1
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
2
|
Liu Z, Si Y, Yu C, Jiang L, Dong Z. Bioinspired superwetting oil-water separation strategy: toward the era of openness. Chem Soc Rev 2024; 53:10012-10043. [PMID: 39302142 DOI: 10.1039/d4cs00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bioinspired superwetting oil-water separation strategies have received significant attention for their potential in addressing global water scarcity and aquatic pollution challenges. Over the past two decades, the field has rapidly developed, reaching a pivotal phase of innovation in the oil-water separation process. However, many groundbreaking studies have not received extensive scientific recognition. In this review, we systematically examine the application of bioinspired superwetting materials for complex multiscale oil-water separation. We discuss the development of 2D membrane filtration and 3D sponge adsorption materials in confined spaces, summarizing the core separation mechanisms, key research findings, and the evolutionary logic of these materials. Additionally, we highlight emerging open-space separation strategies, emphasizing several novel dynamic separation devices of significant importance. We evaluate and compare the design concepts, separation principles, materials used, comprehensive performance, and existing challenges of these diverse strategies. Finally, we summarize these advantages, critical bottlenecks, and prospects of this field and propose potential solutions for real oil-water separation processes from a general perspective.
Collapse
Affiliation(s)
- Zhuoxing Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China.
| | - Cunlong Yu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Chen LH, Ban C, Helal MH, El-Bahy SM, Zeinhom M, Song S, Zhao YG, Lu Y. Preparation and modification of polymer microspheres, application in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121807. [PMID: 39025011 DOI: 10.1016/j.jenvman.2024.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The removal of various pollutants from water is necessary due to the increasing requirements for the removal of various pollutants from wastewater and the quality of drinking water. Polymer microspheres are regarded as exemplary adsorbent materials due to their high adsorption efficiency, excellent adsorption performance, and ease of handling. Herein, the advantages and disadvantages of different preparation methods, modifications, applications and the current research status of polymer microspheres are summarized at large. Furthermore, the enhanced performance of modified composite microspheres is emphasized, including adsorption efficiency, thermal stability, and significant improvements in physical and chemical properties. Subsequently, the current applications and potential of polymeric microspheres for wastewater treatment, including the removal of inorganic and organic pollutants, heavy metal ions, and other contaminants are summarized. Finally, future research directions for polymer microspheres are proposed, outlining the challenges and solutions associated with the application of polymer microspheres in wastewater treatment.
Collapse
Affiliation(s)
- Li-Hui Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Cao Ban
- Zhejiang Institute of Geosciences, Zhejiang, 310015, China
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, Turabah, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - M Zeinhom
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Xiong Y, Peng K, Zhao Z, Yang D, Huang X, Zeng H. Sources, colloidal characteristics, and separation technologies for highly hazardous waste nanoemulsions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172347. [PMID: 38614332 DOI: 10.1016/j.scitotenv.2024.172347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Nanoemulsions play a crucial role in various industries. However, their application often results in hazardous waste, posing significant risks to human health and the environment. Effective management and separation of waste nanoemulsions requires special attention and effort. This review provides a comprehensive understanding of waste nanoemulsions, covering their sources, characteristics, and suitable treatment technologies, intending to mitigate their environmental impact. This study examines the evolution of nanoemulsions from beneficial products to hazardous wastes, provides an overview of the production processes, fate, and hazards of waste nanoemulsions, and highlights the critical characteristics that affect their stability. The latest advancements in separating waste nanoemulsions for recovering oil and reusable water resources are also presented, providing a comprehensive comparison and evaluation of the current treatment techniques. This review addresses the significant challenges in nanoemulsion treatment, provides insights into future research directions, and offers valuable implications for the development of more effective strategies to mitigate the hazards associated with waste nanoemulsions.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
5
|
Li J, Li K, Zhang Q, Peng L, Zhu X. Multiresponsive Behavior of the Pickering Emulsifier and Its Application for Collecting Small Oil Droplets in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10024-10034. [PMID: 38698547 DOI: 10.1021/acs.langmuir.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Responsive Pickering emulsions, with unique nanoparticle interfaces and sensitivity to external stimuli, significantly enhanced the stability and applicability of Pickering emulsions. Multifunctional composite material poly((2-(dimethylaminoethyl methacrylate)-b-(acrylate cyclodextrin))/Fe3O4 nanoparticles, namely P(DMAEMA-b-A-CD)/Fe3O4, with both multiresponsive characteristics and emulsifying capabilities had been designed to remove small oil droplets from water. Using the reversible addition-fragmentation chain transfer (RAFT) method, diblock polymers P(DMAEMA-b-A-CD) were grown in a controlled manner on the surface of Fe3O4. The Fe3O4 core showed responsiveness to a magnetic field, and the block copolymers prepared via the RAFT method demonstrated reactivity to both pH and CO2. The P(DMAEMA-b-A-CD)/Fe3O4 nanoparticles exhibited the capability to form Pickering/Oxford emulsions with exceptional stabilization properties. It could be observed that the introduction of CO2, acid, and a magnetic field led to the breakage of the emulsion, while the emulsion could be restabilized by removing the CO2 and the magnetic field or by adding alkali. Measurements of interfacial tension, ζ-potential, and contact angle demonstrated that the emulsification/breakdown mechanisms associated with pH and CO2/N2 were related to the surface wettability of the nanoparticles. In addition, the emulsifier had an excellent cycling capacity with at least 10 cycles by CO2/N2. Additionally, P(DMAEMA-b-A-CD)/Fe3O4 nanoparticles exhibited excellent stability in oil phases with large polarity differences and various real oil phases with different viscosities. Importantly, the P(DMAEMA-b-A-CD)/Fe3O4 nanoparticles could serve as functional materials for efficiently separating small oil droplets from water through the application of a magnetic field. Therefore, P(DMAEMA-b-A-CD)/Fe3O4 nanoparticles held promising potential as materials with economic and commercial value for oil-water separation applications.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610500, P. R. China
| | - Qin Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Lifei Peng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaoping Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
6
|
Low JY, Khe CS, Usman F, Hassan YM, Lai CW, You KY, Lim JW, Khoo KS. Review on demulsification techniques for oil/water emulsion: Comparison of recyclable and irretrievable approaches. ENVIRONMENTAL RESEARCH 2024; 243:117840. [PMID: 38081342 DOI: 10.1016/j.envres.2023.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.
Collapse
Affiliation(s)
- Joo Yee Low
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Fahad Usman
- Centre for Advanced Industrial Technology, University of Malaysia Pahang, Pekan Campus, 26600, Pekan, Pahang, Malaysia; Department of Physics, Al-Qalam University Katsina, PMB 2137, Katsina, Katsina, Nigeria
| | - Yarima Mudassir Hassan
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Advanced Studies (IAS), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok Yeow You
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
7
|
Pei X, Song W. CO 2-Triggered Hierarchical-Pore UiO-66-Based Pickering Emulsions for Efficient and Recyclable Suzuki-Miyaura Cross-Coupling in Biphasic Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15046-15054. [PMID: 37812683 DOI: 10.1021/acs.langmuir.3c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Hierarchical-pore metal-organic frameworks (H-MOFs) are considered to be emerging stabilizers for Pickering emulsion formation because of their hierarchically arranged pores, tailorable structures, and ultrahigh surface areas. However, stimulus-triggered Pickering emulsions built by H-MOFs have been seldom presented to date despite their great significance in diverse applications. Herein, by grafting Pd(OAc)2 on the hierarchical-pore zirconium MOF UiO-66, namely, H-UiO-66, with the aid of 1-alkyl-3-methylimidazolium 2-cyanopyrrolide salts ([CnMIM][2-CN-Pyr], n = 4, 6, and 8), a series of Pd(OAc)2-[CnMIM][2-CN-Pyr]@H-UiO-66 have been developed and utilized as emulsifiers for constructing CO2-switching Pickering emulsions. It was found that Pd(OAc)2-[CnMIM][2-CN-Pyr]@H-UiO-66 was able to stabilize the n-hexane-water mixture to form a Pickering emulsion even at an amount of 0.5 wt %. Upon alternate addition of CO2 and N2 at normal pressure, Pickering emulsions could be smartly converted between demulsification and re-emulsification. Through combining varieties of spectroscopic techniques, the mechanism of the switchable phase transformation lay in the acid-base reaction of ionic liquids with CO2 on H-UiO-66 and the creation of more hydrophilic salts, which reduced the wettability of the emulsifier and destabilized the emulsion. As an example of application, the stimulus-triggered Pickering emulsion was employed as a palladium-catalyzed Suzuki-Miyaura cross-coupling microreactor to achieve the combination of chemical reactions, isolation of products, and recovery of catalysts.
