1
|
Durgut E, Claeyssens F. Pickering polymerized high internal phase emulsions: Fundamentals to advanced applications. Adv Colloid Interface Sci 2025; 336:103375. [PMID: 39667091 DOI: 10.1016/j.cis.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Pickering-polymerized high internal phase emulsions have attracted attention since their successful first preparation 15 years ago, primarily due to their large pores and potential for functionalization during production. This review elucidates the fundamental principles of Pickering emulsions, Pickering HIPEs, and Pickering PolyHIPEs while comparing them to conventional surfactant-stabilized counterparts. The morphology of Pickering PolyHIPEs, with particular emphasis on methods for achieving interconnected structures, is explored and critically assessed. Lastly, the mechanical properties and diverse applications of these materials are reviewed, highlighting their use as catalytic supports and sorbent materials. The study aims to guide both new and experienced researchers in the field by comprehensively addressing the current potential and challenges of Pickering PolyHIPEs. Once the mystery behind the closed cellular pores of Pickering PolyHIPEs is resolved, these materials are expected to become more popular, particularly in applications where mass transfer is critical, such as tissue engineering.
Collapse
Affiliation(s)
- E Durgut
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkiye; Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom.
| | - F Claeyssens
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom; Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Ghosh S, Subramaniyan S, Bisht A, Nandan B, Kulshreshtha R, Hakkarainen M, Srivastava RK. Towards cell-adhesive, 4D printable PCL networks through dynamic covalent chemistry. J Mater Chem B 2025. [PMID: 39810515 DOI: 10.1039/d4tb02423k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC). Here, we report a scalable, self-healable, biodegradable, and cell-adhesive poly(ε-caprolactone) (PCL)-based vitrimer scaffold, using imine exchange, free from the limitations of melting transitions and supramolecular interactions in 4D-printed PCL. PCL's typical hydrophobicity hinders cell adhesion; however, our design, based on photopolymerization of PCL-dimethacrylate and methacrylate-terminated vanillin-based imine, achieves a water contact angle of 64°. The polymer network, fabricated in varying proportions, exhibited a co-continuous phase morphology, achieving optimal shape fixity (91 ± 1.7%) and shape recovery (92.5 ± 0.1%) at physiological temperature (37 °C). Additionally, the scaffold promoted cell adhesion and proliferation and reduced oxidative stress at the defect site. This multifunctional material shows the potential of DCC-based research in developing smart biomedical devices with complex geometries, paving the way for novel applications in regenerative medicine and implant design.
Collapse
Affiliation(s)
- Sagnik Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Sathiyaraj Subramaniyan
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Anadi Bisht
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Minna Hakkarainen
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
3
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
4
|
Paterson TE, Owen R, Sherborne C, Bahmaee H, Harding AL, Green NH, Reilly GC, Claeyssens F. Highly porous polycaprolactone microspheres for skeletal repair promote a mature bone cell phenotype in vitro. J Mater Chem B 2024; 12:11746-11758. [PMID: 39415638 DOI: 10.1039/d4tb01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Improving our ability to treat skeletal defects is a critical medical challenge that necessitates the development of new biomaterials. One promising approach involves the use of degradable polymer microparticles with an interconnected internal porosity. Here, we employed a double emulsion to generate such round microparticles (also known as microspheres) from a polycaprolactone-based polymerised high internal phase emulsion (polyHIPE). These microspheres effectively supported the growth of mesenchymal progenitors over a 30-day period, and when maintained in osteogenic media, cells deposited a bone-like extracellular matrix, as determined by histological staining for calcium and collagen. Interestingly, cells with an osteocyte-like morphology were observed within the core of the microspheres indicating the role of a physical environment comparable to native bone for this phenotype to occur. At later timepoints, these cultures had significantly increased mRNA expression of the osteocyte-specific markers dentin matrix phosphoprotein-1 (Dmp-1) and sclerostin, with sclerostin also observed at the protein level. Cells pre-cultured on porous microspheres exhibited enhanced survival rates compared to those pre-cultured on non-porous counterparts when injected. Cells precultured on both porous and non-porous microspheres promoted angiogenesis in a chorioallantoic membrane (CAM) assay. In summary, the polycaprolactone polyHIPE microspheres developed in this study exhibit significant promise as an alternative to traditional synthetic bone graft substitutes, offering a conducive environment for cell growth and differentiation, with the potential for better clinical outcomes in bone repair and regeneration.
Collapse
Affiliation(s)
- Thomas E Paterson
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| | - Colin Sherborne
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Amy L Harding
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Sengokmen-Ozsoz N, Aleemardani M, Palanca M, Hann A, Reilly GC, Dall'Ara E, Claeyssens F. Fabrication of hierarchically porous trabecular bone replicas via 3D printing with high internal phase emulsions (HIPEs). Biofabrication 2024; 17:015012. [PMID: 39454611 DOI: 10.1088/1758-5090/ad8b70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Combining emulsion templating with additive manufacturing enables the production of inherently porous scaffolds with multiscale porosity. This approach incorporates interconnected porous materials, providing a structure that supports cell ingrowth. However, 3D printing hierarchical porous structures that combine semi-micropores and micropores remains a challenging task. Previous studies have demonstrated that using a carefully adjusted combination of light absorbers and photoinitiators in the resin can produce open surface porosity, sponge-like internal structures, and a printing resolution of about 150µm. In this study, we explored how varying concentrations of tartrazine (0, 0.02, 0.04, and 0.08 wt%) as a light absorber affect the porous structure of acrylate-based polymerized medium internal phase emulsions fabricated via vat photopolymerization. Given the importance of a porous and interconnected structure for tissue engineering and regenerative medicine, we tested cell behavior on these 3D-printed disk samples using MG-63 cells, examining metabolic activity, adhesion, and morphology. The 0.08 wt% tartrazine-containing 3D-printed sample (008 T) demonstrated the best cell proliferation and adhesion. To show that this high internal phase emulsion (HIPE) resin can be used to create complex structures for biomedical applications, we 3D-printed trabecular bone structures based on microCT imaging. These structures were further evaluated for cell behavior and migration, followed by microCT analysis after 60 days of cell culture. This research demonstrates that HIPEs can be used as a resin to print trabecular bone mimics using additive manufacturing, which could be further developed for lab-on-a-chip models of healthy and diseased bone.
Collapse
Affiliation(s)
- Nihan Sengokmen-Ozsoz
- Kroto Research Institute, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| | - Mina Aleemardani
- Kroto Research Institute, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Marco Palanca
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Alice Hann
- Department of Materials Science and Engineering, Pam Liversidge Building, Mappin Street, Sheffield, United Kingdom
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Pam Liversidge Building, Mappin Street, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Kroto Research Institute, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
6
|
Ducrocq M, Rinaldi A, Halgand B, Veziers J, Guihard P, Boury F, Debuigne A. Bioactive dextran-based scaffolds from emulsion templates co-stabilized by poly(lactic-co-glycolic acid) nanocarriers. Colloids Surf B Biointerfaces 2024; 245:114342. [PMID: 39486376 DOI: 10.1016/j.colsurfb.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.
