1
|
The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites. Polymers (Basel) 2022; 14:polym14235078. [PMID: 36501477 PMCID: PMC9737336 DOI: 10.3390/polym14235078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Polyhedral oligomeric silsesquioxane POSS nanoparticles can be applied as reinforcing additives modifying various properties of biodegradable polymers. The effects of aminopropylisobutyl POSS (amine-POSS), trisilanolisooctyl-POSS (HO-POSS) and glycidyl-POSS (Gly-POSS) on the viscoelastic, thermal properties and crystallization of biodegradable poly(ε-caprolactone) PCL were studied. The analysis of the viscoelastic properties at ambient temperature indicated that aminopropylisobutyl POSS (amine-POSS) and glycidyl-POSS (Gly-POSS) enhanced the dynamic mechanical properties of PCL. The increase in the storage shear modulus G' and loss modulus G″ was observed. The plasticizing effect of trisilanolisooctyl POSS (HO-POSS) due to the presence of long isoctyl groups was confirmed. As a result, the crystallization of PCL was facilitated and the degree of crystallinity of χc increased up to 50.9%. The damping properties and the values of tan δ for PCL/HO-POSS composition increased from 0.052 to 0.069. The TGA results point out the worsening of the PCL thermal stability, with lower values of T0.5%, T1% and T3%. Both HO-POSS and Gly-POSS facilitated the relaxation of molten PCL. The presence of Gly-POSS influenced the changes that occurred in the viscoelastic properties of the molten PCL due to the thermo-mechanical degradation of the material; a positive impact was observed.
Collapse
|
2
|
El-Sayed NM, El-Bakary MA, Ibrahim MA, Elgamal MA, Hamza AA. Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering. Microsc Res Tech 2021; 84:1596-1606. [PMID: 33547697 DOI: 10.1002/jemt.23720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 01/01/2023]
Abstract
Recently, scientific research has confirmed that a single polymer material cannot meet the ambitions of all surgical requirements. Thus, combinations of different types of polymeric materials are used in order to manufacture different suture materials. A copolymer of Polyglycolide (PGA) and trimethylene carbonate (TMC) is one of the simplest bioabsorbable monofilament sutures. The optical properties of PGA/TMC copolymer surgical suture were investigated by using multiple-beam interferometric of Fizeau type. The mechanical properties were measured by a suture-drawing apparatus attached to the multiple-beam interferometric system. The refractive indices, stress-strain curve, elastic shear modulus, Young's modulus and crosslink density were investigated for the PGA/TMC surgical suture at various draw ratios. The biological activities were conducted by Quantitative Structure Activity Relationships (QSAR) descriptors. Molecular Electrostatic Potential (MESP) maps were used to describe the reactivity and functional active sites for the given molecule. The behavior of stress-strain curve confirms the compatibility of the suture with the sternum which proves that this suture is a good candidate for cardiac operations. RESEARCH HIGHLIGHTS: Fizeau fringes is accurate in characterizing properties of PGA/TMC surgical suture. The biological activities were conducted by (QSAR) descriptors. The compatibility measurements lead to it is a good candidate for cardiac operations.
Collapse
Affiliation(s)
- Nayera M El-Sayed
- Faculty of Science, Department of Physics, Mansoura University, Mansoura, Egypt
| | | | - Medhat A Ibrahim
- Department of Spectroscopy, Molecular Spectroscopy and Modeling Unit, National Research Center, Giza, Egypt
| | - Mohamed A Elgamal
- Faculty of Medicine, Congenital and Pediatric Cardiac Surgery, Mansoura University, Mansoura, Egypt
| | - Ahmed A Hamza
- Faculty of Science, Department of Physics, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Khalaji S, Golshan Ebrahimi N, Hosseinkhani H. Enhancement of biocompatibility of PVA/HTCC blend polymer with collagen for skin care application. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1725761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saeideh Khalaji
- Department of Polymer Engineering, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Nadereh Golshan Ebrahimi
- Department of Polymer Engineering, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
4
|
Cassan D, Becker A, Glasmacher B, Roger Y, Hoffmann A, Gengenbach TR, Easton CD, Hänsch R, Menzel H. Blending chitosan‐g‐poly(caprolactone) with poly(caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dominik Cassan
- Technische Universität Braunschweig, Institute for Technical Chemistry Braunschweig Germany
