1
|
Kupczak M, Mielańczyk A, Fronczyk T, Drejka P, Ledwon P, Neugebauer D. From Facile One-Pot Synthesis of Semi-Degradable Amphiphilic Miktoarm Polymers to Unique Degradation Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2684. [PMID: 38893949 PMCID: PMC11173590 DOI: 10.3390/ma17112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
We report a one-pot synthesis of well-defined A5B and A8B miktoarm star-shaped polymers where N,N-dimethylaminoethyl methacrylate (DMAEMA) and various cyclic esters such as ε-caprolactone (ε-CL), lactide (LA) and glycolide (GA) were used for the synthesis. Miktopolymers were obtained by simultaneously carrying out atom transfer radical polymerization (ATRP) of DMAEMA, ring-opening polymerization (ROP) of cyclic esters, and click reaction between the azide group in gluconamide-based (GLBr5-Az) or lactonamide-based (GLBr8-Az) ATRP initiators and 4-pentyn-1-ol. The relatively low dispersity indices of the obtained miktoarm stars (Đ = 1.2-1.6) indicate that control over the polymerization processes was sustained despite almost complete monomers conversions (83-99%). The presence of salts from phosphate-buffered saline (PBS) in polymer solutions affects the phase transition, increasing cloud point temperatures (TCP) values. The critical aggregation concentration (CAC) values increased with a decreasing number of average molecular weights of the hydrophobic fraction. Hydrolytic degradation studies revealed that the highest reduction of molecular weight was observed for polymers with PCL and PLGCL arm. The influence of the composition on the miktopolymers hydrophilicity was investigated via water contact angle (WCA) measurement. Thermogravimetric analysis (TGA) disclosed that the number of arms and their composition in the miktopolymer affects its weight loss under the influence of temperature.
Collapse
Affiliation(s)
- Maria Kupczak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
- Łukasiewicz Research Network–Institute for Engineering of Polymer Materials and Dyes, 55. M. Skłodowska-Curie St., 87-100 Toruń, Poland
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Tomasz Fronczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Patryk Drejka
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| |
Collapse
|
2
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
3
|
Salminen L, Karjalainen E, Aseyev V, Tenhu H. Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5135-5148. [PMID: 34752116 PMCID: PMC9069861 DOI: 10.1021/acs.langmuir.1c02224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Poly(diisopropylaminoethyl methacrylate) (PDPA) is a pH- and thermally responsive water-soluble polymer. This study deepens the understanding of its phase separation behavior upon heating. Phase separation upon heating was investigated in salt solutions of varying pH and ionic strength. The effect of the counterion on the phase transition upon heating is clearly demonstrated for chloride-, phosphate-, and citrate-anions. Phase separation did not occur in pure water. The buffer solutions exhibited similar cloud points, but phase separation occurred in different pH ranges and with different mechanisms. The solution behavior of a block copolymer comprising poly(dimethylaminoethyl methacrylate) (PDMAEMA) and PDPA was investigated. Since the PDMAEMA and PDPA blocks phase separate within different pH- and temperature ranges, the block copolymer forms micelle-like structures at high temperature or pH.
Collapse
Affiliation(s)
- Linda Salminen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Erno Karjalainen
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Vladimir Aseyev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Heikki Tenhu
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| |
Collapse
|
4
|
Mielańczyk A, Kupczak M, Klymenko O, Mielańczyk Ł, Arabasz S, Madej K, Neugebauer D. The Structure-Self-Assembly Relationship in PDMAEMA/Polyester Miktoarm Stars. Polym Chem 2022. [DOI: 10.1039/d2py00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined miktoarm star-shaped polymers based on heterofunctional glucose derivative initiator, N,N’-dimethylaminoethyl methacrylate (DMAEMA) and various cyclic esters, such as ε-caprolactone (CL), lactide (LA), glycolide (GA), were obtained by combining atom...