Collapse
Affiliation(s)
- Maude Ducrocq
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium; Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France; Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Arianna Rinaldi
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France
| | - Boris Halgand
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Joëlle Veziers
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Pierre Guihard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France.
| | - Frank Boury
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium.
| |
Collapse
|
7
|
Karaca I, Aldemir Dikici B. Quantitative Evaluation of the Pore and Window Sizes of Tissue Engineering Scaffolds on Scanning Electron Microscope Images Using Deep Learning. ACS OMEGA 2024; 9:24695-24706. [PMID: 38882138 PMCID: PMC11170757 DOI: 10.1021/acsomega.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
The morphological characteristics of tissue engineering scaffolds, such as pore and window diameters, are crucial, as they directly impact cell-material interactions, attachment, spreading, infiltration of the cells, degradation rate and the mechanical properties of the scaffolds. Scanning electron microscopy (SEM) is one of the most commonly used techniques for characterizing the microarchitecture of tissue engineering scaffolds due to its advantages, such as being easily accessible and having a short examination time. However, SEM images provide qualitative data that need to be manually measured using software such as ImageJ to quantify the morphological features of the scaffolds. As it is not practical to measure each pore/window in the SEM images as it requires extensive time and effort, only the number of pores/windows is measured and assumed to represent the whole sample, which may cause user bias. Additionally, depending on the number of samples and groups, a study may require measuring thousands of samples and the human error rate may increase. To overcome such problems, in this study, a deep learning model (Pore D2) was developed to quantify the morphological features (such as the pore size and window size) of the open-porous scaffolds automatically for the first time. The developed algorithm was tested on emulsion-templated scaffolds fabricated under different fabrication conditions, such as changing mixing speed, temperature, and surfactant concentration, which resulted in scaffolds with various morphologies. Along with the developed model, blind manual measurements were taken, and the results showed that the developed tool is capable of quantifying pore and window sizes with a high accuracy. Quantifying the morphological features of scaffolds fabricated under different circumstances and controlling these features enable us to engineer tissue engineering scaffolds precisely for specific applications. Pore D2, an open-source software, is available for everyone at the following link: https://github.com/ilaydakaraca/PoreD2.
Collapse
Affiliation(s)
- Ilayda Karaca
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| |
Collapse
|
8
|
Hahn F, Ferrandez-Montero A, Queri M, Vancaeyzeele C, Plesse C, Agniel R, Leroy-Dudal J. Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic In Vitro Cell Culture Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5613-5626. [PMID: 38278772 PMCID: PMC10859895 DOI: 10.1021/acsami.3c16686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
In vivo, cells reside in a 3D porous and dynamic microenvironment. It provides biochemical and biophysical cues that regulate cell behavior in physiological and pathological processes. In the context of fundamental cell biology research, tissue engineering, and cell-based drug screening systems, a challenge is to develop relevant in vitro models that could integrate the dynamic properties of the cell microenvironment. Taking advantage of the promising high internal phase emulsion templating, we here designed a polyHIPE scaffold with a wide interconnected porosity and functionalized its internal 3D surface with a thin layer of electroactive conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) to turn it into a 4D electroresponsive scaffold. The resulting scaffold was cytocompatible with fibroblasts, supported cellular infiltration, and hosted cells, which display a 3D spreading morphology. It demonstrated robust actuation in ion- and protein-rich complex culture media, and its electroresponsiveness was not altered by fibroblast colonization. Thanks to customized electrochemical stimulation setups, the electromechanical response of the polyHIPE/PEDOT scaffolds was characterized in situ under a confocal microscope and showed 10% reversible volume variations. Finally, the setups were used to monitor in real time and in situ fibroblasts cultured into the polyHIPE/PEDOT scaffold during several cycles of electromechanical stimuli. Thus, we demonstrated the proof of concept of this tunable scaffold as a tool for future 4D cell culture and mechanobiology studies.
Collapse
Affiliation(s)
- Franziska Hahn
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Ana Ferrandez-Montero
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
- Instituto
de Ceramica y Vidrio (ICV), CSIC, Campus Cantoblanco, Kelsen 5., 28049 Madrid, Spain
| | - Mélodie Queri
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Vancaeyzeele
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Plesse
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Rémy Agniel
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| | - Johanne Leroy-Dudal
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| |
Collapse
|
9
|
Ozkendir O, Karaca I, Cullu S, Erdoğan OC, Yaşar HN, Dikici S, Owen R, Aldemir Dikici B. Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration. BIOMATERIALS ADVANCES 2024; 157:213732. [PMID: 38134730 DOI: 10.1016/j.bioadv.2023.213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Periodontal diseases are one of the greatest healthcare burdens worldwide. The periodontal tissue compartment is an anatomical tissue interface formed from the periodontal ligament, gingiva, cementum, and bone. This multifaceted composition makes tissue engineering strategies challenging to develop due to the interface of hard and soft tissues requiring multiphase scaffolds to recreate the native tissue architecture. Multilayer constructs can better mimic tissue interfaces due to the individually tuneable layers. They have different characteristics in each layer, with modulation of mechanical properties, material type, porosity, pore size, morphology, degradation properties, and drug-releasing profile all possible. The greatest challenge of multilayer constructs is to mechanically integrate consecutive layers to avoid delamination, especially when using multiple manufacturing processes. Here, we review the development of multilayer scaffolds that aim to recapitulate native periodontal tissue interfaces in terms of physical, chemical, and biological characteristics. Important properties of multiphasic biodegradable scaffolds are highlighted and summarised, with design requirements, biomaterials, and fabrication methods, as well as post-treatment and drug/growth factor incorporation discussed.