| | - Alexander Becker
- Institute for Multiphase Processes, Gottfried Wilhelm Leibniz Universität Hannover Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) Hannover Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Gottfried Wilhelm Leibniz Universität Hannover Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) Hannover Germany
| | - Yvonne Roger
- Department of Orthopedic SurgeryHannover Medical School, Graded Implants and Regenerative Strategies Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) Hannover Germany
| | - Andrea Hoffmann
- Department of Orthopedic SurgeryHannover Medical School, Graded Implants and Regenerative Strategies Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) Hannover Germany
| | | | | | - Robert Hänsch
- Technische Universität Braunschweig, Institute of Plant Biology Braunschweig Germany
| | - Henning Menzel
- Technische Universität Braunschweig, Institute for Technical Chemistry Braunschweig Germany
| |
Collapse
|
5
|
Rychter M, Milanowski B, Grześkowiak BF, Jarek M, Kempiński M, Coy EL, Borysiak S, Baranowska-Korczyc A, Lulek J. Cilostazol-loaded electrospun three-dimensional systems for potential cardiovascular application: Effect of fibers hydrophilization on drug release, and cytocompatibility. J Colloid Interface Sci 2019; 536:310-327. [DOI: 10.1016/j.jcis.2018.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023]
|
6
|
Chummun I, Bhaw-Luximon A, Jhurry D. Modulating matrix-multicellular response using polysucrose-blended with poly-L-lactide or polydioxanone in electrospun scaffolds for skin tissue regeneration. J Biomed Mater Res A 2018; 106:3275-3291. [PMID: 30367544 DOI: 10.1002/jbm.a.36527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Polysucrose (PSuc) is hydrophilic, has excellent biocompatibility with cells as a density gradient and is resistant to enzymes. Its use in electrospun mats for tissue engineering applications has not been investigated due to its amorphous nature. For spinnability and robustness, polysucrose was blended with poly-L-lactide (PLLA) and polydioxanone (PDX) respectively and electrospun into nanofibrous mats. Interaction with cells was assessed using L929 mouse fibroblasts and HaCaT keratinocytes separately and in co-culture. Effect of parameters such as porosity, fiber diameter, surface wettability and mechanical properties of mats on cell-scaffold interactions was studied. Depending on nature and composition of mats, fibroblasts showed dendritic, spindle or round cell morphologies along with the formation of lamellipodia, filopodia, fibrillar or fiber-like projections of 100 nm and 200-300 nm in diameter respectively from the periphery or center of cells. Granular extracellular matrix was formed on both PLLA-PSuc and PDX-PSuc 50-50 seeded with keratinocytes. Growth of keratinocytes was enhanced in co-culture with fibroblasts with the formation of a skin-like layer. Both cells showed the ability to form multilayer structures. The mats maintained their physical integrity during the period of study. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3275-3291, 2018.
Collapse
Affiliation(s)
- Itisha Chummun
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Dhanjay Jhurry
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| |
Collapse
|
7
|
Shi C, Leonardi A, Zhang Y, Ohlendorf P, Ruyack A, Lal A, Ober CK. UV-Triggered Transient Electrospun Poly(propylene carbonate)/Poly(phthalaldehyde) Polymer Blend Fiber Mats. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28928-28935. [PMID: 30044081 DOI: 10.1021/acsami.8b06051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work reports the first transient electrospun nanofiber mat triggered by UV-irradiation using poly(propylene carbonate) (PPC)/poly(phthalaldehyde) (cPPA) polymer blends. The ability to trigger room temperature transience of nanofiber mats without the need for additional heat or solvent expands its utility in nonbiological fields, especially for transient electronic devices. The addition of a photo-acid-generator to the system, working in combination with UV light, provides an acid source to enhance degradation because both polymer backbones are acid-sensitive. Electrospinning enables the production of PPC/cPPA composite nanofiber mats capable of significant degradation upon exposure to UV radiation while maintaining relatively high mechanical properties. An acid amplifier, an autocatalytically decomposing compound triggered by acid, was used to generate more acid and accelerate nanofiber degradation. The electrospun fiber mats can be post-annealed to achieve an improved mat with a mechanical strength of ∼170 MPa.