Collapse
Affiliation(s)
- Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, P. R. China
| | - Wangyue Song
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, P. R. China
| |
Collapse
|
8
|
Hamedi H, Zendehboudi S, Rezaei N, Azizi A, Shahhoseini F. Application of Functionalized Fe 3O 4 Magnetic Nanoparticles Using CTAB and SDS for Oil Separation from Oil-in-Water Nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37256995 DOI: 10.1021/acs.langmuir.2c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using magnetic nanoparticles (MNPs) for emulsified oil separation from wastewater is becoming increasingly widespread. This study aims to synthesize MNPs using amphiphilic coatings to stabilize the MNPs and prevent their agglomeration for efficiently breaking oil-in-water nanoemulsions. We coat two different sizes of Fe3O4 nanoparticles (15-20 and 50-100 nm) using cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with surfactant-to-MNP mass ratios of 0.4 and 0.8. We study the effect of various variables on the demulsification performance, including the MNP size and concentration, coating materials, and MNP loading. Based on the oil-water separation analysis, the smaller size MNPs (MNP-S) show a better demulsification performance than the larger ones (MNP-L ) for a 1000 ppm dodecane-in-water emulsion containing nanosized oil droplets (250-300 nm). For smaller MNPs (MNP-S) and at low dosage level of 0.5 g/L, functionalizing with surfactant-to-MNP mass ratio of 0.4, the functionalization increases the separation efficiency (SE) from 57.5% for bare MNP-S to 86.1% and 99.8 for the SDS and CTAB coatings, respectively. The highest SE for MNP-S@CTAB and the zeta potential measurements imply that electrostatic attraction between negatively charged oil droplets (-55.9 ± 2.44 mV) and positively charged MNP-S@CTAB (+35.8 ± 0.34 mV) is the major contributor to a high SE. Furthermore, the reusability tests for MNP-S@CTAB reveal that after 10 cycles, the amount of oil adsorption capacity decreases slightly, from 20 to 19 mg/g, indicating an excellent stability of synthesized nanoparticles. In conclusion, functionalized MNPs with tailored functional groups feature a high oil SE that could be effectively used for oil separation from emulsified oily wastewater streams.
Collapse
Affiliation(s)
- Hamideh Hamedi
- Department of Process Engineering, Memorial University, St. John's A1B 3X9, Newfoundland, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's A1B 3X9, Newfoundland, Canada
| | - Nima Rezaei
- Department of Process Engineering, Memorial University, St. John's A1B 3X9, Newfoundland, Canada
- Department of Separation Science, Lappeenranta-Lahti University of Technology, Lappeenranta 53850, Finland
| | - Ali Azizi
- Department of Chemistry, Memorial University, St. John's A1C 5S7, Newfoundland, Canada
| | - Fereshteh Shahhoseini
- Department of Chemistry, Memorial University, St. John's A1C 5S7, Newfoundland, Canada
| |
Collapse
|
9
|
Zhang H, Qu T, Wang H, Wu W, Lu F, Ou J, Zhu G, Gao L, Cheng L. Preparation of asymmetric Janus hollow silica microparticle and its application on oily wastewaters. Sci Rep 2023; 13:4135. [PMID: 36914714 PMCID: PMC10011370 DOI: 10.1038/s41598-023-30269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Janus nanoparticles have aroused the interest of scholars because of their highly efficient emulsification of spilled oils in wastewater. In this work, interfacially active Janus hollow glass microparticles (J-HGMPs) of asymmetric wettability were designed and synthesized in order to achieve more efficient separation of emulsified oil droplets from oily wastewater. Surface characteristic techniques such as FTIR, SEM, zeta potential and contact angle measurements had been employed to assess the amphiphilic surface properties of J-HGMPs. The oil removal/recovery performance of J-HGMPs in different oil-water systems and their interfacial activities were studied. As a particulate emulsifier, J-HGMPs could remove/recover > 96% oil from oil-water mixed phase. The results showed that J-HGMPs had strong interfacial activities and anchored firmly at oil/water interfaces. This high adsorption energy was also evaluated and verified via the calculation of Gibbs free energy. Overall, this study provided a novel and low-cost oil recovery method via a convenient buoyancy force that could be effectively applied in the treatment of oil spills while achieving the goal of benign and green environmental protection.
Collapse
Affiliation(s)
- Hailong Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Ting Qu
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Hairong Wang
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, 316000, Zhejiang, China
| | - Weixing Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Fangfang Lu
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, 316000, Zhejiang, China
| | - Jiguang Ou
- ENN (Zhou Shan) Natural Gas Pipelines Co., Ltd, Zhoushan, 316021, Zhejiang, China
| | - Genmin Zhu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Liangjun Gao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| | - Longsheng Cheng
- ENN (Zhou Shan) Natural Gas Pipelines Co., Ltd, Zhoushan, 316021, Zhejiang, China
| |
Collapse
|
10
|
Pei X, Liu J, Song W, Xu D, Wang Z, Xie Y. CO 2-Switchable Hierarchically Porous Zirconium-Based MOF-Stabilized Pickering Emulsions for Recyclable Efficient Interfacial Catalysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1675. [PMID: 36837307 PMCID: PMC9960431 DOI: 10.3390/ma16041675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/08/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive Pickering emulsions are recently being progressively utilized as advanced catalyzed systems for green and sustainable chemical conversion. Hierarchically porous metal-organic frameworks (H-MOFs) are regarded as promising candidates for the fabrication of Pickering emulsions because of the features of tunable porosity, high specific surface area and structure diversity. However, CO2-switchable Pickering emulsions formed by hierarchically porous zirconium-based MOFs have never been seen. In this work, a novel kind of the amine-functionalized hierarchically porous UiO-66-(OH)2 (H-UiO-66-(OH)2) has been developed using a post-synthetic modification of H-UiO-66-(OH)2 by (3-aminopropyl)trimethoxysilane (APTMS), 3-(2-aminoethylamino)propyltrimethoxysilane (AEAPTMS) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEAEAPTMS), and employed as emulsifiers for the construction of Pickering emulsions. It was found that the functionalized H-UiO-66-(OH)2 could stabilize a mixture of toluene and water to give an emulsion even at 0.25 wt % content. Interestingly, the formed Pickering emulsions could be reversibly transformed between demulsification and re-emulsification with alternate addition or removal of CO2. Spectral investigation indicated that the mechanism of the switching is attributed to the reaction of CO2 with amino silane on the MOF and the generation of hydrophilic salts, leading to a reduction in MOF wettability. Based on this strategy, a highly efficient and controlled Knoevenagel condensation reaction has been gained by using the emulsion as a mini-reactor and the emulsifier as a catalyst, and the coupling of catalysis reaction, product isolation and MOF recyclability has become accessible for a sustainable chemical process.