Collapse
Affiliation(s)
- Ozgu Ozkendir
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Ilayda Karaca
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Selin Cullu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Oğul Can Erdoğan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Hüsniye Nur Yaşar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Robert Owen
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey.
| |
Collapse
|
10
|
Jackson CE, Doyle I, Khan H, Williams SF, Aldemir Dikici B, Barajas Ledesma E, Bryant HE, English WR, Green NH, Claeyssens F. Gelatin-containing porous polycaprolactone PolyHIPEs as substrates for 3D breast cancer cell culture and vascular infiltration. Front Bioeng Biotechnol 2024; 11:1321197. [PMID: 38260750 PMCID: PMC10800367 DOI: 10.3389/fbioe.2023.1321197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Tumour survival and growth are reliant on angiogenesis, the formation of new blood vessels, to facilitate nutrient and waste exchange and, importantly, provide a route for metastasis from a primary to a secondary site. Whilst current models can ensure the transport and exchange of nutrients and waste via diffusion over distances greater than 200 μm, many lack sufficient vasculature capable of recapitulating the tumour microenvironment and, thus, metastasis. In this study, we utilise gelatin-containing polymerised high internal phase emulsion (polyHIPE) templated polycaprolactone-methacrylate (PCL-M) scaffolds to fabricate a composite material to support the 3D culture of MDA-MB-231 breast cancer cells and vascular ingrowth. Firstly, we investigated the effect of gelatin within the scaffolds on the mechanical and chemical properties using compression testing and FTIR spectroscopy, respectively. Initial in vitro assessment of cell metabolic activity and vascular endothelial growth factor expression demonstrated that gelatin-containing PCL-M polyHIPEs are capable of supporting 3D breast cancer cell growth. We then utilised the chick chorioallantoic membrane (CAM) assay to assess the angiogenic potential of cell-seeded gelatin-containing PCL-M polyHIPEs, and vascular ingrowth within cell-seeded, surfactant and gelatin-containing scaffolds was investigated via histological staining. Overall, our study proposes a promising composite material to fabricate a substrate to support the 3D culture of cancer cells and vascular ingrowth.
Collapse
Affiliation(s)
- Caitlin E. Jackson
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| | - Iona Doyle
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Hamood Khan
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Samuel F. Williams
- Department of Infection, Immunity and Cardiovascular Disease, Royal Hallamshire Hospital, The University of Sheffield, Sheffield, United Kingdom
| | | | | | - Helen E. Bryant
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - William R. English
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Nicola H. Green
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Cevik M, Dikici S. Development of tissue-engineered vascular grafts from decellularized parsley stems. SOFT MATTER 2024; 20:338-350. [PMID: 38088147 DOI: 10.1039/d3sm01236k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cardiovascular diseases are mostly associated with narrowing or blockage of blood vessels, and it is the most common cause of death worldwide. The use of vascular grafts is a promising approach to bypass or replace the blocked vessels for long-term treatment. Although autologous arteries or veins are the most preferred tissue sources for vascular bypass, the limited presence and poor quality of autologous vessels necessitate seeking alternative biomaterials. Recently, synthetic grafts have gained attention as an alternative to autologous grafts. However, the high failure rate of synthetic grafts has been reported primarily due to thrombosis, atherosclerosis, intimal hyperplasia, or infection. Thrombosis, the main reason for failure upon implantation, is associated with damage or absence of endothelial cell lining in the vascular graft's luminal surface. To overcome this, tissue-engineered vascular grafts (TEVGs) have come into prominence. Alongside the well-established scaffold manufacturing techniques, decellularized plant-based constructs have recently gained significant importance and are an emerging field in tissue engineering and regenerative medicine. Accordingly, in this study, we demonstrated the fabrication of tubular scaffolds from decellularized parsley stems and recellularized them with human endothelial cells to be used as a potential TEVG. Our results suggested that the native plant DNA was successfully removed, and soft tubular biomaterials were successfully manufactured via the chemical decellularization of the parsley stems. The decellularized parsley stems showed suitable mechanical and biological properties to be used as a TEVG material, and they provided a suitable environment for the culture of human endothelial cells to attach and create a pseudo endothelium prior to implantation. This study is the first one to demonstrate the potential of the parsley stems to be used as a potential TEVG biomaterial.
Collapse
Affiliation(s)
- Merve Cevik
- Department of Biotechnology, Graduate School of Education, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
12
|
McKenzie TJ, Brunet T, Kissell LN, Strobbia P, Ayres N. Polydimethylsiloxane Polymerized Emulsions for Acoustic Materials Prepared Using Reactive Triblock Copolymer Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58917-58930. [PMID: 38063480 DOI: 10.1021/acsami.3c14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Porous polymers have interesting acoustic properties including wave dampening and acoustic impedance matching and may be used in numerous acoustic applications, e.g., waveguiding or acoustic cloaking. These materials can be prepared by the inclusion of gas-filled voids, or pores, within an elastic polymer network; therefore, porous polymers that have controlled porosity values and a wide range of possible mechanical properties are needed, as these are key factors that impact the sound-dampening properties. Here, the synthesis of acoustic materials with varying porosities and mechanical properties that could be controlled independent of the pore morphology using emulsion-templated polymerizations is described. Polydimethylsiloxane-based ABA triblock copolymer surfactants were prepared using reversible addition-fragmentation chain transfer polymerizations to control the emulsion template and act as an additional cross-linker in the polymerization. Acoustic materials prepared with reactive surfactants possessed a storage modulus of ∼300 kPa at a total porosity of 71% compared to materials prepared using analogous nonreactive surfactants that possessed storage modulus values of ∼150 kPa at similar porosities. These materials display very low longitudinal sound speeds of ∼35 m/s at ultrasonic frequencies, making them excellent candidates in the preparation of acoustic devices such as metasurfaces or lenses.
Collapse
Affiliation(s)
- Tucker J McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Thomas Brunet
- Institut de Mécanique et d'Ingénierie, University of Bordeaux─CNRS─Bordeaux INP, Talence 33405, France
| | - Lyndsay N Kissell
- Department of Chemistry, University of Cincinnati, 201 Crosley Tower, 301 Clifton Ct, Cincinnati, Ohio 45221, United States
| | - Pietro Strobbia
- Department of Chemistry, University of Cincinnati, 201 Crosley Tower, 301 Clifton Ct, Cincinnati, Ohio 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
13
|
Furmidge R, Jackson CE, Velázquez de la Paz MF, Workman VL, Green NH, Reilly GC, Hearnden V, Claeyssens F. Surfactant-free gelatin-stabilised biodegradable polymerised high internal phase emulsions with macroporous structures. Front Chem 2023; 11:1236944. [PMID: 37681209 PMCID: PMC10481965 DOI: 10.3389/fchem.2023.1236944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
High internal phase emulsion (HIPE) templating is a well-established method for the generation of polymeric materials with high porosity (>74%) and degree of interconnectivity. The porosity and pore size can be altered by adjusting parameters during emulsification, which affects the properties of the resulting porous structure. However, there remain challenges for the fabrication of polyHIPEs, including typically small pore sizes (∼20-50 μm) and the use of surfactants, which can limit their use in biological applications. Here, we present the use of gelatin, a natural polymer, during the formation of polyHIPE structures, through the use of two biodegradable polymers, polycaprolactone-methacrylate (PCL-M) and polyglycerol sebacate-methacrylate (PGS-M). When gelatin is used as the internal phase, it is capable of stabilising emulsions without the need for an additional surfactant. Furthermore, by changing the concentration of gelatin within the internal phase, the pore size of the resulting polyHIPE can be tuned. 5% gelatin solution resulted in the largest mean pore size, increasing from 53 μm to 80 μm and 28 μm to 94 µm for PCL-M and PGS-M respectively. In addition, the inclusion of gelatin further increased the mechanical properties of the polyHIPEs and increased the period an emulsion could be stored before polymerisation. Our results demonstrate the potential to use gelatin for the fabrication of surfactant-free polyHIPEs with macroporous structures, with potential applications in tissue engineering, environmental and agricultural industries.