Collapse
|
8
|
Zhou L, He H, Li MC, Huang S, Mei C, Wu Q. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property. Carbohydr Polym 2018; 189:331-341. [DOI: 10.1016/j.carbpol.2018.02.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
|
9
|
Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer. Colloids Surf B Biointerfaces 2018; 163:309-320. [DOI: 10.1016/j.colsurfb.2017.12.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
|
10
|
Budhwani KI, Oliver PG, Buchsbaum DJ, Thomas V. Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:87-113. [PMID: 30357685 DOI: 10.1007/978-981-13-0947-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials engineered to closely mimic morphology, architecture, and nanofeatures of naturally occurring in vivo extracellular matrices (ECM) have gained much interest in regenerative medicine and in vitro biomimetic platforms. Similarly, microphysiological systems (MPS), such as lab-chip, have drummed up momentum for recapitulating precise biomechanical conditions to model the in vivo microtissue environment. However, porosity of in vivo scaffolds regulating barrier and interface functions is generally absent in lab-chip systems, or otherwise introduces considerable cost, complexity, and an unrealistic uniformity in pore geometry. We address this by integrating electrospun nanofibrous porous scaffolds in MPS to develop the lab-on-a-brane (LOB) MPS for more effectively modeling transport, air-liquid interface, and tumor progression and for personalized medicine applications.
Collapse
Affiliation(s)
- Karim I Budhwani
- Departments of Radiation Oncology and Materials Science & Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patsy G Oliver
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vinoy Thomas
- Department of Materials Science & Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Khodkar F, Golshan Ebrahimi N. Preparation and properties of antibacterial, biocompatible core-shell fibers produced by coaxial electrospinning. J Appl Polym Sci 2017. [DOI: 10.1002/app.44979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fatemeh Khodkar
- Chemical Engineering Faculty, Polymer Engineering Department; Tarbiat Modares University; P. O. Box No. 14115-114 Tehran Iran
| | - Nadereh Golshan Ebrahimi
- Chemical Engineering Faculty, Polymer Engineering Department; Tarbiat Modares University; P. O. Box No. 14115-114 Tehran Iran
| |
Collapse
|
12
|
Chou SF, Woodrow KA. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 2016; 65:724-733. [PMID: 27756048 PMCID: PMC6461716 DOI: 10.1016/j.jmbbm.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Abstract
Electrospun nanofibers have the potential to achieve high drug loading and the ability to sustain drug release. Mechanical properties of the drug-incorporated fibers suggest the importance of drug-polymer interactions. In this study, we investigated the mechanical properties of electrospun polycaprolactone (PCL) and poly (D,L-lactic-co-glycolic) acid (PLGA) fibers at various blend ratios in the presence and absence of a small molecule hydrophilic drug, tenofovir (TFV). Young׳s modulus of the blend fibers showed dependence on PLGA content and the addition of the drug. At a PCL/PLGA (20/80) composition, Young׳s modulus and tensile strength were independent of drug loading up to 40wt% due to offsetting effects from drug-polymer interactions. In vitro drug release studies suggested that release of TFV significantly decreased fiber mechanical properties. In addition, mechanically stretched fibers displayed a faster release rate as compared to the non-stretched fibers. Finally, drug partition in the blend fibers was estimated using a mechanical model and then experimentally confirmed with a composite of individually stacked fiber meshes. This work provides scientific understanding on the dependence of drug release and drug loading on the mechanical properties of drug-eluting fibers.
Collapse
Affiliation(s)
- Shih-Feng Chou
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195-5061, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195-5061, USA.
| |
Collapse
|
13
|
Zargarian SS, Haddadi-Asl V. Facile fabrication of novel polycaprolactone-based electrospun fibers using in-process water exposure. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2016. [DOI: 10.1080/1023666x.2016.1192837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Enhanced biological behavior of bacterial cellulose scaffold by creation of macropores and surface immobilization of collagen. Macromol Res 2015. [DOI: 10.1007/s13233-015-3099-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Allaf RM, Rivero IV, Ivanov IN. Fabrication of co-continuous poly(ε-caprolactone)/polyglycolide blend scaffolds for tissue engineering. J Appl Polym Sci 2015. [DOI: 10.1002/app.42471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rula M. Allaf
- Department of Industrial Engineering; German-Jordanian University; Amman 11180 Jordan
| | - Iris V. Rivero
- Department of Industrial and Manufacturing Systems Engineering; Iowa State University; Ames 50011 Iowa
| | - Ilia N. Ivanov
- Center for Nanophase Materials Sciences; Oak Ridge National Laboratory; Oak Ridge 37831 Tennessee
| |
Collapse
|
16
|
Patel HN, Thai KN, Chowdhury S, Singh R, Vohra YK, Thomas V. In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft. Prog Biomater 2015; 4:67-76. [PMID: 26566465 PMCID: PMC4636519 DOI: 10.1007/s40204-015-0038-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/26/2015] [Indexed: 11/24/2022] Open
Abstract
Electrospinning technique was utilized to engineer a small-diameter (id = 4 mm) tubular graft. The tubular graft was made from biocompatible and biodegradable polymers polycaprolactone (PCL) and poliglecaprone with 3:1 (PCL:PGC) ratio. Enzymatic degradation effect on the mechanical properties and fiber morphology in the presence of lipase enzyme were observed. Significant changes in tensile strength (1.86-1.49 MPa) and strain (245-205 %) were noticed after 1 month in vitro degradation. The fiber breakage was clearly evident through scanning electron microscopy (SEM) after 4 weeks in vitro degradation. Then, the graft was coated with a collagenous protein matrix to impart bioactivity. Human umbilical vein endothelial cells (HUVECs) and aortic artery smooth muscle cells (AoSMCs) attachment on the coated graft were observed in static condition. Further, HUVECs were seeded on the lumen surface of the grafts and exposed to laminar shear stress for 12 h to understand the cell attachment. The coated graft was aged in PBS solution (pH 7.3) at 37 °C for 1 month to understand the coating stability. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) suggested the erosion of the protein matrix from the coated graft under in vitro condition.
