• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4639566)   Today's Articles (178)   Subscriber (50284)
For: Rizvi A, Park CB, Favis BD. Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.081] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Number Cited by Other Article(s)
1
Kheradmandkeysomi M, Salehi A, Jalali A, Omranpour H, Tafreshi OA, Naguib HE, Park CB. Enhancing Mechanical Performance of High-Density Polyethylene at Different Environmental Conditions with Outstanding Foamability through In-Situ Rubber Nanofibrillation: Exploring the Impact of Interface Modification. ACS APPLIED MATERIALS & INTERFACES 2024;16:29291-29304. [PMID: 38776211 DOI: 10.1021/acsami.4c05589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
2
Zhao C, Zhao J, Mark LH, Chen Z, Soltani I, Lee PC, Park CB. xed composites. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
3
Li Z, Wang X, Wang Y, Chen S. Preparing low-Density microcellular polystyrene foam by in-Situ fibrillated PTFE and supramolecular nucleator TMC-300 in the presence of sc-CO2. J CELL PLAST 2023. [DOI: 10.1177/0021955x231154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
4
Lightweight and High Impact Toughness PP/PET/POE Composite Foams Fabricated by In Situ Nanofibrillation and Microcellular Injection Molding. Polymers (Basel) 2023;15:polym15010227. [PMID: 36616576 PMCID: PMC9824783 DOI: 10.3390/polym15010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]  Open
5
Hejazi ES, Masoomi M. Investigation the effect of processing condition and dispersed phase content on rheology–morphology relationship in polypropylene/polyethylene terephthalate microfibrillar composite. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
6
Zhu X, Ren Q, Li W, Wu M, Weng Z, Wang J, Zheng W, Wang L. In situ nanofibrillar fully-biobased poly (lactic acid)/poly (ethylene 2,5-furandicarboxylate) composites with promoted crystallization kinetics, mechanical properties, and heat resistance. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
7
Morphology and Properties of Polyolefin Elastomer/Polyamide 6/Poly(lactic Acid) In Situ Special-Shaped Microfibrillar Composites: Influence of Viscosity Ratio. Polymers (Basel) 2022;14:polym14214556. [DOI: 10.3390/polym14214556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]  Open
8
Mark LH, Zhao C, Chu RKM, Park CB. Mechanical Properties of Injection Molded PP/PET-Nanofibril Composites and Foams. Polymers (Basel) 2022;14:polym14142958. [PMID: 35890732 PMCID: PMC9315760 DOI: 10.3390/polym14142958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023]  Open
9
Anstey A, Tuccitto AV, Lee PC, Park CB. Generation of Tough, Stiff Polylactide Nanocomposites through the In Situ Nanofibrillation of Thermoplastic Elastomer. ACS APPLIED MATERIALS & INTERFACES 2022;14:14422-14434. [PMID: 35302743 DOI: 10.1021/acsami.1c13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
10
Jalali A, Romero-Diez S, Nofar M, Park CB. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Int J Biol Macromol 2021;193:2210-2220. [PMID: 34798187 DOI: 10.1016/j.ijbiomac.2021.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
11
Rheology–morphology interrelationship in high-density polyethylene/polyamide-6 microfibrillar composites. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
12
Md. Shahin AN, Shaayegan V, Lee PC, Park CB. In Situ Visualization for Control of Nano-Fibrillation Based on Spunbond Processing Using a Polypropylene/Polyethylene Terephthalate System. INT POLYM PROC 2021. [DOI: 10.1515/ipp-2020-4072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
13
Mohammadi RS, Zolali AM, Kim JH, Jalali A, Park CB. 3D fibrillated network of compatibilized linear low density polyethylene/polyamide with high melt strength and superior foamability. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
14
Dadouche T, Yousfi M, Samuel C, Lacrampe M, Soulestin J. (Nano)Fibrillar morphology development in biobased poly(butylene succinate‐co‐adipate )/poly(amide‐11) blown films. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
15
Anstey A, Chang E, Kim ES, Rizvi A, Kakroodi AR, Park CB, Lee PC. Nanofibrillated polymer systems: Design, application, and current state of the art. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101346] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