Collapse
Affiliation(s)
- Rachel Furmidge
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Caitlin E. Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - María Fernanda Velázquez de la Paz
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Victoria L. Workman
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nicola H. Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Vanessa Hearnden
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
McKenzie T, Ayres N. Synthesis and Applications of Elastomeric Polymerized High Internal Phase Emulsions (PolyHIPEs). ACS OMEGA 2023; 8:20178-20195. [PMID: 37323392 PMCID: PMC10268022 DOI: 10.1021/acsomega.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Polymer foams (PFs) are among the most industrially produced polymeric materials, and they are found in applications including aerospace, packaging, textiles, and biomaterials. PFs are predominantly prepared using gas-blowing techniques, but PFs can also be prepared from templating techniques such as polymerized high internal phase emulsions (polyHIPEs). PolyHIPEs have many experimental design variables which control the physical, mechanical, and chemical properties of the resulting PFs. Both rigid and elastic polyHIPEs can be prepared, but while elastomeric polyHIPEs are less commonly reported than hard polyHIPEs, elastomeric polyHIPEs are instrumental in the realization of new materials in applications including flexible separation membranes, energy storage in soft robotics, and 3D-printed soft tissue engineering scaffolds. Furthermore, there are few limitations to the types of polymers and polymerization methods that have been used to prepare elastic polyHIPEs due to the wide range of polymerization conditions that are compatible with the polyHIPE method. In this review, an overview of the chemistry used to prepare elastic polyHIPEs from early reports to modern polymerization methods is provided, focusing on the applications that flexible polyHIPEs are used in. The review consists of four sections organized around polymer classes used in the preparation of polyHIPEs: (meth)acrylics and (meth)acrylamides, silicones, polyesters and polyurethanes, and naturally occurring polymers. Within each section, the common properties, current challenges, and an outlook is suggested on where elastomeric polyHIPEs can be expected to continue to make broad, positive impacts on materials and technology for the future.
Collapse
Affiliation(s)
| | - Neil Ayres
- N.A.:
email, ; tel, +01 513 556 9280; fax, +01 513 556 9239
| |
Collapse
|
15
|
Beardslee LA, Halman JR, Unser AM, Xie Y, Danias J, Bergkvist M, Sharfstein ST, Torrejon KY. Recreating the Trabecular Outflow Tissue on Implantable, Micropatterned, Ultrathin, Porous Polycaprolactone Scaffolds. Bioengineering (Basel) 2023; 10:679. [PMID: 37370610 PMCID: PMC10294786 DOI: 10.3390/bioengineering10060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow. Polycaprolactone (PCL) is a versatile, biodegradable, and implantable material that is widely used for cell culture and tissue engineering. In this work, PCL scaffolds were lithographically fabricated using a sacrificial process to produce submicron-thick scaffolds with openings of specific sizes and shapes (e.g., grid, hexagonal pattern). The HTM cell growth on gelatin-coated PCL scaffolds was assessed by scanning electron microscopy, tetrazolium metabolic activity assay, and cytoskeletal organization of F-actin. Expression of HTM-specific markers and ECM deposition were assessed by immunocytochemistry and qPCR analysis. Gelatin-coated, micropatterned, ultrathin, porous PCL scaffolds with a grid pattern supported proper HTM cell growth, cytoskeleton organization, HTM-marker expression, and ECM deposition, demonstrating the feasibility of using these PCL scaffolds to tissue-engineer implantable, healthy ocular outflow tissue.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Justin R. Halman
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Andrea M. Unser
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Magnus Bergkvist
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Susan T. Sharfstein
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Y. Torrejon
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
- Glauconix Biosciences Inc., 251 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
16
|
Jackson CE, Ramos-Rodriguez DH, Farr NTH, English WR, Green NH, Claeyssens F. Development of PCL PolyHIPE Substrates for 3D Breast Cancer Cell Culture. Bioengineering (Basel) 2023; 10:bioengineering10050522. [PMID: 37237592 DOI: 10.3390/bioengineering10050522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing. Tissue-engineered (TE) in vitro models are rapidly developing as an alternative to animal testing for pharmaceuticals. Additionally, porosity included within these structures overcomes the diffusional mass transfer limit whilst enabling cell infiltration and integration with surrounding tissue. Within this study, we investigated the use of high-molecular-weight polycaprolactone methacrylate (PCL-M) polymerised high-internal-phase emulsions (polyHIPEs) as a scaffold to support 3D breast cancer (MDA-MB-231) cell culture. We assessed the porosity, interconnectivity, and morphology of the polyHIPEs when varying mixing speed during formation of the emulsion, successfully demonstrating the tunability of these polyHIPEs. An ex ovo chick chorioallantoic membrane assay identified the scaffolds as bioinert, with biocompatible properties within a vascularised tissue. Furthermore, in vitro assessment of cell attachment and proliferation showed promising potential for the use of PCL polyHIPEs to support cell growth. Our results demonstrate that PCL polyHIPEs are a promising material to support cancer cell growth with tuneable porosity and interconnectivity for the fabrication of perfusable 3D cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | | | - Nicholas T H Farr
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, UK
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
17
|
Ghosh S, Yadav A, Rani S, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK. 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1927-1946. [PMID: 36701663 DOI: 10.1021/acs.langmuir.2c02936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the realm of biomaterials, particularly bone tissue engineering, there has been a great increase in interest in scaffolds with hierarchical porosity and customizable multifunctionality. Recently, the three-dimensional (3D) printing of biopolymer-based inks (solutions or emulsions) has gained high popularity for fabricating tissue engineering scaffolds, which optimally satisfies the desired properties and performances. Herein, therefore, we explore the fabrication of 3D printed hierarchical porous scaffolds of poly(ε-caprolactone) (PCL) using the water-in-oil (w/o) Pickering PCL high internal phase emulsions (HIPEs) as the ink in 3D printer. The Pickering PCL HIPEs stabilized using hydrophobically modified nanoclay comprised of aqueous poly(vinyl alcohol) (PVA) as the dispersed phase. Rheological measurements suggested the shear thinning behavior of Pickering HIPEs having a dispersed droplet diameter of 3-25 μm. The pore morphology resembling the natural extracellular matrix and the mechanical properties of scaffolds were customized by tuning the emulsion composition and 3D printing parameters. In vitro biomineralization and drug release studies proved the scaffolds' potential in developing the apatite-rich bioactive interphase and controlled drug delivery, respectively. During in vitro osteoblast (MG63) growth experiments for up to 7 days, good adhesion and proliferation on PCL scaffolds confirmed their cytocompatibility, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) analysis. This study suggests that the assembly of HIPE templates and 3D printing is a promising approach to creating hierarchical porous scaffolds potentially suitable for bone tissue engineering and can be stretched to other biopolymers as well.