Collapse
Affiliation(s)
- Harsh N Patel
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294 USA
| | - Kevin N Thai
- Department of Materials Science and Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294 USA
| | - Sami Chowdhury
- Department of Materials Science and Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294 USA
| | - Raj Singh
- Vivo Biosciences Inc, Birmingham, AL 35205 USA
| | - Yogesh K Vohra
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham (UAB), Birmingham, AL 35294 USA
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294 USA ; Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham (UAB), Birmingham, AL 35294 USA
| |
Collapse
|
17
|
Wang Z, Shao J, Pan H, Feng X, Chen P, Xia R, Wu X, Qian J. Monte Carlo simulations of the phase separation of a copolymer blend in a thin film. Chemphyschem 2015; 16:567-71. [PMID: 25504337 DOI: 10.1002/cphc.201402690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/09/2022]
Abstract
Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse-grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well-controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures.
Collapse
Affiliation(s)
- Zhexiao Wang
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (P. R. China)
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Patel HN, Garcia R, Schindler C, Dean D, Pogwizd SM, Singh R, Vohra YK, Thomas V. Fibro-porous poliglecaprone/polycaprolactone conduits: synergistic effect of composition and in vitro degradation on mechanical properties. POLYM INT 2014; 64:547-555. [PMID: 25914444 DOI: 10.1002/pi.4834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blends of poliglecaprone (PGC) and polycaprolactone (PCL) of varying compositions were electrospun into tubular conduits and their mechanical, morphological, thermal and in vitro degradation properties were evaluated under simulated physiological conditions. Generally, mechanical strength, modulus and hydrophilic nature were enhanced by the addition of PGC to PCL. An in vitro degradation study in phosphate-buffered saline (pH 7.3) was carried out for up to 1 month to understand the hydrolytic degradation effect on the mechanical properties in both the longitudinal and circumferential directions. Pure PCL and 4:1 PCL/PGC blend scaffolds exhibited considerable elastic stiffening after a 1 month in vitro degradation. Fourier transform infrared spectroscopic and DSC techniques were used to understand the degradation behavior and the changes in structure and crystallinity of the polymeric blends. A 3:1 PCL/PGC blend was concluded to be a judicious blend composition for tubular grafts based on overall results on the mechanical properties and performance after a 1 month in vitro degradation study.
Collapse
Affiliation(s)
- Harsh N Patel
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Roman Garcia
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carrie Schindler
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Derrick Dean
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven M Pogwizd
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA ; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raj Singh
- Vivo Biosciences Inc., Birmingham, AL 35205, USA
| | - Yogesh K Vohra
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA ; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Liu G, Tang Q, Yu Y, Li J, Luo J, Li M. Electrospun core-sheath fibers for integrating the biocompatibility of silk fibroin and the mechanical properties of PLCL. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guiyang Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; No. 199 Ren'ai Road, Industrial Park Suzhou 215123 China
- Department of Textile; Nantong Textile Vocational Technology College; No. 105 Qingnian Road Nantong 226007 China
| | - Qiang Tang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; No. 199 Ren'ai Road, Industrial Park Suzhou 215123 China
| | - Yanni Yu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; No. 199 Ren'ai Road, Industrial Park Suzhou 215123 China
| | - Jing Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; No. 199 Ren'ai Road, Industrial Park Suzhou 215123 China
| | - Jingwan Luo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; No. 199 Ren'ai Road, Industrial Park Suzhou 215123 China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering; Soochow University; No. 199 Ren'ai Road, Industrial Park Suzhou 215123 China
| |
Collapse
|