Collapse
|
11
|
Iftekhar S, Deb A, Heidari G, Sillanpää M, Lehto VP, Doshi B, Hosseinzadeh M, Zare EN. A review on the effectiveness of nanocomposites for the treatment and recovery of oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16947-16983. [PMID: 36609763 DOI: 10.1007/s11356-022-25102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The introduction of unintended oil spills into the marine ecosystem has a significant impact on aquatic life and raises important environmental concerns. The present review summarizes the recent studies where nanocomposites are applied to treat oil spills. The review deals with the techniques used to fabricate nanocomposites and identify the characteristics of nanocomposites beneficial for efficient recovery and treatment of oil spills. It classifies the nanocomposites into four categories, namely bio-based materials, polymeric materials, inorganic-inorganic nanocomposites, and carbon-based nanocomposites, and provides an insight into understanding the interactions of these nanocomposites with different types of oils. Among nanocomposites, bio-based nanocomposites are the most cost-effective and environmentally friendly. The grafting or modification of magnetic nanoparticles with polymers or other organic materials is preferred to avoid oxidation in wet conditions. The method of synthesizing magnetic nanocomposites and functionalization polymer is essential as it influences saturation magnetization. Notably, the inorganic polymer-based nanocomposite is very less developed and studied for oil spill treatment. Also, the review covers some practical considerations for treating oil spills with nanocomposites. Finally, some aspects of future developments are discussed. The terms "Environmentally friendly," "cost-effective," and "low cost" are often used, but most of the studies lack a critical analysis of the cost and environmental damage caused by chemical alteration techniques. However, the oil and gas industry will considerably benefit from the stimulation of ideas and scientific discoveries in this field.
Collapse
Affiliation(s)
- Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | - Anjan Deb
- Department of Chemistry, University of Helsinki, 00014, Helsinki, Finland
| | - Golnaz Heidari
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, People's Republic of China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | | | - Mehdi Hosseinzadeh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | | |
Collapse
|
12
|
Lü T, Zhou S, Ma R, Qi D, Sun Y, Zhang D, Huang J, Zhao H. Demulsification Performance and Mechanism of Tertiary Amine Polymer-Grafted Magnetic Nanoparticles in Surfactant-Free Oil-in-Water Emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1288-1298. [PMID: 36621519 DOI: 10.1021/acs.langmuir.2c03090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Numerous cationic magnetic nanoparticles (MNPs) have previously been developed for demulsifying oil-in-water (O/W) emulsion, and results showed that the cationic MNPs could effectively flocculate and remove the negatively charged oil droplets via charge attraction; however, to the best of our knowledge, there are no research reports regarding the synergetic influence of both the positive charge density and interfacial activity of MNPs on the demulsification performance. In this study, three tertiary amine polymer-grafted MNPs, namely, poly(2-dimethylaminoethyl acrylate)-grafted MNPs (M-PDMAEA), poly(2-dimethylamino)ethyl methacrylate)-grafted MNPs (M-PDMAEMA), and poly(2-diethylaminoethyl methacrylate)-grafted MNPs (M-PDEAEMA), were synthesized and evaluated for their demulsification performance. Results demonstrated that a high positive charge density and superior interfacial activity of MNPs could cause partial oil droplet re-dispersion when excessive MNPs were introduced, leading to a lower magnetic separation efficiency and narrower demulsification window. Herein, a demulsification window is defined as a range of nanoparticle dosages in which the MNPs can effectively demulsify the O/W emulsion under certain conditions. For highly positively charged MNPs, their good interfacial activity could aggravate the formation of a narrower demulsification window. When tertiary amine polymer-grafted MNPs carried a lower positive charge density or weak interfacial activity, that is, M-PDMAEA at pH 4.0, M-PDMAEMA at pH 5.0-9.0, and M-PDEAEMA at pH 9.0-10.0, wide demulsification windows were observed. Additionally, a recycling experiment suggested that MNPs could maintain high demulsification efficiency up to at least five cycles, indicating their satisfactory recyclability. The three tertiary amine polymer-grafted MNPs can be potentially used for efficient demulsification from surfactant-free O/W emulsion in various pH ranges.
Collapse
Affiliation(s)
- Ting Lü
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Shuangshuang Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Ronggang Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Dongming Qi
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China
| | - Yangyi Sun
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China
| | - Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Hongting Zhao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528011, Guangdong, China
| |
Collapse
|
13
|
Quaternary Ammonium Siloxane-Decorated Magnetic Nanoparticles for Emulsified Oil-Water Separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Xiong Y, Huang X, Li L, Liu W, Zhang J, He M, Liu J, Lu L, Peng K. Destructing surfactant network in nanoemulsions by positively charged magnetic nanorods to enhance oil-water separation. J Environ Sci (China) 2022; 118:112-121. [PMID: 35305759 DOI: 10.1016/j.jes.2021.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/14/2023]
Abstract
The separation of ultrafine oil droplets from wasted nanoemulsions stabilized with high concentration of surfactants is precondition for oil reuse and the safe discharge of effluent. However, the double barriers of the interfacial film and network structures formed by surfactants in nanoemulsions significantly impede the oil-water separation. To destroy these surfactant protective layers, we proposed a newly-developed polyethyleneimine micelle template approach to achieve simultaneous surface charge manipulation and morphology transformation of magnetic nanospheres to magnetic nanorods. The results revealed that positively charged magnetic nanospheres exhibited limited separation performance of nanoemulsions, with a maximum chemical oxygen demand (COD) removal of 50%, whereas magnetic nanorods achieved more than 95% COD removal in less than 30 s. The magnetic nanorods were also applicable to wasted nanoemulsions from different sources and exhibited excellent resistance to wide pH changes. Owing to their unique one-dimensional structure, the interfacial dispersion of magnetic nanorods was significantly promoted, leading to the efficient capture of surfactants and widespread destruction of both the interfacial film and network structure, which facilitated droplet merging into the oil phase. The easy-to-prepare and easy-to-tune strategy in this study paves a feasible avenue to simultaneously tailor surface charge and morphology of magnetic nanoparticles, and reveals the huge potential of morphology manipulation for producing high-performance nanomaterials to be applied in complex interfacial interaction process. We believe that the newly-developed magnetic-nanorods significantly contribute to hazardous oily waste remediation and advances technology evolution toward problematic oil-pollution control.
Collapse
Affiliation(s)
- Yongjiao Xiong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Lexue Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wanqi Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jialu Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Mengfan He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
15
|
pH and Magnetism Dual-Responsive Pickering Emulsion Stabilized by Dynamic Covalent Fe3O4 Nanoparticles. NANOMATERIALS 2022; 12:nano12152587. [PMID: 35957018 PMCID: PMC9370824 DOI: 10.3390/nano12152587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
Abstract
Herein, we describe pH and magnetism dual-responsive liquid paraffin-in-water Pickering emulsion stabilized by dynamic covalent Fe3O4 (DC-Fe3O4) nanoparticles. On one hand, the Pickerinfigureg emulsions are sensitive to pH variations, and efficient demulsification can be achieved by regulating the pH between 10 and 2 within 30 min. The dynamic imine bond in DC-Fe3O4 can be reversibly formed and decomposed, resulting in a pH-controlled amphiphilicity. The Pickering emulsion can be reversibly switched between stable and unstable states by pH at least three times. On the other hand, the magnetic Fe3O4 core of DC-Fe3O4 allowed rapid separation of the oil droplets from Pickering emulsions under an external magnetic field within 40 s, which was a good extraction system for purifying the aqueous solution contaminated by rhodamine B. The dual responsiveness enables Pickering emulsions to have better control of their stability and to be applied more broadly.
