1
|
Song J, He J, Hu J, Ma J, Jiang H, Hu S, Ye H, Xu L. A Universal Strategy for Producing Fluorescent Polymers Based on Designer Hyperbranched Polyethylene Ternary Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jinwei Song
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Jie He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Jiawei Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junjie Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Huilei Jiang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Shujie Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Huijian Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Lixin Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| |
Collapse
|
2
|
Abd-El-Aziz AS, Benaaisha MR, Abdelghani AA, Bissessur R, Abdel-Rahman LH, Fayez AM, El-ezz DA. Aspirin-Based Organoiron Dendrimers as Promising Anti-Inflammatory, Anticancer, and Antimicrobial Drugs. Biomolecules 2021; 11:1568. [PMID: 34827566 PMCID: PMC8615929 DOI: 10.3390/biom11111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Designing nanocarriers with actions directed at a specific organ or tissue is a very promising strategy since it can significantly reduce the toxicity of a bioactive drug. In this study, an organometallic dendrimer was used to synthesize a biocompatible drug delivery system by attaching aspirin to the periphery of the dendrimer. Our goal is to enhance the bioavailability and anticancer activity of aspirin and reduce its toxicity through successive generations of organoiron dendrimers. The biological activity of aspirin-based dendrimer complexes was evaluated. The result of antimicrobial activity of the synthesized dendrimers also demonstrated an increase in their antimicrobial activity with increased generation of the dendrimers for most types of microorganisms. This study reveals for the first time that organoiron dendrimers linked with aspirin exhibit an excellent Gram-negative activity comparable to the reference drug Gentamicin. All synthesized dendrimers were tested for their anticancer activity against breast cancer cell lines (MCF-7), hepatocellular cell lines (Hep-G2), and a non-cancer cell line, Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, Doxorubicin. Compounds G3-D9-Asp and G4-D12-Asp exhibited noticeable activity against both cell lines, both of which were more effective than aspirin itself. In addition, the in vivo anti-inflammatory activity and histopathology of swollen paws showed that the designed aspirin-based dendrimers displayed significant anti-inflammatory activity; however, G2-D6-Asp showed the best anti-inflammatory activity, which was more potent than the reference drug aspirin during the same period. Moreover, the coupling of aspirin to the periphery of organoiron dendrimers showed a significant reduction in the toxicity of aspirin on the stomach.
Collapse
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Maysun R. Benaaisha
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Amani A. Abdelghani
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | | | - Ahmed M. Fayez
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt;
| | - Doaa Abou El-ezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza 8655, Egypt;
| |
Collapse
|
3
|
Abd-El-Aziz AS, Abdelghani AA, El-Ghezlani EG, Abou El-Ezz D, Abdel-Rahman LH. Pharmacological Evaluation of Novel Organoiron Dendrimers as Antimicrobial and Anti-Inflammatory Agents. Macromol Biosci 2020; 21:e2000242. [PMID: 33063474 DOI: 10.1002/mabi.202000242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Indexed: 11/11/2022]
Abstract
The synthesis of a novel and attractive class of nonsteroidal anti-inflammatory and antimicrobial organoiron dendrimers attached to the well-known drug ibuprofen is achieved. The structures of these dendrimers are established by spectroscopic and analytical techniques. The antimicrobial activity of these dendrimers is investigated and tested against five human pathogenic Gram-positive and Gram-negative bacteria, and minimum inhibitory concentrations are reported. Some of these synthesized dendrimers exhibit higher inhibitory activity against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and Staphylococcus warneri compare to the reference drugs. As well, the in vitro and in vivo anti-inflammatory activities of these dendrimers are evaluated. The results of in vivo anti-inflammatory activity and histopathology of inflamed paws show that all dendrimers display considerable anti-inflammatory activity; however, second-generation dendrimer (G2-D6) shows the best anti-inflammatory activity, which is more potent than the commercial drug ibuprofen at the same tested dose. Results of the toxicity study reveal that G2-D6 is the safest drug on biological tissues.
