Chen L. Acryloylmorpholine-Grafted PVDF Membrane with Improved Protein Fouling Resistance. Ind Eng Chem Res 2013. [DOI: 10.1021/ie403456n] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Xiang Shen
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
37
|
Li W, Zhao M, Ke C, Zhang G, Zhang L, Li H, Zhang F, Sun Y, Dai J, Wang H, Guo Y. Nano polymeric carrier fabrication technologies for advanced antitumor therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:305089. [PMID: 24369011 PMCID: PMC3867855 DOI: 10.1155/2013/305089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/29/2013] [Accepted: 11/03/2013] [Indexed: 01/17/2023]
Abstract
Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
- State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai 201203, China
- PLA General Hospital Cancer Center, PLA Graduate School of Medicine, Beijing 100853, China
- College of Pharmacy, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 25000, China
| | - Mengxin Zhao
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
- College of Pharmacy, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 25000, China
| | - Changhong Ke
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Ge Zhang
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Li Zhang
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Huafei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Fulei Zhang
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
- College of Pharmacy, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 25000, China
| | - Yun Sun
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jianxin Dai
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
- State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai 201203, China
- PLA General Hospital Cancer Center, PLA Graduate School of Medicine, Beijing 100853, China
- College of Pharmacy, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 25000, China
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hao Wang
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
- State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai 201203, China
- PLA General Hospital Cancer Center, PLA Graduate School of Medicine, Beijing 100853, China
- College of Pharmacy, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 25000, China
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
- State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai 201203, China
- PLA General Hospital Cancer Center, PLA Graduate School of Medicine, Beijing 100853, China
- College of Pharmacy, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 25000, China
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
38
|
Liu Z, Jiang ZB, Yang H, Bai SM, Wang R, Xue G. Crowding effect induced phase transition of amphiphilic diblock copolymer in solution. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1346-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Zhang J, Zou M, Dong J, Li X. Synthesis and self-assembly behaviors of well-defined poly(lauryl methacrylate)-block-poly[N-(2-methacryloylxyethyl)pyrrolidone] copolymers. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3020-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Li H, Yu SS, Miteva M, Nelson CE, Werfel T, Giorgio TD, Duvall CL. Matrix Metalloproteinase Responsive, Proximity-activated Polymeric Nanoparticles for siRNA Delivery. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3040-3052. [PMID: 25214828 PMCID: PMC4159188 DOI: 10.1002/adfm.201202215] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Small interfering RNA (siRNA) has significant potential to evolve into a new class of pharmaceutical inhibitors, but technologies that enable robust, tissue-specific intracellular delivery must be developed before effective clinical translation can be achieved. A pH-responsive, smart polymeric nanoparticle (SPN) with matrix metalloproteinase (MMP)-7-dependent proximity-activated targeting (PAT) is described here. The PAT-SPN was designed to trigger cellular uptake and cytosolic delivery of siRNA once activated by MMP-7, an enzyme whose overexpression is a hallmark of cancer initiation and progression. The PAT-SPN is composed of a corona-forming PEG block, an MMP-7-cleavable peptide, a cationic siRNA-condensing block, and a pH-responsive, endosomolytic terpolymer block that drives self-assembly and forms the PAT-SPN core. With this novel design, the PEG corona shields cellular interactions until it is cleaved in MMP-7-rich environments, shifting SPNζ-potential from +5.8 to +14.4 mV and triggering a 2.5 fold increase in carrier internalization. The PAT-SPN exhibited pH-dependent membrane disruptive behavior that enabled siRNA escape from endo-lysosomal pathways. Efficient intracellular siRNA delivery and knockdown of the model enzyme luciferase in R221A-Luc mammary tumor cellssignificantly depended on MMP-7 pre-activation. These combined data indicate that the PAT-SPN provides a promising new platform for tissue-specific, proximity-activated siRNA delivery to MMP-rich pathological environments.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA; Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shann S. Yu
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA
| | - Martina Miteva
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA
| | - Christopher E. Nelson
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA
| | - Thomas Werfel
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA; Department of Engineering and Physics, Murray State University, Murray, KY, USA
| | - Todd D. Giorgio
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA; Department of Cancer Biology, Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA; Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
41
|
Li W, Feng SS, Guo Y. Polymeric nanoparticulates for cancer immunotherapy. Nanomedicine (Lond) 2013; 8:679-82. [DOI: 10.2217/nnm.13.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai, China
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02–11, 4 Engineering Drive 4, 117576, Singapore
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai, China
| |
Collapse
|
42
|
Bai Y, Fan XD, Tian W, Mu CG, Yang Z, Fan WW, Zhang HT, Zhang WB. Large complex micelles formed from amphiphilic H-shaped terpolymers with adjustable block ratio by ultrasonic vibration. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Li W, Feng S, Guo Y. Tailoring polymeric micelles to optimize delivery to solid tumors. Nanomedicine (Lond) 2013; 7:1235-52. [PMID: 22931449 DOI: 10.2217/nnm.12.88] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Block copolymer micelles have shown great potential in drug delivery systems, not only for overcoming the drawbacks of small agents such as water insolubility and wide distribution in normal tissues, but also for avoiding traditional nanoparticle formulation shortcomings, including in vivo instability and fast clearance from the blood. However, for translating micellar formulations to clinical practice, it is essential to overcome the many in vivo obstacles. Surmounting these barriers strongly depends on micellar physicochemical properties, which can be further optimized by the unique physiological aspects of solid tumors such as low pH, high temperature and the presence of abnormal vessels. Herein, based on the Flory parameter and scaling theory, the fundamental mechanisms and correlations in vitro/in vivo between self assembly, drug loading and release, stability, intracellular delivery and in vivo distribution, as well as micellar composition, size and microstructural tailoring are systematically revisited. The methods for enhancing micellar performance in solid tumors were consequently proposed through well-defined core-corona structure tailoring.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China.