Collapse
Affiliation(s)
- Sagnik Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Sweety Rani
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Sonam Takkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
18
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Durgut E, Sherborne C, Aldemir Dikici B, Reilly GC, Claeyssens F. Preparation of Interconnected Pickering Polymerized High Internal Phase Emulsions by Arrested Coalescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10953-10962. [PMID: 36027593 PMCID: PMC9476866 DOI: 10.1021/acs.langmuir.2c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emulsion templating is a method that enables the production of highly porous and interconnected polymer foams called polymerized high internal phase emulsions (PolyHIPEs). Since emulsions are inherently unstable systems, they can be stabilized either by surfactants or by particles (Pickering HIPEs). Surfactant-stabilized HIPEs form materials with an interconnected porous structure, while Pickering HIPEs typically form closed pore materials. In this study, we describe a system that uses submicrometer polymer particles to stabilize the emulsions. Polymers fabricated from these Pickering emulsions exhibit, unlike traditional Pickering emulsions, highly interconnected large pore structures, and we related these structures to arrested coalescence. We describe in detail the morphological properties of this system and their dependence on different production parameters. This production method might provide an interesting alternative to poly-surfactant-stabilized-HIPEs, in particular where the application necessitates large pore structures.
Collapse
Affiliation(s)
- Enes Durgut
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Colin Sherborne
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Betül Aldemir Dikici
- Department
of Bioengineering, Izmir Institute of Technology, Urla, Izmir, 35433, Turkey
| | - Gwendolen C. Reilly
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Frederik Claeyssens
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
20
|
DİKİCİ S. Ascorbic Acid Enhances the Metabolic Activity, Growth and Collagen Production of Human Dermal Fibroblasts Growing in Three-dimensional (3D) Culture. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tissue engineering (TE) enables developing functional synthetic substitutes to be replaced with damaged tissues and organs instead of the use of auto or allografts. A wide range of biomaterials is currently in use as TE scaffolds. Among these materials, naturally-sourced ones are favourable due to being highly biocompatible and supporting cell growth and function whereas synthetic ones are advantageous because of the high tunability on mechanical and physical properties as well as being easy to process. Alongside the advantages of synthetic polymers, they mostly show hydrophobic behaviour that limits biomaterial-cell interaction and consequently the functioning of the developed TE constructs. In this study, we assessed the impact of L-Ascorbic acid 2-phosphate (AA2P) on improving the culture of human dermal fibroblasts (HDFs) growing on a three-dimensional (3D) scaffold made of polycaprolactone by emulsion templating technique. Our results demonstrated that AA2P enhances the metabolic activity, growth, and collagen production of HDFs when supplemented to their growth medium at 50 µg/mL concentration. It showed a great potential to be used as a growth medium supplement to circumvent the disadvantages of culturing human cells on a synthetic biomaterial that is not favoured in default. AA2P's potential to improve cell growth and collagen deposition may prove an effective way to culture human cells on 3D PCL PolyHIPE scaffolds for various TE applications.
Collapse
|
21
|
Synergistic effect of type and concentration of surfactant and diluting solvent on the morphology of emulsion templated matrices developed as tissue engineering scaffolds. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Utroša P, Gradišar Š, Onder OC, Žagar E, Pahovnik D. Synthetic Polypeptide–Polyester PolyHIPEs Prepared by Thiol–Ene Photopolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Petra Utroša
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Špela Gradišar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ozgun Can Onder
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Fallahiarezoudar E, Ngadiman NHA, Yusof NM, Idris A, Ishak MSA. Development of 3D Thermoplastic Polyurethane (TPU)/Maghemite (ϒ-Fe 2O 3) Using Ultra-Hard and Tough (UHT) Bio-Resin for Soft Tissue Engineering. Polymers (Basel) 2022; 14:2561. [PMID: 35808606 PMCID: PMC9269070 DOI: 10.3390/polym14132561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The use of soft tissue engineering scaffolds is an advanced approach to repairing damaged soft tissue. To ensure the success of this technique, proper mechanical and biocompatibility properties must be taken into consideration. In this study, a three-dimensional (3D) scaffold was developed using digital light processing (DLP) and ultra-hard and tough (UHT) bio-resin. The 3D scaffold structure consisted of thermoplastic polyurethane (TPU) and maghemite (ϒ-Fe2O3) nanoparticles mixed with UHT bio-resin. The solution sample for fabricating the scaffolds was varied with the concentration of the TPU (10, 12.5, and 15% wt/v) and the amount of ϒ-Fe2O3 (1, 3, and 5% v/v) added to 15% wt/v of TPU. Before developing the real geometry of the sample, a pre-run of the DLP 3D printing process was done to determine the optimum curing time of the structure to be perfectly cured, which resulted in 30 s of curing time. Then, this study proceeded with a tensile test to determine the mechanical properties of the developed structure in terms of elasticity. It was found that the highest Young's Modulus of the scaffold was obtained with 15% wt/v TPU/UHT with 1% ϒ-Fe2O3. Furthermore, for the biocompatibility study, the degradation rate of the scaffold containing TPU/UHT was found to be higher compared to the TPU/UHT containing ϒ-Fe2O3 particles. However, the MTT assay results revealed that the existence of ϒ-Fe2O3 in the scaffold improved the proliferation rate of the cells.
Collapse
Affiliation(s)
- Ehsan Fallahiarezoudar
- Department of Industrial Engineering, Faculty of Engineering, East of Guilan, University of Guilan, Roudsar 44918, Guilan, Iran;
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Noordin Mohd Yusof
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Ani Idris
- School of Chemical Engineering, Faculty of Engineering, c/o Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Mohamad Shaiful Ashrul Ishak
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia;
| |
Collapse
|
24
|
Yadav A, Ghosh S, Samanta A, Pal J, Srivastava RK. Emulsion templated scaffolds of poly(ε-caprolactone) - a review. Chem Commun (Camb) 2022; 58:1468-1480. [PMID: 35014993 DOI: 10.1039/d1cc04941k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of poly(ε-caprolactone) (PCL) and its 3D scaffolds in tissue engineering has already been established due to its ease of processing into long-term degradable implants and approval from the FDA. This review presents the role of high internal phase emulsion (HIPE) templating in the fabrication of PCL scaffolds, and the versatility of the technique along with challenges associated with it. Considering the huge potential of HIPE templating, which so far has mainly been focused on free radical polymerization of aqueous HIPEs, we provide a summary of how the technique has been expanded to non-aqueous HIPEs and other modes of polymerization such as ring-opening. The scope of coupling of HIPE templating with some of the advanced fabrication methods such as 3D printing or electrospinning is also explored.