Collapse
Affiliation(s)
- Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Amani A Abdelghani
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Ebtehal G El-Ghezlani
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Doaa Abou El-Ezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza, 12566, Egypt
| | | |
Collapse
|
4
|
Design of Organoiron Dendrimers Containing Paracetamol for Enhanced Antibacterial Efficacy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25194514. [PMID: 33023084 PMCID: PMC7583835 DOI: 10.3390/molecules25194514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
Paracetamol (acetaminophen) is a common painkiller and antipyretic drug used globally. Attachment of paracetamol to a series of organoiron dendrimers was successfully synthesized. The aim of this study is to combine the benefits of the presence of these redox-active organoiron dendrimers, their antimicrobial activities against some human pathogenic Gram-positive, and the therapeutic characteristics of paracetamol. The antimicrobial activity of these dendrimers was investigated and tested with a minimum inhibitory concentration and this has been reported. Some of these newly synthesized dendrimers exhibited the highest inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and Staphylococcus warneri compared to reference drugs. The results of this study indicate that the antimicrobial efficacy of the dendrimers is dependent on the size of the redox-active organoiron dendrimer and its terminal functionalities. The best result has been recorded for the fourth-generation dendrimer 11, which attached to 48 paracetamol end groups and has 90 units composed of the η6-aryl-η5-cyclopentadienyliron (II) complex. This dendrimer presented inhibition of 50% of the growth (IC50) of 0.52 μM for MRSA, 1.02 μM for VRE, and 0.73 μM for Staphylococcus warneri. The structures of the dendrimers were characterized by elemental analysis, Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H-NMR), and 13C-NMR spectroscopic techniques. In addition, all synthesized dendrimers displayed good thermal stability in the range of 300–350 °C following the degradation of the cationic iron moieties which occurred around 200 °C.
Collapse
|
5
|
Windischbacher A, Steiner L, Haldar R, Wöll C, Zojer E, Kelterer AM. Exciton Coupling and Conformational Changes Impacting the Excited State Properties of Metal Organic Frameworks. Molecules 2020; 25:E4230. [PMID: 32942666 PMCID: PMC7570727 DOI: 10.3390/molecules25184230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the photophysical properties of crystalline metal-organic frameworks (MOFs) have become increasingly relevant for their potential application in light-emitting devices, photovoltaics, nonlinear optics and sensing. The availability of high-quality experimental data for such systems makes them ideally suited for a validation of quantum mechanical simulations, aiming at an in-depth atomistic understanding of photophysical phenomena. Here we present a computational DFT study of the absorption and emission characteristics of a Zn-based surface-anchored metal-organic framework (Zn-SURMOF-2) containing anthracenedibenzoic acid (ADB) as linker. Combining band-structure and cluster-based simulations on ADB chromophores in various conformations and aggregation states, we are able to provide a detailed explanation of the experimentally observed photophysical properties of Zn-ADB SURMOF-2: The unexpected (weak) red-shift of the absorption maxima upon incorporating ADB chromophores into SURMOF-2 can be explained by a combination of excitonic coupling effects with conformational changes of the chromophores already in their ground state. As far as the unusually large red-shift of the emission of Zn-ADB SURMOF-2 is concerned, based on our simulations, we attribute it to a modification of the exciton coupling compared to conventional H-aggregates, which results from a relative slip of the centers of neighboring chromophores upon incorporation in Zn-ADB SURMOF-2.
Collapse
Affiliation(s)
- Andreas Windischbacher
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria; (A.W.); (L.S.)
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
- Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Luca Steiner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria; (A.W.); (L.S.)
| | - Ritesh Haldar
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344 Eggenstein-Leopoldshafen, Germany; (R.H.); (C.W.)