16
Zhao C, Mark LH, Kim S, Chang E, Park CB, Lee PC. Recent progress in micro‐/nano‐fibrillar reinforced polymeric composite foams. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
17
Shahnooshi M, Javadi A, Nazockdast H, Ottermann K, Altstädt V. Rheological rationalization of in situ nanofibrillar structure development: Tailoring of nanohybrid shish-kebab superstructures of poly (lactic acid) crystalline phase. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
18
Zhang X, Wang X, Dong B, Zheng G, Chen J, Shen C, Park CB. Synergetic effect of crystal nucleating agent and melt self-enhancement of isotactic polypropylene on its rheological and microcellular foaming properties. J CELL PLAST 2020. [DOI: 10.1177/0021955x20969553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
19
Aksit M, Gröschel S, Kuhn U, Aksit A, Kreger K, Schmidt HW, Altstädt V. Low-Density Polybutylene Terephthalate Foams with Enhanced Compressive Strength via a Reactive-Extrusion Process. Polymers (Basel) 2020;12:polym12092021. [PMID: 32899711 PMCID: PMC7564929 DOI: 10.3390/polym12092021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]  Open
20
Wang W, Liao X, He Y, Li J, Jiang Q, Li G. Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
21
Hajiraissi R. Linear and nonlinear melt viscoelastic properties of fibrillated blend fiber based on polypropylene/polytrimethylene terephthalate. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02865-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
22
A facile methodology to effectively improve the melt strength and microcellular foamability of isotactic polypropylene. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02101-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
23
Wang Y, Sun W, Liu S, Ji H, Chen X, Zhu H, Zhao H, Ma Y, Xie L. The Formation of a Highly Oriented Structure and Improvement of Properties in PP/PA6 Polymer Blends during Extrusion-Stretching. Polymers (Basel) 2020;12:polym12040878. [PMID: 32290221 PMCID: PMC7240534 DOI: 10.3390/polym12040878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022]  Open
24
Yuan W, Wang F, Gao C, Liu P, Ding Y, Zhang S, Yang M. Enhanced foamability of isotactic polypropylene/polypropylene‐grafted‐nanosilica nanocomposites in supercritical carbon dioxide. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
25
Yao S, Guo T, Liu T, Xi Z, Xu Z, Zhao L. Good extrusion foaming performance of long‐chain branched PET induced by its enhanced crystallization property. J Appl Polym Sci 2020. [DOI: 10.1002/app.49268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
26
Hammani S, Moulai-Mostefa N, Samyn P, Bechelany M, Dufresne A, Barhoum A. Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. MATERIALS 2020;13:ma13040926. [PMID: 32093024 PMCID: PMC7078875 DOI: 10.3390/ma13040926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
27
Shahnooshi M, Javadi A, Nazockdast H, Altstädt V. Development of in situ nanofibrillar poly (lactic acid)/poly (butylene terephthalate) composites: Non-isothermal crystallization and crystal morphology. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
28
Liu T, Lian X, Li L, Peng X, Kuang T. Facile fabrication of fully biodegradable and biorenewable poly (lactic acid)/poly (butylene adipate-co-terephthalate) in-situ nanofibrillar composites with high strength, good toughness and excellent heat resistance. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
29
García-Masabet V, Santana Pérez O, Cailloux J, Abt T, Sánchez-Soto M, Carrasco F, Maspoch ML. PLA/PA Bio-Blends: Induced Morphology by Extrusion. Polymers (Basel) 2019;12:E10. [PMID: 31861652 PMCID: PMC7022582 DOI: 10.3390/polym12010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 11/29/2022]  Open
30
Challenge in manufacturing nanofibril composites with low matrix viscosity: Effects of matrix viscosity and fibril content. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
31
Zhao J, Wang G, Zhang L, Li B, Wang C, Zhao G, Park CB. Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