Collapse
Affiliation(s)
- Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Sagnik Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Archana Samanta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Jit Pal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| |
Collapse
|
25
|
Bakkali-Hassani C, Hooker JP, Voorter PJ, Rubens M, Cameron NR, Junkers T. One-Pot Multifunctional Polyesters by Continuous Flow Organocatalysed Ring-Opening Polymerisation for Targeted and Tunable Materials Design. Polym Chem 2022. [DOI: 10.1039/d2py00088a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted and tunable access to biodegradable polymers will be vital for their continued adoption and use in modern materials applications. Herein we report a platform for the synthesis of well-defined,...
Collapse
|
26
|
Aldemir Dikici B, Malayeri A, Sherborne C, Dikici S, Paterson T, Dew L, Hatton P, Ortega Asencio I, MacNeil S, Langford C, Cameron NR, Claeyssens F. Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (PolyHIPE) Scaffolds for Tissue Engineering. Biomacromolecules 2021; 23:720-730. [PMID: 34730348 DOI: 10.1021/acs.biomac.1c01129] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Highly porous emulsion templated polymers (PolyHIPEs) provide a number of potential advantages in the fabrication of scaffolds for tissue engineering and regenerative medicine. Porosity enables cell ingrowth and nutrient diffusion within, as well as waste removal from, the scaffold. The properties offered by emulsion templating alone include the provision of high interconnected porosity, and, in combination with additive manufacturing, the opportunity to introduce controlled multiscale porosity to complex or custom structures. However, the majority of monomer systems reported for PolyHIPE preparation are unsuitable for clinical applications as they are nondegradable. Thiol-ene chemistry is a promising route to produce biodegradable photocurable PolyHIPEs for the fabrication of scaffolds using conventional or additive manufacturing methods; however, relatively little research has been reported on this approach. This study reports the groundwork to fabricate thiol- and polycaprolactone (PCL)-based PolyHIPE materials via a photoinitiated thiolene click reaction. Two different formulations, either three-arm PCL methacrylate (3PCLMA) or four-arm PCL methacrylate (4PCLMA) moieties, were used in the PolyHIPE formulation. Biocompatibility of the PolyHIPEs was investigated using human dermal fibroblasts (HDFs) and human osteosarcoma cell line (MG-63) by DNA quantification assay, and developed PolyHIPEs were shown to be capable of supporting cell attachment and viability.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom.,Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom.,Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Atra Malayeri
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Colin Sherborne
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Serkan Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom.,Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Thomas Paterson
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Lindsey Dew
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Paul Hatton
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Ilida Ortega Asencio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Caitlin Langford
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.,School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom.,Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
27
|
Mudassir MA, Aslam HZ, Ansari TM, Zhang H, Hussain I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102540. [PMID: 34553500 PMCID: PMC8596121 DOI: 10.1002/advs.202102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology (KFUEIT)Rahim Yar Khan64200Pakistan
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Hafiz Zohaib Aslam
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Tariq Mahmood Ansari
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
| | - Haifei Zhang
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Irshad Hussain
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| |
Collapse
|
28
|
Dikici S, Aldemir Dikici B, MacNeil S, Claeyssens F. Decellularised extracellular matrix decorated PCL PolyHIPE scaffolds for enhanced cellular activity, integration and angiogenesis. Biomater Sci 2021; 9:7297-7310. [PMID: 34617526 PMCID: PMC8547328 DOI: 10.1039/d1bm01262b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing involves a complex series of events where cell–cell and cell-extracellular matrix (ECM) interactions play a key role. Wounding can be simple, such as the loss of the epithelial integrity, or deeper and more complex, reaching to subcutaneous tissues, including blood vessels, muscles and nerves. Rapid neovascularisation of the wounded area is crucial for wound healing as it has a key role in supplying oxygen and nutrients during the highly demanding proliferative phase and transmigration of inflammatory cells to the wound area. One approach to circumvent delayed neovascularisation is the exogenous use of pro-angiogenic factors, which is expensive, highly dose-dependent, and the delivery of them requires a very well-controlled system to avoid leaky, highly permeable and haemorrhagic blood vessel formation. In this study, we decorated polycaprolactone (PCL)-based polymerised high internal phase emulsion (PolyHIPE) scaffolds with fibroblast-derived ECM to assess fibroblast, endothelial cell and keratinocyte activity in vitro and angiogenesis in ex ovo chick chorioallantoic membrane (CAM) assays. Our results showed that the inclusion of ECM in the scaffolds increased the metabolic activity of three types of cells that play a key role in wound healing and stimulated angiogenesis in ex ovo CAM assays over 7 days. Herein, we demonstrated that fibroblast-ECM functionalised PCL PolyHIPE scaffolds appear to have great potential to be used as an active wound dressing to promote angiogenesis and wound healing. Decellularisation of in vitro generated extracellular matrix (ECM) provides an effective way to stimulate angiogenesis and wound healing.![]()
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, 35430, Turkey. .,Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, 35430, Turkey. .,Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| |
Collapse
|
29
|
Kramer S, Cameron NR, Krajnc P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers (Basel) 2021; 13:polym13111786. [PMID: 34071683 PMCID: PMC8198890 DOI: 10.3390/polym13111786] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.
Collapse
Affiliation(s)
- Stanko Kramer
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Neil R. Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
- Correspondence: (N.R.C.); (P.K.)
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Correspondence: (N.R.C.); (P.K.)
| |
Collapse
|
30
|
Esmail A, Pereira JR, Zoio P, Silvestre S, Menda UD, Sevrin C, Grandfils C, Fortunato E, Reis MAM, Henriques C, Oliva A, Freitas F. Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers (Basel) 2021; 13:polym13071056. [PMID: 33801747 PMCID: PMC8036702 DOI: 10.3390/polym13071056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Poly(hydroxyalkanoates) (PHAs) with differing material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), with a 3HV content of 25 wt.% and a medium chain length PHA, and mcl-PHA, mainly composed of 3-hydroxydecanoate, were studied as scaffolding material for cell culture. P(3HB) and P(3HB-co-3HV) were individually spun into fibers, as well as blends of the mcl-PHA with each of the scl-PHAs. An overall biopolymer concentration of 4 wt.% was used to prepare the electrospinning solutions, using chloroform as the solvent. A stable electrospinning process and good quality fibers were obtained for a solution flow rate of 0.5 mL h−1, a needle tip collector distance of 20 cm and a voltage of 12 kV for P(3HB) and P(3HB-co-3HV) solutions, while for the mcl-PHA the distance was increased to 25 cm and the voltage to 15 kV. The scaffolds’ hydrophilicity was significantly increased under exposure to oxygen plasma as a surface treatment. Complete wetting was obtained for the oxygen plasma treated scaffolds and the water uptake degree increased in all treated scaffolds. The biopolymers crystallinity was not affected by the electrospinning process, while their treatment with oxygen plasma decreased their crystalline fraction. Human dermal fibroblasts were able to adhere and proliferate within the electrospun PHA-based scaffolds. The P(3HB-co-3HV): mcl-PHA oxygen plasma treated scaffold highlighted the most promising results with a cell adhesion rate of 40 ± 8%, compared to 14 ± 4% for the commercial oxygen plasma treated polystyrene scaffold AlvetexTM. Scaffolds based on P(3HB-co-3HV): mcl-PHA blends produced by electrospinning and submitted to oxygen plasma exposure are therefore promising biomaterials for the development of scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Asiyah Esmail
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - João R. Pereira
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
| | - Patrícia Zoio
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Sara Silvestre
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Ugur Deneb Menda
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Chantal Sevrin
- CEIB-Interfaculty Research Centre of Biomaterials, University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Christian Grandfils
- CEIB-Interfaculty Research Centre of Biomaterials, University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Elvira Fortunato
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
| | - Célia Henriques
- CENIMAT/i3N, Physics Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal;
| | - Abel Oliva
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
- Correspondence: ; Tel.: +35-12-1294-8300
| |
Collapse
|
31
|
Steindl P, Decker H, Retzl B, Jiang Q, Menner A, Bismarck A. Emulsion-templated flexible epoxy foams. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Aldemir Dikici B, Claeyssens F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front Bioeng Biotechnol 2020; 8:875. [PMID: 32903473 PMCID: PMC7435020 DOI: 10.3389/fbioe.2020.00875] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
33
|
Dikici S, Claeyssens F, MacNeil S. Pre-Seeding of Simple Electrospun Scaffolds with a Combination of Endothelial Cells and Fibroblasts Strongly Promotes Angiogenesis. Tissue Eng Regen Med 2020; 17:445-458. [PMID: 32447555 PMCID: PMC7392995 DOI: 10.1007/s13770-020-00263-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Introduction of pro-angiogenic cells into tissue-engineered (TE) constructs (prevascularisation) is a promising approach to overcome delayed neovascularisation of such constructs post-implantation. Accordingly, in this study, we examined the contribution of human dermal microvascular endothelial cells (HDMECs) and human dermal fibroblasts (HDFs) alone and in combination on the formation of new blood vessels in ex-ovo chick chorioallantoic membrane (CAM) assay. METHODS Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and polycaprolactone (PCL) were first examined in terms of their physical, mechanical, and biological performances. The effect of gelatin coating and co-culture conditions on enhancing endothelial cell viability and growth was then investigated. Finally, the angiogenic potential of HDMECs and HDFs were assessed macroscopically and histologically after seeding on simple electrospun PHBV scaffolds either in isolation or in indirect co-culture using an ex-ovo CAM assay. RESULTS The results demonstrated that PHBV was slightly more favourable than PCL for HDMECs in terms of cell metabolic activity. The gelatin coating of PHBV scaffolds and co-culture of HDMECs with HDFs both showed a positive impact on HDMECs viability and growth. Both cell types induced angiogenesis over 7 days in the CAM assay either in isolation or in co-culture. The introduction of HDMECs to the scaffolds resulted in the production of more blood vessels in the area of implantation than the introduction of HDFs, but the co-culture of HDMECs and HDFs gave the most significant angiogenic activity. CONCLUSION Our findings showed that the in vitro prevascularisation of TE constructs with HDMECs and HDFs alone or in co-culture promotes angiogenesis in implantable TE constructs.
Collapse
Affiliation(s)
- Serkan Dikici
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK
| | - Sheila MacNeil
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK.
| |
Collapse
|
34
|
Dikici S, Claeyssens F, MacNeil S. Bioengineering Vascular Networks to Study Angiogenesis and Vascularization of Physiologically Relevant Tissue Models in Vitro. ACS Biomater Sci Eng 2020; 6:3513-3528. [PMID: 32582840 PMCID: PMC7304666 DOI: 10.1021/acsbiomaterials.0c00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Angiogenesis assays are essential for studying aspects of neovascularization and angiogenesis and investigating drugs that stimulate or inhibit angiogenesis. To date, there are several in vitro and in vivo angiogenesis assays that are used for studying different aspects of angiogenesis. Although in vivo assays are the most representative of native angiogenesis, they raise ethical questions, require considerable technical skills, and are expensive. In vitro assays are inexpensive and easier to perform, but the majority of them are only two-dimensional cell monolayers which lack the physiological relevance of three-dimensional structures. Thus, it is important to look for alternative platforms to study angiogenesis under more physiologically relevant conditions in vitro. Accordingly, in this study, we developed polymeric vascular networks to be used to study angiogenesis and vascularization of a 3D human skin model in vitro. Our results showed that this platform allowed the study of more than one aspect of angiogenesis, endothelial migration and tube formation, in vitro when combined with Matrigel. We successfully reconstructed a human skin model, as a representative of a physiologically relevant and complex structure, and assessed the suitability of the developed in vitro platform for studying endothelialization of the tissue-engineered skin model.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Frederik Claeyssens
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Sheila MacNeil
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
35
|
Wu CH, Huang YC, Lai TH, Chiu SH, Uchibe N, Lin HW, Chiu WY, Tung SH, Jeng RJ. Facile synthesis toward self-dispersible waterborne comb-like Poly(hydroxyaminoethers). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Diez-Ahedo R, Mendibil X, Márquez-Posadas MC, Quintana I, González F, Rodríguez FJ, Zilic L, Sherborne C, Glen A, Taylor CS, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Merino S. UV-Casting on Methacrylated PCL for the Production of a Peripheral Nerve Implant Containing an Array of Porous Aligned Microchannels. Polymers (Basel) 2020; 12:E971. [PMID: 32331241 PMCID: PMC7240584 DOI: 10.3390/polym12040971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerves are basic communication structures guiding motor and sensory information from the central nervous system to receptor units. Severed peripheral nerve injuries represent a large clinical problem with relevant challenges to successful synthetic nerve repair scaffolds as substitutes to autologous nerve grafting. Numerous studies reported the use of hollow tubes made of synthetic polymers sutured between severed nerve stumps to promote nerve regeneration while providing protection for external factors, such as scar tissue formation and inflammation. Few approaches have described the potential use of a lumen structure comprised of microchannels or microfibers to provide axon growth avoiding misdirection and fostering proper healing. Here, we report the use of a 3D porous microchannel-based structure made of a photocurable methacrylated polycaprolactone, whose mechanical properties are comparable to native nerves. The neuro-regenerative properties of the polymer were assessed in vitro, prior to the implantation of the 3D porous structure, in a 6-mm rat sciatic nerve gap injury. The manufactured implants were biocompatible and able to be resorbed by the host's body at a suitable rate, allowing the complete healing of the nerve. The innovative design of the highly porous structure with the axon guiding microchannels, along with the observation of myelinated axons and Schwann cells in the in vivo tests, led to a significant progress towards the standardized use of synthetic 3D multichannel-based structures in peripheral nerve surgery.
Collapse
Affiliation(s)
- Ruth Diez-Ahedo
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| | - Xabier Mendibil
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| | | | - Iban Quintana
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| | - Francisco González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca. la Peraleda s/n, 45071 Toledo, Spain; (F.G.); (F.J.R.)
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca. la Peraleda s/n, 45071 Toledo, Spain; (F.G.); (F.J.R.)
| | - Leyla Zilic
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Colin Sherborne
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Adam Glen
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Caroline S. Taylor
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Frederik Claeyssens
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - John W. Haycock
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain; (W.S.); (E.G.); (B.C.)
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain; (W.S.); (E.G.); (B.C.)
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain; (W.S.); (E.G.); (B.C.)
| | - Santos Merino
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| |
Collapse
|
37
|
Aldemir Dikici B, Reilly GC, Claeyssens F. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by In Vitro Generated Extracellular Matrix Decoration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12510-12524. [PMID: 32100541 PMCID: PMC7146758 DOI: 10.1021/acsami.9b23100] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 05/05/2023]
Abstract
Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Gwendolen C. Reilly
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Frederik Claeyssens
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
38
|
Dikici S, Aldemir Dikici B, Bhaloo SI, Balcells M, Edelman ER, MacNeil S, Reilly GC, Sherborne C, Claeyssens F. Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Front Bioeng Biotechnol 2020; 7:451. [PMID: 32010677 PMCID: PMC6978624 DOI: 10.3389/fbioe.2019.00451] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a highly ordered physiological process regulated by the interaction of endothelial cells with an extensive variety of growth factors, extracellular matrix components and mechanical stimuli. One of the most important challenges in tissue engineering is the rapid neovascularization of constructs to ensure their survival after transplantation. To achieve this, the use of pro-angiogenic agents is a widely accepted approach. The study of angiogenesis has gained momentum over the last two decades. Although there are various in vitro, ex vivo, and in vivo angiogenesis models that enable testing of newly discovered pro-angiogenic agents, the problem with researching angiogenesis is the choice of the most appropriate assay. In vivo assays are the most representative and reliable models, but they are expensive, time-consuming and can cause ethical concerns whereas in vitro assays are relatively inexpensive, practical, and reproducible, but they are usually lack of enabling the study of more than one aspect of angiogenesis, and they do not fully represent the complexity of physiological angiogenesis. Therefore, there is a need for the development of an angiogenesis model that allows the study of angiogenesis under physiologically more relevant, dynamic conditions without causing ethical concerns. Accordingly, in this study, we developed 3D in vitro dynamic angiogenesis model, and we tested the angiogenic potential of 2-deoxy-D-ribose (2dDR) in comparison with vascular endothelial growth factor (VEGF) using newly developed in vitro 3D dynamic model and well-established in vitro models. Our results obtained using conventional in vitro assays demonstrated that 2dDR promoted proliferation, migration and tube formation of human aortic endothelial cells (HAECs) in a dose-dependent manner. Then, the angiogenic activity of 2dDR was further assessed using the newly developed 3D in vitro model, which enabled the monitoring of cell proliferation and infiltration simultaneously under dynamic conditions. Our results showed that the administration of 2dDR and VEGF significantly enhanced the outgrowth of HAECs and the cellular density under either static or dynamic conditions.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Bioengineering Department, Institut Quimic de Sarria, Ramon Llull University, Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Colin Sherborne
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
39
|
Utroša P, Onder OC, Žagar E, Kovačič S, Pahovnik D. Shape Memory Behavior of Emulsion-Templated Poly(ε-Caprolactone) Synthesized by Organocatalyzed Ring-Opening Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01780] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Petra Utroša
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ozgun Can Onder
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sebastijan Kovačič
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
García-Landeros SA, Cervantes-Díaz JM, Gutiérrez-Becerra A, Pelayo-Vázquez JB, Landazuri-Gomez G, Herrera-Ordonez J, Soltero-Martínez JFA, Mota-Morales JD, Pérez-García MG. Oil-in-eutectic mixture HIPEs co-stabilized with surfactant and nanohydroxyapatite: ring-opening polymerization for nanocomposite scaffold synthesis. Chem Commun (Camb) 2019; 55:12292-12295. [PMID: 31538164 DOI: 10.1039/c9cc06292k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mixtures of a nonionic surfactant and non-functionalized nanohydroxyapatite (NHA) enhanced the stability of oil-in-eutectic mixture high internal phase emulsions (HIPEs). Upon ring opening polymerization of the eutectic mixture composed of l-lactide and ε-caprolactone, biodegradable polyHIPEs with specific cavity sizes and selective interfacial functionalization with NHA are produced.
Collapse
Affiliation(s)
| | - José M Cervantes-Díaz
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco 45425, Mexico.
| | | | - José B Pelayo-Vázquez
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco 45425, Mexico.
| | - Gabriel Landazuri-Gomez
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco 44430, Mexico
| | - Jorge Herrera-Ordonez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| | | | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| | - María G Pérez-García
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco 45425, Mexico.
| |
Collapse
|
41
|
Aldemir Dikici B, Dikici S, Reilly GC, MacNeil S, Claeyssens F. A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2643. [PMID: 31434207 PMCID: PMC6721100 DOI: 10.3390/ma12162643] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 01/08/2023]
Abstract
Guided bone regeneration is a common dental implant treatment where a barrier membrane (BM) is used between epithelial tissue and bone or bone graft to prevent the invasion of the fast-proliferating epithelial cells into the defect site to be able to preserve a space for infiltration of slower-growing bone cells into the periodontal defect site. In this study, a bilayer polycaprolactone (PCL) BM was developed by combining electrospinning and emulsion templating techniques. First, a 250 µm thick polymerised high internal phase emulsion (polyHIPE) made of photocurable PCL was manufactured and treated with air plasma, which was shown to enhance the cellular infiltration. Then, four solvent compositions were investigated to find the best composition for electrospinning a nanofibrous PCL barrier layer on PCL polyHIPE. The biocompatibility and the barrier properties of the electrospun layer were demonstrated over four weeks in vitro by histological staining. Following in vitro assessment of cell viability and cell migration, cell infiltration and the potential of PCL polyHIPE for supporting blood vessel ingrowth were further investigated using an ex-ovo chick chorioallantoic membrane assay. Our results demonstrated that the nanofibrous PCL electrospun layer was capable of limiting cell infiltration for at least four weeks, while PCL polyHIPE supported cell infiltration, calcium and mineral deposition of bone cells, and blood vessel ingrowth through pores.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Serkan Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, University of Sheffield, INSIGNEO Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK.
| |
Collapse
|