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344 Eggenstein-Leopoldshafen, Germany; (R.H.); (C.W.)
| | - Egbert Zojer
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Anne-Marie Kelterer
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria; (A.W.); (L.S.)
| |
Collapse
|
6
|
Shved AM, Nelyubina YV, Perekalin DS. Synthesis of cyclopentadienyl iron complexes with substituted phenylene ligands via Suzuki coupling. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
|
8
|
Abd-El-Aziz AS, Abdelghani AA, Wagner BD, Bissessur R. Advances in Light-Emitting Dendrimers. Macromol Rapid Commun 2018; 40:e1800711. [DOI: 10.1002/marc.201800711] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Amani A. Abdelghani
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Brian D. Wagner
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Rabin Bissessur
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| |
Collapse
|
9
|
Synthesis, Characterization and Luminescent Properties of Anthracen- or Pyrene-Based Coumarin Derivatives. J Fluoresc 2018; 28:1143-1150. [PMID: 30097973 DOI: 10.1007/s10895-018-2277-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Three anthracen- or pyrene-based coumarin derivatives have been successfully synthesized and characterized by EA, IR and 1H NMR. The photophysical properties of all derivatives were investigated by UV-Vis and photoluminescence spectroscopic analysis. Their thermal stabilities were demonstrated by TGA. These compounds exhibit strong blue mission under ultraviolet light excitation and have potential possible to explore organic electroluminescent materials. The vacuum-processed doped devices with a configuration of ITO/TAPC (20 nm)/TBADN: b1 (x wt%, 30 nm)/TPBi (50 nm)/Liq (2 nm)/Al (150 nm) was fabricated, in which the devices based on b1 exhibited the best electroluminescence performance with a maximum brightness of 8165 cd/m2 and a maximum luminous efficiencies of 6.13 cd/A and a maximum external quantum efficiency (EQE) of 2.75%.
Collapse
|
10
|
Ghosh S, Singharoy D, Dhara A, Naskar JP, Bhattacharya SC. Nonionic Surfactants as Potential Carriers of a Synthesized Pyrimidine Derivative: Spectroscopic and Quantum Chemical Investigations. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Swadesh Ghosh
- Department of Chemistry Jadavpur University 700032 Kolkata India
| | - Dipti Singharoy
- Department of Chemistry Jadavpur University 700032 Kolkata India
| | - Anamika Dhara
- Department of Chemistry Jadavpur University 700032 Kolkata India
| | | | | |
Collapse
|
11
|
Rawe BW, Brown CM, MacKinnon MR, Patrick BO, Bodwell GJ, Gates DP. A C-Pyrenyl Poly(methylenephosphine): Oxidation “Turns On” Blue Photoluminescence in Solution and the Solid State. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin W. Rawe
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Christopher M. Brown
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Marc R. MacKinnon
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada A1B
3X7
| | - Brian O. Patrick
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Graham J. Bodwell
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada A1B
3X7
| | - Derek P. Gates
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
12
|
Salar U, Khan KM, Syed S, Taha M, Ali F, Ismail NH, Perveen S, Wadood A, Ghufran M. Synthesis, in vitro β-glucuronidase inhibitory activity and in silico studies of novel (E)-4-Aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazoles. Bioorg Chem 2016; 70:199-209. [PMID: 28069264 DOI: 10.1016/j.bioorg.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
Current research is based on the synthesis of novel (E)-4-aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazole derivatives (3-15) by adopting two steps route. First step was the condensation between the pyrene-1-carbaldehyde (1) with the thiosemicarbazide to afford pyrene-1-thiosemicarbazone intermediate (2). While in second step, cyclization between the intermediate (2) and phenacyl bromide derivatives or 2-bromo ethyl acetate was carried out. Synthetic derivatives were structurally characterized by spectroscopic techniques such as EI-MS, 1H NMR and 13C NMR. Stereochemistry of the iminic double bond was confirmed by NOESY analysis. All pure compounds 2-15 were subjected for in vitro β-glucuronidase inhibitory activity. All molecules were exhibited excellent inhibition in the range of IC50=3.10±0.10-40.10±0.90μM and found to be even more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.38±1.05μM). Molecular docking studies were carried out to verify the structure-activity relationship. A good correlation was perceived between the docking study and biological evaluation of active compounds.
Collapse
Affiliation(s)
- Uzma Salar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Shazia Syed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Farman Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Mehreen Ghufran
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|