Collapse
|
16
|
Liu X, Wang N, Liu X, Deng R, Kang R, Xie L. Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071433. [PMID: 35890328 PMCID: PMC9320478 DOI: 10.3390/pharmaceutics14071433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have attracted much attention in the past few decades because of their unique magnetic responsiveness. Especially in the diagnosis and treatment of diseases, they are mostly involved in non-invasive ways and have achieved good results. The magnetic responsiveness of MNPs is strictly controlled by the size, crystallinity, uniformity, and surface properties of the synthesized particles. In this review, we summarized the classification of MNPs and their application in vascular repair. MNPs mainly use their unique magnetic properties to participate in vascular repair, including magnetic stimulation, magnetic drive, magnetic resonance imaging, magnetic hyperthermia, magnetic assembly scaffolds, and magnetic targeted drug delivery, which can significantly affect scaffold performance, cell behavior, factor secretion, drug release, etc. Although there are still challenges in the large-scale clinical application of MNPs, its good non-invasive way to participate in vascular repair and the establishment of a continuous detection process is still the future development direction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xie
- Correspondence: (R.K.); (L.X.)
| |
Collapse
|
17
|
Chen J, Wang H, Liu X, Han X, Liu H. Multiple strategies to control the hydrophilic-hydrophobic balance of P(DMA- co-DMAEMA- co-QDMAEMA) coatings. SOFT MATTER 2022; 18:4913-4922. [PMID: 35726664 DOI: 10.1039/d2sm00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of the hydrophilic-hydrophobic balance of polymers has an important influence not only on their aggregation behavior in aqueous solution, but also on their adhesion properties on the surface of substrates and the applications of the modified surfaces. Based on this, a random copolymer poly(dopamine methacrylamide-co-2-(dimethylamino)ethyl methacrylate) (P(DMA-co-DMAEMA)) was synthesized as a starting polymer to generate P(DMA-co-DMAEMA-co-QDMAEMA) (PDDQ) derivatives by a programmable quaternization of the DMAEMA precursor. By adjusting the pH or temperature, both the aggregation behavior in aqueous solutions and the surface adhesive behavior on the substrate surfaces of PDDQ copolymers were regulated due to the hydrophilic-hydrophobic balance. Specifically, the surface adsorption of PDDQ copolymers on surfaces was enhanced by the increased hydrophobicity of PDDQ. Stainless steel meshes (SSM) modified with the PDDQ0 copolymer without quaternization showed a superoleophobicity in acidic aqueous media, which endowed it with improved oil-water separation performance. In addition, the hydrophilic-hydrophobic balance of PDDQs and their coatings could also be tuned by changing the ratio of DMAEMA to QDMAEMA in the copolymer. From PDDQ0 to PDDQ100, by increasing the hydrophilic QDMAEMA component of PDDQ copolymers, anti-protein properties and oil/water separation efficiency of the modified surfaces were also enhanced gradually. The results provided a reference for designing P(DMA-co-DMAEMA-co-QDMAEMA) coatings in different application environments.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hanhan Wang
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xing Liu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xia Han
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Honglai Liu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
18
|
Wu Y, Zeng M, Cheng Q, Huang C. Recent Progress toward Physical Stimuli-Responsive Emulsions. Macromol Rapid Commun 2022; 43:e2200193. [PMID: 35622941 DOI: 10.1002/marc.202200193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Emulsion as a fine dispersion of immiscible liquids has involved widespread applications in industry, pharmaceuticals, agriculture and personal care. Stimuli-responsive emulsions capable of on-demand demulsification or changing their properties are required in many cases such as controllable release cargo, oil recovery, emulsifiers recycle and product separation, great progress has been achieved in these areas. Among these various triggers, much effort has been made to develop physical stimuli, due to the noninvasive and environmentally friendly characteristics. Physical stimuli-responsive emulsions provide a plenty of valuable practical applications in the fields of sustainable industry, biomedical reaction, drug delivery. Here, we summarize the recent development in the field of emulsions in response to physical stimuli consisting of temperature, light, magnetic field, electrical field, etc. The preparation methods and mechanisms of physical stimuli-responsive emulsions and their applications of catalysis reaction, drug delivery, and oil recovery are highlighted in this review. The future directions and outstanding problems of the physical stimuli-responsive emulsions are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yutian Wu
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Min Zeng
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Quanyong Cheng
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Caili Huang
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| |
Collapse
|
19
|
Jin X, Ye Q, Wang CW, Wu Y, Ma K, Yu S, Wei N, Gao H. Magnetic Nanoplatforms for Covalent Protein Immobilization Based on Spy Chemistry. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44147-44156. [PMID: 34515459 DOI: 10.1021/acsami.1c14670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immobilization of proteins on magnetic nanoparticles (MNPs) is an effective approach to improve protein stability and facilitate separation of immobilized proteins for repeated use. Herein, we exploited the efficient SpyTag-SpyCatcher chemistry for conjugation of functional proteins onto MNPs and established a robust magnetic-responsive nanoparticle platform for protein immobilization. To maximize the loading capacity and achieve outstanding water dispersity, the SpyTag peptide was incorporated into the surface-charged polymers of MNPs, which provided abundant active sites for Spy chemistry while maintaining excellent colloidal stability in buffer solution. Conjugation between enhanced green fluorescence protein (EGFP)-SpyCatcher-fused proteins and SpyTag-functionalized MNPs was efficient at ambient conditions without adding enzymes or chemical cross-linkers. Benefiting from the excellent water dispersity and interface compatibility, the surface Spy reaction has fast kinetics, which is comparable to that of the solution Spy reaction. No activity loss was observed on EGFP after conjugation due to the site-selective nature of Spy chemistry. The immobilization process of EGFP on MNPs was highly specific and robust, which was not affected by the presence of other proteins and detergents, such as bovine serum albumin and Tween 20. The MNP platform was demonstrated to be protective to the conjugated EGFP and significantly improved the shelf life of immobilized proteins. In addition, experiments confirmed the retained magnetophoresis of the MNP after protein loading, demonstrating fast MNP recovery under an external magnetic field. This MNP is expected to provide a versatile and modular platform to achieve effective and specific immobilization of other functional proteins, enabling easy reuse and storage.