Collapse
|
5
|
Kupczak M, Mielańczyk A, Neugebauer D. The Influence of Polymer Composition on the Hydrolytic and Enzymatic Degradation of Polyesters and Their Block Copolymers with PDMAEMA. MATERIALS 2021; 14:ma14133636. [PMID: 34209872 PMCID: PMC8269683 DOI: 10.3390/ma14133636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Well-defined, semi-degradable polyester/polymethacrylate block copolymers, based on ε-caprolactone (CL), d,l-lactide (DLLA), glycolide (GA) and N,N'-dimethylaminoethyl methacrylate (DMAEMA), were synthesized by ring-opening polymerization (ROP) and atom transfer radical polymerization. Comprehensive degradation studies of poly(ε-caprolactone)-block-poly(N,N'-dimethylaminoethyl methacrylate) (PCL-b-PDMAEMA) on hydrolytic degradation and enzymatic degradation were performed, and those results were compared with the corresponding aliphatic polyester (PCL). The solution pH did not affect the hydrolytic degradation rate of PCL (a 3% Mn loss after six weeks). The presence of a PDMAEMA component in the copolymer chain increased the hydrolysis rates and depended on the solution pH, as PCL-b-PDMAEMA degraded faster in an acidic environment (36% Mn loss determined) than in a slightly alkaline environment (27% Mn loss). Enzymatic degradation of PCL-b-PDMAEMA, poly(d,l-lactide)-block-poly(N,N'-dimethylaminoethyl methacrylate) (PLA-b-PDMAEMA) and poly(lactide-co-glycolide-co-ε-caprolactone)-block-poly(N,N'-dimethylaminoethyl methacrylate) (PLGC-b-PDMAEMA) and the corresponding aliphatic polyesters (PCL, PLA and PLGC) was performed by Novozyme 435. In enzymatic degradation, PLGC degraded almost completely after eleven days. For polyester-b-PDMAEMA copolymers, enzymatic degradation primarily involved the ester bonds in PDMAEMA side chains, and the rate of polyester degradation decreased with the increase in the chain length of PDMAEMA. Amphiphilic copolymers might be used for biomaterials with long-term or midterm applications such as nanoscale drug delivery systems with tunable degradation kinetics.
Collapse
|
6
|
Zhang Y, Hu Q, Yang S, Wang T, Sun W, Tong Z. Unique Self-Reinforcing and Rapid Self-Healing Polyampholyte Hydrogels with a pH-Induced Shape Memory Effect. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuancheng Zhang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
- Liming Research & Design Institute of Chemical Industry Co., Ltd., Luoyang 471000, China
| | - Qiqian Hu
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Shurui Yang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen 529100, China
| | - Weixiang Sun
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen 529100, China
| | - Zhen Tong
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and anti‐biofilm applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Odrobińska J, Mielańczyk Ł, Neugebauer D. 4- n-Butylresorcinol-Based Linear and Graft Polymethacrylates for Arbutin and Vitamins Delivery by Micellar Systems. Polymers (Basel) 2020; 12:polym12020330. [PMID: 32033296 PMCID: PMC7077416 DOI: 10.3390/polym12020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
A novel initiator, bromoester modified 4-n-butylresorcinol (4nBREBr2), was prepared and utilized in controlled atom transfer radical polymerization (ATRP) to obtain three series of amphiphilic copolymers. The V-shaped copolymers of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), and poly(ethylene glycol) methyl ether methacrylate (MPEGMA), abbreviated to P(HEMA-co-MMA), P(HEMA-co-MPEGMA), and P(MMA-co-MPEGMA), were synthesized. Moreover, P((HEMA-graft-PEG)-co-MMA) graft copolymers were prepared by combining the pre-polymerization modification of HEMA and a "click" reaction using a "grafting onto" approach. All copolymers could form micelles with encapsulated active substances (vitamin C (VitC), vitamin E (VitE), arbutin (ARB)), which are used in cosmetology. In vitro studies carried out in a PBS solution (pH 7.4) demonstrates that in most cases the maximum release of active substance was after 1 h. The polymeric systems presenting satisfactory encapsulation characteristics and release profiles are attractive micellar carriers of cosmetic substances, which show a positive effect on the skin condition.
Collapse
Affiliation(s)
- Justyna Odrobińska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
- Correspondence:
| |
Collapse
|
9
|
Mielanczyk A, Mrowiec K, Kupczak M, Mielanczyk Ł, Scieglinska D, Gogler-Piglowska A, Michalski M, Gabriel A, Neugebauer D, Skonieczna M. Synthesis and in vitro cytotoxicity evaluation of star-shaped polymethacrylic conjugates with methotrexate or acitretin as potential antipsoriatic prodrugs. Eur J Pharmacol 2019; 866:172804. [PMID: 31738938 DOI: 10.1016/j.ejphar.2019.172804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Water-soluble polymer-drug conjugates were obtained and analyzed towards their potential use as prodrugs for two hydrophobic antipsoriatic agents, including methotrexate (MTX) and acitretin (AC). The conjugation efficacy of MTX decreased with a decreasing molar ratio of N,N-dimethylaminoethyl methacrylate (DMAEMA) repeating units in the polymethacrylic chains. Cytotoxicity of positively charged (from +5 to +10 mV) nano- and microparticles (3-1500 nm in DMEM at 37 °C) were estimated by in vitro MTT and Annexin-V apoptosis assays on Me45, NHDF, HaCaT and BEAS-2B cell lines. Further, cell cycle analysis revealed arrest in G0/G1 phase in melanoma cells, while neither apoptosis induction nor cell cycle arrest occurred in normal epidermal and epithelial cells. Tested conjugates displayed a novel cytostatic effect in Me45 cells and a pro-apoptotic effect in HaCaT cells. Epithelial BEAS-2B cells were the most sensitive to the tested conjugates and responded via induction of necrosis. Cell line models allowed for characterization of the biologically relevant potential action of pro-drugs. Additionally, a skin in vitro evaluation assay provided the first known evidence of side-effect reduction with pro-drug use. Histological examinations confirmed the lack of negative effects of conjugates on the skin and showed no irritating properties.
Collapse
Affiliation(s)
- Anna Mielanczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100, Gliwice, Poland.
| | - Katarzyna Mrowiec
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute-Oncology Center Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Maria Kupczak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100, Gliwice, Poland
| | - Łukasz Mielanczyk
- Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute-Oncology Center Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Piglowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute-Oncology Center Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Andrzej Gabriel
- Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808, Zabrze, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100, Gliwice, Poland
| | - Magdalena Skonieczna
- System Engineering Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
10
|
Bielas R, Mielańczyk A, Skonieczna M, Mielańczyk Ł, Neugebauer D. Choline supported poly(ionic liquid) graft copolymers as novel delivery systems of anionic pharmaceuticals for anti-inflammatory and anti-coagulant therapy. Sci Rep 2019; 9:14410. [PMID: 31594975 PMCID: PMC6783615 DOI: 10.1038/s41598-019-50896-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/20/2019] [Indexed: 01/18/2023] Open
Abstract
New type of carriers based on grafted poly(ionic liquid)s was designed for delivery of ionically attached salicylates (Sal). Choline derived ionic liquid monomeric units were successfully introduced with various content in the side chains by the controlled radical polymerization. Properly high amounts of ionic pharmaceutics in the polymer systems were achieved by the well-fitted length and grafting degree of the side chains. In aqueous solution the graft copolymers were self-assembled into the spherical superstructures with sizes up to 73 nm. Delivery studies showed "burst" release within 4 h, after that it was slower yielding ~70% of released drug within 80 h. Proposed nanocarriers supported low toxicity against human cells (NHDF and BEAS-2B), anti-inflammation activity evaluated with the use of pro-inflammatory interleukins (IL-6 and IL-8) and antibacterial activities towards E. coli. Adjustment of ionic drug content by structural parameters of graft copolymers, including grafting degree and graft length, are advantageous to tailor nanocarriers with self-assembly properties in aqueous media. Effective release process by ionic exchange and biological activity with low toxicity are promising for further development of this type of drug delivery (DDS).
Collapse
Affiliation(s)
- Rafał Bielas
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100, Gliwice, Poland
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100, Gliwice, Poland
| | - Magdalena Skonieczna
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics, and Informatics, Silesian University of Technology, Akademicka 16, Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808, Zabrze, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100, Gliwice, Poland.
| |
Collapse
|