| | | | | |
Collapse
|
44
|
Gheybi H, Entezami AA. Nanosized micelles self-assembled from amphiphilic poly(citric acid)–poly(ε-caprolactone)–poly(citric acid) copolymers. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0885-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
pH-induced phase transition control of thermoresponsive nano-micelles possessing outermost surface sulfonamide moieties. Colloids Surf B Biointerfaces 2012; 99:12-9. [DOI: 10.1016/j.colsurfb.2011.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 02/06/2023]
|
46
|
Nunnery GA, Jacob KI, Tannenbaum R. Reactive adsorption of PS-PMMA block copolymers on concave alumina surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14960-14967. [PMID: 23009166 DOI: 10.1021/la303216n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The influence of pore size, relative block size, and solvent quality on the extent of diblock copolymer adsorption on alumina surfaces was determined. To this end, the block copolymer that was chosen was poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA), in which the PMMA block strongly chemisorbs to the surface and the PS block weakly physisorbs. Several architectures (i.e., different ratios of M(n(PMMA)) and M(n)((PS))) of the PS-b-PMMA copolymers were adsorbed from various solvents onto porous alumina membranes with various pore sizes. It was determined that the diblock copolymer coverage decreased significantly as the pore size decreased, similar to the behavior of the PMMA homopolymer under the same conditions. However, the coverage decreased as the molecular weight of the anchoring block (PMMA) increased for all pore sizes, which is in contrast to the behavior of the PMMA homopolymer under the same conditions. The dependence of the coverage on the relative block size and solvent quality is analyzed on the basis of the anchor-buoy model and the deviation from it in a nonideal system. The results presented in this work are relevant to the study of block copolymer conformation in solutions and on surfaces, adsorption chromatography, and solvent sensors and controls.
Collapse
Affiliation(s)
- Grady A Nunnery
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | | |
Collapse
|
47
|
Danquah M, Fujiwara T, Mahato RI. Lactic acid- and carbonate-based crosslinked polymeric micelles for drug delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Alonso-Cristobal P, Laurenti M, Sanchez-Muniz F, López-Cabarcos E, Rubio-Retama J. Polymeric nanoparticles with tunable architecture formed by biocompatible star shaped block copolymer. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Albertin L, Wolnik A, Ghadban A, Dubreuil F. Aqueous RAFT Polymerization of N
-Acryloylmorpholine, Synthesis of an ABA Triblock Glycopolymer and Study of its Self-Association Behavior. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200256] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Li W, Zhao H, Qian W, Li H, Zhang L, Ye Z, Zhang G, Xia M, Li J, Gao J, Li B, Kou G, Dai J, Wang H, Guo Y. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials 2012; 33:5349-62. [PMID: 22542611 DOI: 10.1016/j.biomaterials.2012.04.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/03/2012] [Indexed: 12/14/2022]
Abstract
Micelles with high in vivo serum stability and intratumor accumulation post intravenous (i.v.) injection are highly desired for promoting chemotherapy. Herein, we finely synthesized and tailored well-defined anti-Her2 antibody Fab fragment conjugated immunomicelles (FCIMs), which showed interesting dual targeting function. The thermosensitive poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)(118) (PID(118)) shell with volume phase transition temperature (VPTT: 39 °C) and the anchored anti-Her2 Fab moiety contributed to the passive and active targeting, respectively. The doxorubicin (DOX) loading capacity of such FCIMs was successfully increased about 2 times by physically enhanced hydrophobicity of inner reservoir without structural deformation. The cellular uptake and intracellular accumulation of DOX by temperature regulated passive and antibody navigated active targeting was 4 times of Doxil. The cytotoxicity assay against Her2 overexpression gastric cancer cells (N87s) showed that the IC50 of the FCIMs was ≈ 9 times lower than that of Doxil under cooperatively targeting by Fab at T > VPTT. FCIMs showed high serum stability by increasing the corona PID(118) chain density (S(corona)/N(agg)). In vivo tissue distribution was evaluated in Balb/c nude mice bearing gastric cancer. As observed by the IVIS(®) imaging system, the intratumor accumulation of such finely tailored FCIMs system was obviously promoted 24 h post i.v. administration. Due to the high stability and super-targeting, the in vivo xenografted gastric tumor growth was significantly inhibited with relative tumor volume <2 which was much smaller than ≈ 5 of the control. Consequently, such finely tailored FCIMs with anti-Her2 active and temperature regulated passive dual tumor-targeting function show high potent in chemotherapy.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|