Collapse
Affiliation(s)
- Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Quanhui Ye
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Chien-Wei Wang
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ying Wu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kangling Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sihan Yu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Long B, Ma Y, Niu R, Zhang C, Song H, Wang H. Polyamidoamine grafted with magnetic material (M-G n-PAMAM): an efficient demulsifier for oil-contaminated industrial wastewater. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1964985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Biao Long
- Heilongjiang Provincial Key Laboratory Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, China
- Chemical Engineering Department, Daqing Oil Field Engineering Ltd, Daqing, China
| | - Yu Ma
- Heilongjiang Provincial Key Laboratory Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, China
| | - Ruixia Niu
- Heilongjiang Provincial Key Laboratory Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, China
| | - Chuan Zhang
- Heilongjiang Provincial Key Laboratory Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, China
| | - Hua Song
- Heilongjiang Provincial Key Laboratory Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, China
| | - Hui Wang
- Heilongjiang Provincial Key Laboratory Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, China
| |
Collapse
|
21
|
Lu Y, Zhu Y, Yang F, Xu Z, Liu Q. Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004082. [PMID: 34047073 PMCID: PMC8336505 DOI: 10.1002/advs.202004082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Advanced switchable molecules and materials have shown great potential in numerous applications. These novel materials can express different states of physicochemical properties as controlled by a designated stimulus, such that the processing condition can always be maintained in an optimized manner for improved efficiency and sustainability throughout the whole process. Herein, the recent advances in switchable molecules/materials in oil recovery and oily waste cleanup are reviewed. Oil recovery and oily waste cleanup are of critical importance to the industry and environment. Switchable materials can be designed with various types of switchable properties, including i) switchable interfacial activity, ii) switchable viscosity, iii) switchable solvent, and iv) switchable wettability. The materials can then be deployed into the most suitable applications according to the process requirements. An in-depth discussion about the fundamental basis of the design considerations is provided for each type of switchable material, followed by details about their performances and challenges in the applications. Finally, an outlook for the development of next-generation switchable molecules/materials is discussed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Yeling Zhu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Fan Yang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| | - Zhenghe Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qingxia Liu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| |
Collapse
|
22
|
Tham FK, Ng WM, Leong SS, Yeap SP, Low SC, Lee HL, Lim J. Magnetophoresis of Magnetic Pickering Emulsions Under Low Field Gradient: Macroscopic and Microscopic Motion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1811-1822. [PMID: 33496594 DOI: 10.1021/acs.langmuir.0c03153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monodispersed iron oxide nanoparticles (IONPs) coated with polystyrenesulfonate (PSS) and cetrimonium bromide (CTAB) have been used to stabilize magnetic Pickering emulsions (MPEs). Magnetophoresis of MPEs under the influence of a low gradient magnetic field (∇B < 100 T/m) was investigated at the macroscopic and microscopic scale. At the macroscopic scale, for the case of pH 7, the MPE achieved a magnetophoretic velocity of 70.9 μm/s under the influence of ∇B at 93.8 T/m. The magnetic separation efficiency of the MPE at 90% was achieved within 30 min for pH 3, 7, and 10. At pH 10, the colloidal stability of the MPE was the lowest compared to that for pH 3 and 7. Thus, MPE at pH 10 required the shortest time for achieving the highest separation efficiency, as the MPE experienced cooperative magnetophoresis at alkaline pH. The creaming rate of the MPE at all conditions was still lower compared to magnetophoresis and was negligible in influencing its separation kinetics profiles. At the microscopic scale, the migration pathways of the MPEs (with diameters between 2.5 and 7.5 μm) undergoing magnetophoresis at ∇B ∼ 13.0 T/m were recorded by an optical microscope. From these experiments, and taking into consideration the MPE size distribution from the dynamic light scattering (DLS) measurement, we determined the averaged microscopic magnetophoretic velocity to be 7.8 ± 5.5 μm/s. By making noncooperative magnetophoresis assumptions (with negligible interactions between the MPEs along their migration pathways), the calculated velocity of individual MPEs was 9.8 μm/s. Such a value was within the percentage error of the experimental result of 7.8 ± 5.5 μm/s. This finding allows for an easy and quick estimation of the magnetophoretic velocity of MPEs at the microscale by using macroscopic separation kinetics data.
Collapse
Affiliation(s)
- Foo Kean Tham
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Sim Siong Leong
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
- Department of PetroChemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Swee Pin Yeap
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University Kuala Lumpur, Cheras 56000, Kuala Lumpur, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Hooi Ling Lee
- Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Rangel-Muñoz N, González-Barrios AF, Pradilla D, Osma JF, Cruz JC. Novel Bionanocompounds: Outer Membrane Protein A and Lacasse Co-Immobilized on Magnetite Nanoparticles for Produced Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2278. [PMID: 33213016 PMCID: PMC7698600 DOI: 10.3390/nano10112278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/02/2023]
Abstract
The oil and gas industry generates large amounts of oil-derived effluents such as Heavy Crude Oil (HCO) in water (W) emulsions, which pose a significant remediation and recovery challenge due to their high stability and the presence of environmentally concerning compounds. Nanomaterials emerge as a suitable alternative for the recovery of such effluents, as they can separate them under mild conditions. Additionally, different biomolecules with bioremediation and interfacial capabilities have been explored to functionalize such nanomaterials to improve their performance even further. Here, we put forward the notion of combining these technologies for the simultaneous separation and treatment of O/W effluent emulsions by a novel co-immobilization approach where both OmpA (a biosurfactant) and Laccase (a remediation enzyme) were effectively immobilized on polyether amine (PEA)-modified magnetite nanoparticles (MNPs). The obtained bionanocompounds (i.e., MNP-PEA-OmpA, MNP-PEA-Laccase, and MNP-PEA-OmpA-Laccase) were successfully characterized via DLS, XRD, TEM, TGA, and FTIR. The demulsification of O/W emulsions was achieved by MNP-PEA-OmpA and MNP-PEA-OmpA-Laccase at 5000 ppm. This effect was further improved by applying an external magnetic field to approach HCO removal efficiencies of 81% and 88%, respectively. The degradation efficiencies with these two bionanocompounds reached levels of between 5% and 50% for the present compounds. Taken together, our results indicate that the developed nanoplatform holds significant promise for the efficient treatment of emulsified effluents from the oil and gas industry.
Collapse
Affiliation(s)
- Nathaly Rangel-Muñoz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
| | - Andres Fernando González-Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Diego Pradilla
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Johann F. Osma
- CMUA, Department of Electrical and Electronic Engineering, Universidad de Los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
24
|
Zentner C, Concellón A, Swager TM. Controlled Movement of Complex Double Emulsions via Interfacially Confined Magnetic Nanoparticles. ACS CENTRAL SCIENCE 2020; 6:1460-1466. [PMID: 32875087 PMCID: PMC7453569 DOI: 10.1021/acscentsci.0c00686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 05/03/2023]
Abstract
Controlled, dynamic movement of materials through noncontacting forces provides interesting opportunities in systems design. Confinement of magnetic nanoparticles to the interfaces of double emulsions introduces exceptional control of double emulsion movement. We report the selective magnetic functionalization of emulsions by the in situ selective reactions of amine-functionalized magnetic nanoparticles and oil-soluble aldehydes at only one of the double emulsion's interfaces. We demonstrate morphology-dependent macroscopic ferromagnetic behavior of emulsions induced by the interfacial confinement of the magnetic nanoparticles. The attraction and repulsion of the emulsions to applied magnetic fields results in controlled orientation changes and rotational movement. Furthermore, incorporation of liquid crystals into the double emulsions adds additional templating capabilities for precision assembly of magnetic nanoparticles, both along the interface and at point defects. Applying a magnetic field to liquid crystal complex emulsions can produce movement as well as reorganization of the director field in the droplets. The combination of interfacial chemistry and precise assembly of magnetic particles creates new systems with potentially useful field-responsive properties.