Rizvi A, Bae SS, Mohamed NM, Lee JH, Park CB. Extensional Flow Resistance of 3D Fiber Networks in Plasticized Nanocomposites. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
33
Zhang Y, Xin C, Wang Z, Mughal W, He Y. The foaming performance evaluation of fibrillated polytetrafluoroethylene and isotactic polypropylene blends. CELLULAR POLYMERS 2019. [DOI: 10.1177/0262489319846785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
34
Aksit M, Klose B, Zhao C, Kreger K, Schmidt HW, Altstädt V. Morphology control of extruded polystyrene foams with benzene-trisamide-based nucleating agents. J CELL PLAST 2019. [DOI: 10.1177/0021955x19837508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
35
13X zeolite as Difunctional nucleating agent regulating the crystal form and improving the Foamability of blocked copolymerized polypropylene in supercritical CO2 foaming process. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1719-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
36
Zhu Z, He H, Xue B, Zhan Z, Wang G, Chen M. Morphology, Thermal, Mechanical Properties and Rheological Behavior of Biodegradable Poly(butylene succinate)/poly(lactic acid) In-Situ Submicrofibrillar Composites. MATERIALS 2018;11:ma11122422. [PMID: 30513576 PMCID: PMC6316981 DOI: 10.3390/ma11122422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
37
Arrigo R, Antonioli D, Lazzari M, Gianotti V, Laus M, Montanaro L, Malucelli G. Relaxation Dynamics in Polyethylene Glycol/Modified Hydrotalcite Nanocomposites. Polymers (Basel) 2018;10:E1182. [PMID: 30961107 PMCID: PMC6290601 DOI: 10.3390/polym10111182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 11/16/2022]  Open
38
Ishihara S, Hikima Y, Ohshima M. Preparation of open microcellular polylactic acid foams with a microfibrillar additive using coreback foam injection molding processes. J CELL PLAST 2018. [DOI: 10.1177/0021955x18770441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
39
Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, Wang G. Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
40
Rizvi A, Tabatabaei A, Vahedi P, Mahmood SH, Park CB. Non-crosslinked thermoplastic reticulated polymer foams from crystallization-induced structural heterogeneities. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
41
Huang A, Peng X, Turng LS. In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: Effect on rheological behavior, mechanical properties, and microcellular foamability. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
42
Studying the formation mechanism of in situ poly(butylene terephthalate) microfibrils prepared by one‐step direct extrusion via orthogonal experimental design. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
43
Hajiraissi R, Jahani Y, Hallmann T. Investigation of rheology and morphology to follow physical fibrillar network evolution through fiber spinning of PP/PA6 blend fiber. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
44
Nofar M, Tabatabaei A, Sojoudiasli H, Park C, Carreau P, Heuzey MC, Kamal M. Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.031] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
45
Rizvi A, Andalib ZK, Park CB. Fiber-spun polypropylene/polyethylene terephthalate microfibrillar composites with enhanced tensile and rheological properties and foaming ability. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.054] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
46
Huang Y, He Y, Ding W, Yang K, Yu D, Xin C. Improved viscoelastic, thermal, and mechanical properties of in situ microfibrillar polypropylene/polyamide 6,6 composites via direct extrusion using a triple-screw extruder. RSC Adv 2017. [DOI: 10.1039/c6ra26734c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]  Open
47
Li Z, Li X, Sun C, Shi Y, Zhang Q, Fu Q. Effect of nanoparticles on fibril formation and mechanical performance of olefinic block copolymer (OBC)/polypropylene (PP) microfibrillar composites. RSC Adv 2016. [DOI: 10.1039/c6ra19026j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
48
Kakroodi AR, Kazemi Y, Ding W, Ameli A, Park CB. Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability. Biomacromolecules 2015;16:3925-35. [PMID: 26536276 DOI: 10.1021/acs.biomac.5b01253] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA