1
|
Chu S, Li L, Zhang J, You J, Li X, Zhou Y, Huang X, Wu Q, Chen F, Bai X, Tan H, Weng J. Hierarchical interconnected porous scaffolds with regulated interfacial nanotopography exhibit antimicrobial, alleviate inflammation, neovascularization, and tissue integration for bone regeneration. Biomaterials 2025; 318:123186. [PMID: 39970602 DOI: 10.1016/j.biomaterials.2025.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/19/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Novel interconnected porous scaffolds featuring suitable micro-interface structures hold significance in bone regeneration. Therefore, a hierarchical interconnected porous scaffold with nanotopography interface of pores, mimicking natural bone structure and extracellular matrix microenvironment, are designed to enhance bone regeneration by improving cell adhesion, proliferation, alleviate inflammation, and tissue integration capabilities. The scaffold is fabricated through Pickering emulsion templating method, with aminated gelatin and copper-hydroxyapatite nanoparticles serving as co-stabilizers. This process results in a dual nanoparticles-decorated interface, which could provide ample anchoring points for cells. Adjusting the ratio of the two nanoparticles leads to scaffold with different interfacial roughness. The resultant scaffold increases the number of cellular focal adhesions, enhancing cell adhesion, while its high porosity supports cell recruitment, proliferation and immunomodulation. Copper-hydroxyapatite adsorption at the pore interface reduces copper ion usage and exposes nanoparticles for direct cell contact, endowing the scaffold with enhanced antibacterial and angiogenic properties. An initial burst release phase of copper ions exerts inhibitory effects on mRNA expression, followed by a sustained and optimal release phase that promotes osteogenesis. The molecular mechanism underlying the scaffold of osteogenic potential has been elucidated through RNA sequencing analysis, along with the regulation of inflammatory cytokine expression. In vitro and in vivo studies alike verify its neovascularization-promoting capacity. The efficacy shown in a rat model with critical cranial defects underscores its clinical promise for bone regeneration, as Cu-doped scaffolds retain osteoinductive qualities after 10 weeks in vivo. This study innovates a manufacturing method for a novel scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Shirun Chu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Linlong Li
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiahao Zhang
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jing You
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiaolan Li
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yuanyuan Zhou
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiao Huang
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Qiaoli Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Fang Chen
- Laboratory Medical Center, Jiangyou City Second People's Hospital, Mianyang 621700, Sichuan, China
| | - Xue Bai
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Huan Tan
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Weng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
2
|
Kim HY, Kim JH. Chemical Characterization of the Precipitate Found in and Its Effect on Drug Release of the Scutellaria baicalensis-Coptis chinensis Extract. Chem Biodivers 2023; 20:e202301461. [PMID: 37961037 DOI: 10.1002/cbdv.202301461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Precipitate generation is a challenging issue during the production of herbal decoction as it affects the stability and bioavailability of active compounds. Here we explored the composition of the natural precipitate formed from and its effect on drug release of Scutellaria baicalensis-Coptis chinensis paired extract (SCPE). Furthermore, the surface morphology of the SCPE precipitate was also investigated. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to chemical component analysis and field emission scanning electron microscope (FE-SEM) was performed to particle observation. Baicalin (BA), berberine (BBR) and starch-arginine-rich polymers were abundant in the SCPE precipitate. FE-SEM micrographs showed spheroidal shaped particles in the SCPE supernatant, while spherical and porous tissue-shaped particles in the SCPE precipitate. In vitro drug release of baicalin and berberine contained in the precipitate may increase as the polymer is removed. The presence of polymer-related interactions were confirmed by the greater increase in solubility of baicalin upon addition of arginine and polymer. This was also supported by the solubility decrease of the BA-BBR complex in polymer solution and the gelation of the BA-BBR complex in arginine solution. Our results provide a scientific basis for elucidating the pharmaceutical properties of the decoction of S. baicalensis-C. chinensis-based herbal medicine.