Collapse
|
25
|
He X, Liu Q, Xu Z. Treatment of oily wastewaters using magnetic Janus nanoparticles of asymmetric surface wettability. J Colloid Interface Sci 2020; 568:207-220. [DOI: 10.1016/j.jcis.2020.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022]
|
26
|
Ren X, He S, Liu D, Zhang Y. Multistimuli-Responsive Pickering Emulsion Stabilized by Se-Containing Surfactant-Modified Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3986-3994. [PMID: 32186870 DOI: 10.1021/acs.jafc.0c00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particle-stabilized emulsions that can respond to external stimuli have attracted significant concerns due to their intelligent-controlled stability, whereas particle-stabilized Pickering emulsions responding to multistimuli but based on biomass have been rarely reported. Here, a multistimuli-responsive Pickering emulsion was developed using the modified chitosan as stabilizer. Due to electrostatic attraction, Se-containing anionic surfactant, sodium 11-(butylselenyl)undecylsulfate (C4SeC11S), can bind with CS at an acidic pH and form CS-C4SeC11S complexes which can further self-associate to form micrometer-sized particles with the character of partially hydrophobicity. Therefore, at pH < pKa, an oil-in-water Pickering emulsion can be formed using CS-C4SeC11S particles as stabilizers and can spontaneously respond to redox, ion, and pH. First, with the addition of oxidation, the hydrophilicity of C4SeC11S was enhanced, and thus, hydrophobic association of CS-C4SeC11S decreased, leading to the disruption of CS-C4SeC11S particles. Hence, the emulsion destabilized. The demulsification process is closely related with the dosage of oxidant and the oxidation time. Second, introduction of a competitive ion (e.g., CTAB) could break the binding between C4SeC11S and CS, leading to the disruption of particle emulsifier. Thereby, demulsification occurred. Third, with sequentially increasing/decreasing pH, the emulsion can be switched from stable to unstable and then to stable again accordingly. Such a unique pH-responsive behavior has never been discovered in other pH-responsive Pickering emulsions. All of the stimuli-responsive behaviors were reversible. Upon alternately adding oxidant/reductant, CTAB/C4SeC11S, or base/acid, the current emulsion can be reversibly switched off (destabilization) and on (stabilization). Such a Pickering emulsion may be a good candidate as a vehicle of functional ingredient.
Collapse
Affiliation(s)
- Xiaofei Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Deqiong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
27
|
Cholakova D, Valkova Z, Tcholakova S, Denkov N, Binks BP. Spontaneous particle desorption and "Gorgon" drop formation from particle-armored oil drops upon cooling. SOFT MATTER 2020; 16:2480-2496. [PMID: 32068204 DOI: 10.1039/c9sm02354b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study how the phenomenon of drop "self-shaping" (Denkov et al., Nature, 528, 2015, 392), in which oily emulsion drops undergo a spontaneous series of shape transformations upon emulsion cooling, is affected by the presence of adsorbed solid particles, like those used in Pickering emulsion stabilization. Experiments with several types of latex particles, and with added surfactant of low concentration to enable drop self-shaping, revealed several new unexpected phenomena: (1) adsorbed latex particles rearranged into regular hexagonal lattices upon freezing of the surfactant adsorption layer. (2) Spontaneous particle desorption from the drop surface was observed at a certain temperature - a remarkable phenomenon, as the solid particles are known to irreversibly adsorb on fluid interfaces. (3) Very strongly adhered particles to drop surfaces acted as a template to enable the formation of tens to hundreds of semi-liquid fibres, growing outwards from the drop surface, thus creating a shape resembling the Gorgon head from Greek mythology. Mechanistic explanations of all observed phenomena are provided using our understanding of the rotator phase formation on the surface of the cooled drops. The surface rotator phase creates positive line tension at the contact line formed between the particle surface and the fluid interface, which causes the particle ejection from the drop surface.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
28
|
Cheng H, Li Z, Li Y, Shi Z, Bao M, Han C, Wang Z. Multi-functional magnetic bacteria as efficient and economical Pickering emulsifiers for encapsulation and removal of oil from water. J Colloid Interface Sci 2020; 560:349-358. [DOI: 10.1016/j.jcis.2019.10.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022]
|
29
|
Ku KH, Li J, Yoshinaga K, Swager TM. Dynamically Reconfigurable, Multifunctional Emulsions with Controllable Structure and Movement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905569. [PMID: 31639256 DOI: 10.1002/adma.201905569] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/05/2019] [Indexed: 05/20/2023]
Abstract
Dynamically reconfigurable oil-in-water (o/w) Pickering emulsions are developed, wherein the assembly of particles (i.e., platinum-on-carbon and iron-on-carbon particles) can be actively controlled by adjusting interfacial tensions. A balanced adsorption of particles and surfactants at the o/w interface allows for the creation of inhomogeneity of the particle distribution on the emulsion surface. Complex Pickering emulsions with highly controllable and reconfigurable morphologies are produced in a single step by exploiting the temperature-sensitive miscibility of hydrocarbon and fluorocarbon liquids. Dynamic adsorption/desorption of (polymer) surfactants afford both shape and configuration transitions of multiple Pickering emulsions and encapsulated core/shell structured can be transformed into a Janus configuration. Finally, to demonstrate the intrinsic catalytic or magnetic properties of the particles provided by carbon bound Pt and Fe nanoparticles, two different systems are investigated. Specifically, the creation of a bimetallic microcapsule with controlled payload release and precise modulation of translational and rotational motions of magnetic emulsions are demonstrated, suggesting potential applications for sensing and smart payload delivery.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jie Li
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Kosuke Yoshinaga
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Yamashita K, Okada S, Sawada H. Preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/magnetite composites – Application to separation of oil and water. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Removal of Emulsified Oil from Aqueous Environment by Using Polyvinylpyrrolidone-Coated Magnetic Nanoparticles. WATER 2019. [DOI: 10.3390/w11101993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In recent years, a large amount of emulsified oily wastewaters were produced from petroleum and food industries, resulting in severe environmental problems. In this study, a series of polyvinylpyrrolidone (PVP)-coated Fe3O4 magnetic nanoparticles (MNPs) were prepared via one-step solvothermal method by introducing various amounts or types of PVP. The synthesized MNPs were characterized by multiple techniques, and their demulsification performances were evaluated in petrochemical and vegetable oil wastewaters, respectively. Results showed that the introduction of PVP in solvothermal process could significantly enhance the demulsification efficiency of MNPs, although excessive addition of PVP could not further increase its efficiency. Moreover, the effects of pH, surfactant concentration of wastewater, and the recycle number of MNPs on the demulsification performance were investigated in detail. It was found that the demulsification efficiency decreased with the increase of pH and surfactant concentration, and the synthetic MNPs were still effective after being reused for 5 cycles under acidic and neutral conditions. It is expected that the development of the PVP-coated MNPs can provide a simple and powerful route for the oily wastewater treatment.
Collapse
|
32
|
Flejszar M, Chmielarz P. Surface-Initiated Atom Transfer Radical Polymerization for the Preparation of Well-Defined Organic-Inorganic Hybrid Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3030. [PMID: 31540468 PMCID: PMC6766320 DOI: 10.3390/ma12183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Surface-initiated atom transfer radical polymerization (SI-ATRP) is a powerful tool that allows for the synthesis of organic-inorganic hybrid nanomaterials with high potential applications in many disciplines. This review presents synthetic achievements and modifications of nanoparticles via SI-ATRP described in literature last decade. The work mainly focuses on the research development of silica, gold and iron polymer-grafted nanoparticles as well as nature-based materials like nanocellulose. Moreover, typical single examples of nanoparticles modification, i.e., ZnO, are presented. The organic-inorganic hybrid systems received according to the reversible deactivation radical polymerization (RDRP) approach with drastically reduced catalyst complex concentration indicate a wide range of applications of materials including biomedicine and microelectronic devices.