Collapse
Affiliation(s)
- Han-Young Kim
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Republic of Korea, 50612
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea, 50612
| |
Collapse
|
3
|
Dolmat M, Kozlovskaya V, Inman D, Thomas C, Kharlampieva E. Hydrogen‐bonded polymer multilayer coatings via dynamic layer‐by‐layer assembly. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maksim Dolmat
- Department of Chemistry The University of Alabama at Birmingham Birmingham Alabama USA
| | - Veronika Kozlovskaya
- Department of Chemistry The University of Alabama at Birmingham Birmingham Alabama USA
| | - Daniel Inman
- Department of Chemistry The University of Alabama at Birmingham Birmingham Alabama USA
| | - Claire Thomas
- Department of Chemistry The University of Alabama at Birmingham Birmingham Alabama USA
| | - Eugenia Kharlampieva
- Department of Chemistry The University of Alabama at Birmingham Birmingham Alabama USA
- Center for Nanoscale Materials and Biointegration The University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
4
|
Kozlovskaya V, Dolmat M, Kharlampieva E. Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7867-7888. [PMID: 35686955 DOI: 10.1021/acs.langmuir.2c00630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-by-layer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically cross-linked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure-property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified "multicompartment" hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications.
Collapse
|
5
|
Leiske MN, Walker JA, Zia A, Fletcher NL, Thurecht KJ, Davis TP, Kempe K. Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability to form Zr(iv) chelation mediated nanostructures. Polym Chem 2020. [DOI: 10.1039/d0py00304b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present a new biscarboxylic acid acrylate, which is used for the synthesis of double hydrophilic EDTA-mimicking block copolymers capable of self-assembly upon zirconium complexation.
Collapse
Affiliation(s)
- Meike N. Leiske
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Julia A. Walker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Aadarash Zia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Nicholas L. Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- The University of Queensland
- St Lucia
- Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology
- The University of Queensland
- St Lucia
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- and Drug Delivery
- Disposition and Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
| |
Collapse
|
6
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
7
|
Guo Q, He Z, Jin Y, Zhang S, Wu S, Bai G, Xue H, Liu Z, Jin S, Zhao L, Wang J. Tuning Ice Nucleation and Propagation with Counterions on Multilayer Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11986-11991. [PMID: 30203979 DOI: 10.1021/acs.langmuir.8b02106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ice formation on solid surfaces includes heterogeneous ice nucleation and ice propagation processes. However, no study has been focused on tuning of both ice nucleation and ice propagation via a simple anti-icing coating method. In this work, we have prepared multilayer hydrogels based on simple layer-by-layer (LBL) deposition approach and discover the ion-specific effect on both ice nucleation and ice propagation. A large ice nucleation temperature window of 11 °C is controlled via changing different counterions; meanwhile, the differences in ice propagation time can be tuned up to 4 orders of magnitude. Through synergistically controlling of ice nucleation and propagation delay times, we can tune the freezing delay time of water droplets on multilayer hydrogel surfaces up to 3 orders of magnitude via changing various counterions. Considering the application requirements, these multilayer hydrogels are stable under different conditions and can be coated on various materials without destroying the existing surface. This new insight can inspire the design of anti-icing surfaces based on regulating both ice nucleation and ice propagation.
Collapse
Affiliation(s)
- Qian Guo
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhiyuan He
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuankai Jin
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shizhong Zhang
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuwang Wu
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guoying Bai
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Han Xue
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhang Liu
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shenglin Jin
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
8
|
Alford A, Kozlovskaya V, Kharlampieva E. Small Angle Scattering for Pharmaceutical Applications: From Drugs to Drug Delivery Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1009:239-262. [PMID: 29218564 DOI: 10.1007/978-981-10-6038-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sub-nanometer scale provided by small angle neutron and X-ray scattering is of special importance to pharmaceutical and biomedical investigators. As drug delivery devices become more functionalized and continue decreasing in size, the ability to elucidate details on size scales smaller than those available from optical techniques becomes extremely pertinent. Information gathered from small angle scattering therefore aids the endeavor of optimizing pharmaceutical efficacy at its most fundamental level. This chapter will provide some relevant examples of drug carrier technology and how small angle scattering (SAS) can be used to solve their mysteries. An emphasis on common first-step data treatments is provided which should help clarify the contents of scattering data to new researchers. Specific examples of pharmaceutically relevant research on novel systems and the role SAS plays in these studies will be discussed. This chapter provides an overview of the current applications of SAS in drug research and some practical considerations for selecting scattering techniques.
Collapse
Affiliation(s)
- Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, CHEM 272, Birmingham, AL, 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, CHEM 272, Birmingham, AL, 35294, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, CHEM 272, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Zavgorodnya O, Carmona-Moran CA, Kozlovskaya V, Liu F, Wick TM, Kharlampieva E. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery. J Colloid Interface Sci 2017; 506:589-602. [PMID: 28759859 DOI: 10.1016/j.jcis.2017.07.084] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
We report nanothin temperature-responsive hydrogel films of poly(N-vinylcaprolactam) nanoparticles (νPVCL) with remarkably high loading capacity for topical drug delivery. Highly swollen (νPVCL)n multilayer hydrogels, where n denotes the number of nanoparticle layers, are produced by layer-by-layer hydrogen-bonded assembly of core-shell PVCL-co-acrylic acid nanoparticles with linear PVPON followed by cross-linking of the acrylic acid shell with either ethylene diamine (EDA) or adipic acid dihydrazide (AAD). We demonstrate that a (νPVCL)5 film undergoes dramatic and reversible swelling up to 9 times its dry thickness at pH = 7.5, indicating 89v/v % of water inside the network. These hydrogels exhibit highly reversible ∼3-fold thickness changes with temperature variations from 25 to 50°C at pH = 5, the average pH of human skin. We also show that a (νPVCL)30 hydrogel loaded with ∼120µgcm-2 sodium diclofenac, a non-steroidal anti-inflammatory drug used for osteoarthritis pain management, provides sustained permeation of this drug through an artificial skin membrane for up to 24h at 32°C (the average human skin surface temperature). The cumulative amount of diclofenac transported at 32°C from the (νPVCL)30 hydrogel after 24h is 12 times higher than that from the (νPVCL)30 hydrogel at 22°C. Finally, we demonstrate that the (νPVCL) hydrogels can be used for multiple drug delivery by inclusion of Nile red, fluorescein and DAPI dyes within the νPVCL nanoparticles prior to hydrogel assembly. Using confocal microscopy we observed the presence of separate dye-loaded νPVCL compartments within the hydrogel matrix with all three dyes confined to the nanogel particles without intermixing between the dyes. Our study provides opportunity for development of temperature-responsive multilayer hydrogel coatings made via the assembly of core-shell nanogel particles which can be used for skin-sensitive materials for topical drug delivery.
Collapse
Affiliation(s)
- Oleksandra Zavgorodnya
- Department of Chemistry, The University of Alabama at Birmingham, 901 14thSt South, CHEM294, Birmingham, AL, 35294, USA.
| | - Carlos A Carmona-Moran
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1075 13th Street South, Birmingham, AL 35294, USA.
| | - Veronika Kozlovskaya
- Department of Chemistry, The University of Alabama at Birmingham, 901 14thSt South, CHEM294, Birmingham, AL, 35294, USA.
| | - Fei Liu
- Department of Chemistry, The University of Alabama at Birmingham, 901 14thSt South, CHEM294, Birmingham, AL, 35294, USA.
| | - Timothy M Wick
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1075 13th Street South, Birmingham, AL 35294, USA.
| | - Eugenia Kharlampieva
- Department of Chemistry, The University of Alabama at Birmingham, 901 14thSt South, CHEM294, Birmingham, AL, 35294, USA; Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Higgins W, Kozlovskaya V, Alford A, Ankner J, Kharlampieva E. Stratified Temperature-Responsive Multilayer Hydrogels of Poly(N-vinylpyrrolidone) and Poly(N-vinylcaprolactam): Effect of Hydrogel Architecture on Properties. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00964] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - John Ankner
- Spallation
Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | |
Collapse
|