Collapse
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| |
Collapse
|
33
|
Jannat NE, Alam MA, Rahman M, Rahman M, Hossain M, Hossain S, Minami H, Ahmad H. Carboxylic acid modified pH-responsive composite polymer particles. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
pH-responsive polymers are attracting much interest from researchers because of their wide application potentials in areas like biosensor, bioseparator, bioreactor, biocatalysis, drug delivery, and water treatments. In this investigation a two-step process is evaluated to prepare carboxyl(–COOH) functional submicrometer-sized pH-responsive composite polymer particles. First, submicrometer-sized polystyrene (PS) particles are prepared by a modified conventional dispersion polymerization. In the second step, PS/poly(methacrylic acid-acrylamide-ethylene glycol dimethacrylate) [PS/P(MAA-AAm-EGDMA)] composite polymer particles are synthesized by seeded co-polymerization of methacrylic acid, acrylamide, and ethylene glycol dimethacrylate in the presence of PS seed particles. The size distributions and morphologies analyzed by electron micrographs suggested that seeded copolymerization smoothly occurred without formation of any secondary tiny copolymer particles. The surface composition and functionality are confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The hydrodynamic diameter increased with the increase in pH values as part of the carboxyl groups are deprotonated, which favored the swelling of copolymer layer formed around the surface of PS particles. The adsorption of cationic and anionic surfactants at two different pH values showed that adsorption of cationic surfactant is favored at higher pH value whereas that of anionic surfactant is favored at lower pH value.
Collapse
Affiliation(s)
- Nur E. Jannat
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - Md. Ashraful Alam
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.A. Rahman
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.M. Rahman
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.K. Hossain
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - S. Hossain
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - H. Minami
- Graduate School of Engineering , Kobe University , Kobe 657-8501 , Japan
| | - Hasan Ahmad
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| |
Collapse
|
34
|
Wiehemeier L, Brändel T, Hannappel Y, Kottke T, Hellweg T. Synthesis of smart dual-responsive microgels: correlation between applied surfactants and obtained particle morphology. SOFT MATTER 2019; 15:5673-5684. [PMID: 31246214 DOI: 10.1039/c9sm00690g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermo- and pH-responsive copolymer microgels were obtained by surfactant-assisted precipitation polymerization of N-isopropylacrylamide (NIPAM) and acrylic acid (AAc). The surfactants used were sodium dodecylsulfate (SDS), dodecyltrimethylammonium bromide (DTAB) and the nonionic n-octyl-β-d-glucopyranoside (C8G1). We investigate the influence of the surfactants on the acrylic acid incorporation rate, the particle size, particle morphology, and the swelling behaviour at pH 4 and pH 7, at which AAc is neutral or charged, respectively. It is shown that each surfactant has a specific influence, which is connected to its role in the polymerization mechanism and its charge. A combined FTIR and PCS study reveals that the particles undergo a temperature-induced change in microstructure, even if the particle hydrodynamic radius does not change significantly.
Collapse
Affiliation(s)
- Lars Wiehemeier
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Timo Brändel
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Yvonne Hannappel
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Tilman Kottke
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Thomas Hellweg
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| |
Collapse
|
35
|
Li K, Chen K, Wang Q, Zhang Y, Gan W. Synthesis of poly(acrylic acid) coated magnetic nanospheres via a multiple polymerization route. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190141. [PMID: 31417720 PMCID: PMC6689630 DOI: 10.1098/rsos.190141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/28/2019] [Indexed: 05/31/2023]
Abstract
Magnetic nanospheres are versatile candidates for both fundamental and practical applications. Before they are applied in more complicated fields, their surface must be modified by several functionalities. However, the surface modification can be affected by the magnetic nanoparticles (MNP) embedded in the polymer matrix. Herein, the synthesis of poly(acrylic acid) coated magnetic nanospheres via a multiple polymerization route is described. During the synthesis process, seed emulsion polymerization was applied to redistribute the MNP in the polymer matrix, and the relationship between the structure of magnetic nanospheres and the thickness of the grafted poly(acrylic acid) layer was investigated. The development of size, morphology and magnetic properties of the nanospheres were characterized by transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, X-ray diffraction and vibrating sample magnetometry. This work would pave the way to design and preparation of new structure of functional magnetic nanospheres with precise surface modification.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Qiaoling Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wenjun Gan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| |
Collapse
|
36
|
Lin Q, Xu M, Cui Z, Pei X, Jiang J, Song B. Structure and stabilization mechanism of diesel oil-in-water emulsions stabilized solely by either positively or negatively charged nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Amino-functionalized iron oxide nanoparticles designed for adsorption of naphthenic acids. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Kang DW, Choi KH, Lee SJ, Park BJ. Mapping Anisotropic and Heterogeneous Colloidal Interactions via Optical Laser Tweezers. J Phys Chem Lett 2019; 10:1691-1697. [PMID: 30907597 DOI: 10.1021/acs.jpclett.9b00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heterogeneity among particles is an inherent feature that allows nondeterministic prediction of the properties of assembled structures and materials composed of many particles. Here, we report a promising strategy to quantify the heterogeneous and anisotropic interactions between ellipsoid particles using optical laser tweezers. The configuration and separation between two particles at an oil-water interface were optically controlled, and the capillary interaction behaviors were directly observed and measured. As a result, the optimal particle configurations at energetically favorable states were obtained, and the interaction forces between the particles were identified accurately by determining the trap stiffness in the direction of major and minor axes of the particle. Visualization of the capillary field around individual particles confirmed that the capillary interactions were quadrupolar, anisotropic, and heterogeneous. The measurement method presented here can be widely used to quantify interaction fields for various types of anisotropic particles.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| | - Kyu Hwan Choi
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| | - Seong Jae Lee
- Department of Polymer Engineering , The University of Suwon , Hwaseong , Gyeonggi 18323 , South Korea
| | - Bum Jun Park
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| |
Collapse
|
39
|
Brändel T, Sabadasch V, Hannappel Y, Hellweg T. Improved Smart Microgel Carriers for Catalytic Silver Nanoparticles. ACS OMEGA 2019; 4:4636-4649. [PMID: 31459651 PMCID: PMC6648742 DOI: 10.1021/acsomega.8b03511] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/12/2019] [Indexed: 05/27/2023]
Abstract
Acrylamide-based, thermoresponsive core-shell microgels with a linear phase transition region are used as improved carriers for catalytically active silver nanoparticles in the present study. In this context, we investigated the swelling behavior of the carriers and the stability of the silver nanoparticles inside the polymer network with photon correlation spectroscopy, transmission electron microscopy, and by following the surface plasmon resonance of the nanoparticles. Depending on the cross-linker content of the microgel core, we observed very good stability of the nanoparticles inside the microgel network, with nearly no bleeding or aggregation of the nanoparticles over several weeks for core cross-linker contents of 5 and 10 mol %. The architecture of the hybrid particles in the swollen state was investigated with cryogenic transmission electron microscopy. The particles exhibit a core-shell structure, with the silver nanoparticles located mainly at the interface between the core and shell. This architecture was not used before and seems to grant advanced stability to the nanoparticles inside the network in combination with good switchability of the catalytic activity. This was measured by following the reduction of 4-nitrophenole, which is a well-studied model reaction. The obtained Arrhenius plots show that similar to previous works, the swelling of the core and shell can influence the catalytic activity of the silver nanoparticles. As mentioned before, the cross-linker content of the core seems to be a very important parameter for the switchability of the catalytic activity. A higher cross-linker content of the core seems to be connected to a stronger influence of the carrier swelling degree on the catalytic activity of the silver nanoparticles.
Collapse
|
40
|
Huang X, Zhang J, Peng K, Na Y, Xiong Y, Liu W, Liu J, Lu L, Li S. Functional magnetic nanoparticles for enhancing ultrafiltration of waste cutting emulsions by significantly increasing flux and reducing membrane fouling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Lee YT, Li DS, Ilavsky J, Kuzmenko I, Jeng GS, O'Donnell M, Pozzo LD. Ultrasound-based formation of nano-Pickering emulsions investigated via in-situ SAXS. J Colloid Interface Sci 2019; 536:281-290. [PMID: 30380428 PMCID: PMC6287929 DOI: 10.1016/j.jcis.2018.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
Sonication is one of the most commonly used methods to synthesize Pickering emulsions. Yet, the process of emulsion sonication is rarely characterized in detail and acoustic conditions are largely determined by experimenter's personal experience. In this study, the role of sonication in the formation of Pickering emulsions from amphiphilic gold nanoparticles was investigated using a new sample environment combining ultrasound delivery with ultra-small-angle X-ray scattering (USAXS) measurements. The detection of acoustic cavitation and the simultaneous analysis of structural data via USAXS demonstrated direct correlation between Pickering emulsion formation and cavitation events. There was no evidence of spontaneous adsorption of particles onto the oil-water interface without ultrasound, which suggests the presence of a stabilizing force. Acoustically detected cavitation events could originate in the bulk solvent and/or inside the emulsion droplets. These events helped overcome energy barriers to induce particle adsorption.
Collapse
Affiliation(s)
- Yi-Ting Lee
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - David S Li
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jan Ilavsky
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Ivan Kuzmenko
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Geng-Shi Jeng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
CO2/N2-switchable high internal phase Pickering emulsion stabilized by silica nanoparticles and low-cost commercial N,N-dimethyl-N-dodecylamine. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Zhao H, Zhang C, Qi D, Lü T, Zhang D. One-Step Synthesis of Polyethylenimine-Coated Magnetic Nanoparticles and its Demulsification Performance in Surfactant-Stabilized Oil-in-Water Emulsion. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1467773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hongting Zhao
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Chuan Zhang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Dongming Qi
- Engineering Research Center of Eco-Dyeing and Finishing of Textiles of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ting Lü
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Dong Zhang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
45
|
Kang DW, Park BG, Choi KH, Lim JH, Lee SJ, Park BJ. Geometric Effects of Colloidal Particles on Stochastic Interface Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8839-8847. [PMID: 29985624 DOI: 10.1021/acs.langmuir.8b01124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The stochastic interface adsorption behaviors of ellipsoid particles were investigated using optical laser tweezers. The particles were brought close to the oil-water interface, attempting to attach forcefully to the interface. Multiple attempts of the particle attachments statistically quantified the dependence of the adsorption probability on the particle aspect ratio. It was found that the adsorption probability proportionally increased with the aspect ratio because of the decrease in electrostatic interactions between the charged particles and the charged interface for higher aspect ratio particles. In addition, the adsorption holding time required for the interface attachments was found to increase as the aspect ratio decreased. Notably, the probabilistic adsorption behaviors of the ellipsoid particles and the holding time dependence revealed that the particle adsorption to the interface occurred stochastically, not deterministically. We also demonstrated that the adsorption behaviors measured on a single-particle scale were consistent with the gravity-induced spontaneous adsorption properties performed on a large scale with regard to the nondeterministic adsorption behaviors and the aspect ratio dependence on the adsorption probability.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| | - Byung Gyu Park
- Department of Polymer Engineering , The University of Suwon , Hwaseong , Gyeonggi 18323 , South Korea
| | - Kyu Hwan Choi
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| | - Jin Hyun Lim
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| | - Seong Jae Lee
- Department of Polymer Engineering , The University of Suwon , Hwaseong , Gyeonggi 18323 , South Korea
| | - Bum Jun Park
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| |
Collapse
|
46
|
Koroleva MY, Bydanov DA, Palamarchuk KV, Yurtov EV. Stabilization of Oil-in-Water Emulsions with SiO2 and Fe3O4 Nanoparticles. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x18030080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Ren G, Wang M, Wang L, Wang Z, Chen Q, Xu Z, Sun D. Dynamic Covalent Silica Nanoparticles for pH-Switchable Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5798-5806. [PMID: 29709197 DOI: 10.1021/acs.langmuir.8b00757] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic covalent surfactants have been recently reported for preparation of pH-switchable emulsions [ Sun , D. Langmuir , 2017 , 33 , 3040 ]. In this study, dynamic covalent silica (SiO2-B) nanoparticles of switchable wettability were fabricated by a pH-responsive dynamic (covalent) imine bond between hydrophilic amino silica (SiO2-NH2) nanoparticles and hydrophobic benzaldehyde molecules. The properties of SiO2-B were characterized by Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and ζ potential measurement. The hydrophilicity and hydrophobicity of SiO2-B were shown to be readily switchable by adjusting pH between 7.8 and 3.5. At pH 7.8, SiO2-B was partially hydrophobic and adsorbed at oil-water interface to stabilize O/W Pickering emulsions, which were characterized by electrical conductivity, optical microscopy, and confocal laser scanning microscopy. Upon lowering the pH to 3.5, the dynamic covalent bond is dissociated to convert partially hydrophobic SiO2-B into highly hydrophilic SiO2-NH2 and surface-inactive benzaldehyde. Both of them desorb from oil-water interface, resulting in a rapid oil-water separation of the Pickering emulsions. Alternating stabilization and phase separation of the Pickering emulsions over 3 cycles were demonstrated by adjusting the pH. The pH-switchable Pickering emulsions show great potential in application to effective oil-water separation of emulsions.
Collapse
Affiliation(s)
- Gaihuan Ren
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - MaoXin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Lei Wang
- College of Chemistry and Molecular Engineering , Qingdao University of Science & Technology , Qingdao 266042 , P. R. China
| | - Zengzi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Qianqian Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Zhenghe Xu
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta , Canada T6G 2V4
- Institute of Nuclear and New Energy Technology , Tsinghua University , Beijing 1000084 , P. R. China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan , Shandong 250100 , P. R. China
| |
Collapse
|
48
|
Yang J, Loh XJ, Tan BH, Li Z. pH-Responsive Poly(dimethylsiloxane) Copolymer Decorated Magnetic Nanoparticles for Remotely Controlled Oil-in-Water Nanoemulsion Separation. Macromol Rapid Commun 2018; 40:e1800013. [DOI: 10.1002/marc.201800013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/28/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Jing Yang
- Institute of Materials Research and Engineering; Agency for Science; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; Agency for Science; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering; Agency for Science; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering; Agency for Science; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| |
Collapse
|
49
|
Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Lü T, Zhang S, Qi D, Zhang D, Zhao H. Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant. J Colloid Interface Sci 2018; 518:76-83. [PMID: 29448228 DOI: 10.1016/j.jcis.2018.02.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
A series of quaternized chitosan (QC)-grafted magnetic nanoparticles (MNPs) were successfully synthesized for demulsification from aqueous environments. Fe3O4 MNPs were synthesized by using a coprecipitation method, followed by surface coating with silica and aminopropyl to form a surface for further grafting of QC molecular chains. The synthetic magnetic flocculants were characterized by various technologies and their demulsification performances were evaluated in detail as a function of dosage, QC grafting ratio (Gq), pH and magnetic field. Results showed that pH did not significantly affect oil-water separation performance and MNPs with high Gq exhibited enhanced separation efficiency. The separation capacity was estimated to be >105 mg of diesel oil/mg of magnetic flocculant. Recycling experiment indicated the magnetic flocculant could be recycled up to at least 7 cycles at various pH levels. The grafted QC layer endowed the hybrid MNPs with permanent positive surface charges, thus allowing them to flocculate negatively charged oil droplets via electrostatic patching. The magnetic field could not only accelerate the separation of resulting flocs, but also remove the MNPs-coated dispersed oil droplets. In conclusion, QC-grafted MNPs provide a potentially new technique for developing environmentally friendly and highly efficient magnetic flocculant for practical demulsification applications.
Collapse
Affiliation(s)
- Ting Lü
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shuang Zhang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dongming Qi
- Engineering Research Center of Eco-Dyeing and Finishing of Textiles of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dong Zhang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongting Zhao
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|