1
|
Suresh JN, Arief I, Naskar K, Heinrich G, Tahir M, Wießner S, Das A. The role of chemical microstructures and compositions on the actuation performance of dielectric elastomers: A materials research perspective. NANO SELECT 2023. [DOI: 10.1002/nano.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Jishnu Nirmala Suresh
- Leibniz‐Institut für Polymerforschung Dresden e. V. Dresden Germany
- Technische Universität Dresden Institut für Werkstoffwissenschaft Dresden Germany
| | - Injamamul Arief
- Leibniz‐Institut für Polymerforschung Dresden e. V. Dresden Germany
| | - Kinsuk Naskar
- Rubber Technology Centre Indian Institute of Technology Kharagpur India
| | - Gert Heinrich
- Technische Universität Dresden Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik Dresden Germany
| | - Muhammad Tahir
- Leibniz‐Institut für Polymerforschung Dresden e. V. Dresden Germany
| | - Sven Wießner
- Leibniz‐Institut für Polymerforschung Dresden e. V. Dresden Germany
- Technische Universität Dresden Institut für Werkstoffwissenschaft Dresden Germany
| | - Amit Das
- Leibniz‐Institut für Polymerforschung Dresden e. V. Dresden Germany
| |
Collapse
|
2
|
Vennemann N, Kummerlöwe C, Schneider M, Bröker D, Siebert A, Teich S, Rosemann T. Influence of unipolar electric fields on the behavior of dielectric elastomer actuators based on plasticized acrylonitrile‐butadiene rubber (
NBR
). J Appl Polym Sci 2023. [DOI: 10.1002/app.53694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Norbert Vennemann
- Faculty of Engineering and Computer Science University of Applied Sciences Osnabrück Osnabrück Germany
| | - Claudia Kummerlöwe
- Faculty of Engineering and Computer Science University of Applied Sciences Osnabrück Osnabrück Germany
| | - Manuel Schneider
- Faculty of Engineering and Computer Science University of Applied Sciences Osnabrück Osnabrück Germany
| | - Dirk Bröker
- Faculty of Engineering and Computer Science University of Applied Sciences Osnabrück Osnabrück Germany
| | | | | | | |
Collapse
|
3
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
4
|
High dielectric PANI/PDMS all-organic composites fabricated by electric fields-assisted assembling. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Nonwoven Mats Based on Segmented Biopolyurethanes Filled with MWCNT Prepared by Solution Blow Spinning. Polymers (Basel) 2022; 14:polym14194175. [PMID: 36236123 PMCID: PMC9572556 DOI: 10.3390/polym14194175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
To prepare nonwoven mats constituted by submicrometric fibers of thermally responsive biopolyurethanes (TPU) modified with multiwalled carbon nanotubes (MWCNT), solution blow spinning (SBS) was used. The TPU was the product of synthesis using poly(butylene sebacate)diol, PBSD, ethyl ester L-lysine diisocyanate (LDI), and 1,3-propanediol (PD) (PBSe:LDI:PD) as reactants. TPU was modified by adding different amounts of MWCNT (0, 0.5, 1, 2, and 3 wt.%). The effect of the presence and amount of MWCNT on the morphology and structure of the materials was studied using field-emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR), respectively, while their influence on the thermal and electric behaviors was studied using differential scanning calorimetry (DSC) and capacitance measurements, respectively. The addition of MWCNT by SBS induced morphological changes in the fibrous materials, affecting the relative amount and size of submicrometric fibers and, therefore, the porosity. As the MWCNT content increased, the diameter of the fibers increased and their relative amount with respect to all morphological microfeatures increased, leading to a more compact microstructure with lower porosity. The highly porous fibrous morphology of TPU-based materials achieved by SBS allowed turning a hydrophilic material to a highly hydrophobic one. Percolation of MWCNT was attained between 2 and 3 wt.%, affecting not only the electric properties of the materials but also their thermal behavior.
Collapse
|
6
|
Sheima Y, von Szczepanski J, Danner PM, Künniger T, Remhof A, Frauenrath H, Opris DM. Transient Elastomers with High Dielectric Permittivity for Actuators, Sensors, and Beyond. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40257-40265. [PMID: 35998318 PMCID: PMC9900591 DOI: 10.1021/acsami.2c05631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Dielectric elastomers (DEs) are key materials in actuators, sensors, energy harvesters, and stretchable electronics. These devices find applications in important emerging fields such as personalized medicine, renewable energy, and soft robotics. However, even after years of research, it is still a great challenge to achieve DEs with increased dielectric permittivity and fast recovery of initial shape when subjected to mechanical and electrical stress. Additionally, high dielectric permittivity elastomers that show reliable performance but disintegrate under normal environmental conditions are not known. Here, we show that polysiloxanes modified with amide groups give elastomers with a dielectric permittivity of 21, which is 7 times higher than regular silicone rubber, a strain at break that can reach 150%, and a mechanical loss factor tan δ below 0.05 at low frequencies. Actuators constructed from these elastomers respond to a low electric field of 6.2 V μm-1, giving reliable lateral actuation of 4% for more than 30 000 cycles at 5 Hz. One survived 450 000 cycles at 10 Hz and 3.6 V μm-1. The best actuator shows 10% lateral strain at 7.5 V μm-1. Capacitive sensors offer a more than a 6-fold increase in sensitivity compared to standard silicone elastomers. The disintegrated material can be re-cross-linked when heated to elevated temperatures. In the future, our material could be used as dielectric in transient actuators, sensors, security devices, and disposable electronic patches for health monitoring.
Collapse
Affiliation(s)
- Yauhen Sheima
- Functional
Polymers, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerlandh
- Ecole
Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Station 12, CH 1015, Lausanne, Switzerland
| | - Johannes von Szczepanski
- Functional
Polymers, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerlandh
| | - Patrick M. Danner
- Functional
Polymers, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerlandh
| | - Tina Künniger
- Laboratory
for Cellulose and Wood Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Arndt Remhof
- Materials
for Energy Conversion, Empa, Swiss Federal
Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Holger Frauenrath
- Ecole
Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Station 12, CH 1015, Lausanne, Switzerland
| | - Dorina M. Opris
- Functional
Polymers, Empa, Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerlandh
| |
Collapse
|
7
|
Vislavath P, Billa S, S P, Bahadur J, Sudarshan K, Patro TU, Rath SK, Ratna D. Heterogeneous Coordination Environment and Unusual Self-Assembly of Ionic Aggregates in a Model Ionomeric Elastomer: Effect of Curative Systems. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prakash Vislavath
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Srikanth Billa
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Praveen S
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kathi Sudarshan
- Radio Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - T. Umasankar Patro
- Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra 411025, India
| | - Sangram K. Rath
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Debdatta Ratna
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| |
Collapse
|
8
|
Lu L, Zhao C, Zhang H, Cai F, Wu S. Influence of Specific Structure on the Dielectric and Thermal Performance of Bulk Polymers: Atomistic Molecular Dynamics Simulations of XNBR. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ling Lu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chen Zhao
- School of Metallurgy Northeastern University Shenyang 110819 P. R. China
| | - Hao Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Fei Cai
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- Shenzhen Geim Graphene Center Tsinghua‐Berkeley Shenzhen Institute & Institute of Materials Research Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
9
|
An Experimental Study on the Dielectric Properties of Rubber Materials. Polymers (Basel) 2021; 13:polym13172908. [PMID: 34502948 PMCID: PMC8433773 DOI: 10.3390/polym13172908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
According to specific formulas, the mixing of rubber samples occurs by two methods: open mixing and internal mixing. The effects of frequency, mixing process, carbon black (CB) content, zinc oxide (ZnO) content, and stearic acid (SA) content on the dielectric properties of rubber materials were studied. The results showed that the effects of the mixing process on the dielectric properties of the rubber samples cannot be ignored, and the appropriate mixing process should be selected when preparing the required rubber materials. The dielectric constant and loss factor of the rubber samples vary depending on the frequency. The dielectric constant had a peak and valley value, while the loss factor only had a peak. The dielectric constant and loss factor of rubber samples were significantly affected by the content of CB, ZnO, and SA. The peak frequency decreased with the increase in CB content, however, the dielectric constant increased with an increase in CB content. The higher the ZnO content, the lower the peak frequency. In addition, the dielectric constant and loss factor increased with an increase in ZnO content. The higher the SA content, the greater the peak frequency. In addition, the dielectric constant and loss factor decreased with an increase in SA content. It is hoped that the experimental results obtained can provide guidance for the study of the dielectric properties, microwave absorption properties, and microwave heating characteristics of rubber polymers.
Collapse
|
10
|
A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Yao J, Liu X, Sun H, Liu S, Jiang Y, Yu B, Ning N, Tian M, Zhang L. Thermoplastic Polyurethane Dielectric Elastomers with High Actuated Strain and Good Mechanical Strength by Introducing Ester Group Grafted Polymethylvinylsiloxane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiashuai Yao
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueying Liu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haibin Sun
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suting Liu
- Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, China
| | - Yingjie Jiang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Xu Q, Zhang W. Improvement of the electromechanical properties of thermoplastic polyurethane composite by ionic liquid modified multiwall carbon nanotubes. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbon nanotubes (CNTs) were non-covalently modified by two categories of ionic liquids (ILs), including 1-vinyl-3-ethylimidazole bromide (VEIMBr) and 1-vinyl-3-hexylimidazole bromide (VHIMBr) in the ratio of 1:1 and 1:4, respectively. The surface interaction between CNTs and ILs was well-characterized by FTIR, Raman spectra, XPS, etc. Thermoplastic polyurethane (TPU) containing different amounts of CNTs/ILs was fabricated by melting blending method. TPU-CNTs/ILs composites exhibited simultaneously enhanced electromechanical properties with improved dielectric constant and lowered elastic modulus. The electromechanical sensitivity of sample TPU-3CNT/12VHIMBr increased by approximately 45 times in comparison with that of pure TPU at 200 Hz. Besides, improved dispersion of CNTs/ILs in the TPU matrix was also exhibited.
Collapse
Affiliation(s)
- Qianwei Xu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , No. 4800 Caoan Road , Shanghai , 201804 , China
| | - Weijia Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , No. 4800 Caoan Road , Shanghai , 201804 , China
| |
Collapse
|
13
|
Effect of adding epoxy groups to poly (butyl acrylate) on electro- viscoelastic response: Insight from molecular dynamics simulation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Zhang C, Dai Y, Lu G, Cao Z, Cheng J, Wang K, Wen X, Ma W, Wu D, Liu C. Facile Fabrication of High-Contrast and Light-Colored Marking on Dark Thermoplastic Polyurethane Materials. ACS OMEGA 2019; 4:20787-20796. [PMID: 31858065 PMCID: PMC6906935 DOI: 10.1021/acsomega.9b03232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 05/23/2023]
Abstract
In this work, using ferroferric oxide (Fe3O4) and zirconium oxide (ZrO2) as laser-sensitive particles and thermoplastic polyurethane (TPU) as the matrix resin, a series of TPU/Fe3O4/ZrO2 composites were prepared by melt blending, and the effect of the laser marking additive content, composition, and laser marking parameters on the laser marking properties of composites was investigated. The laser marking mechanism of Fe3O4/ZrO2 additives and the role of each component in TPU laser marking were studied by metallographic microscopy, color difference test, scanning electron microscopy, and Raman spectroscopy. Fe3O4 nanoparticles as a laser sensitizer component, on the one hand, can act as a pigment to make the TPU substrate black and, on the other hand, can absorb laser energy to contribute to the formation of laser markings on TPU composite surfaces. In addition, the introduction of ZrO2 nanoparticles can help absorb the laser energy, while the contrast can be improved to enhance the laser marking performance of the TPU composite. Through thermogravimetric analysis, the changes in the thermally stable properties of TPU composites before and after laser marking were investigated, and the results indicated that Fe3O4/ZrO2 nanoparticles can absorb the laser energy, causing melting and pyrolysis of the TPU backbone at a high temperature, to produce a gaseous product resulting in foaming. Finally, the high-contrast and light-colored markings were formed on the black TPU composite surface. This work provides a facile method for producing high-contrast and light-colored markings on the dark TPU composite surface.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yankai Dai
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Guangwei Lu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zheng Cao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Changzhou
University Huaide College, Changzhou 213016, China
- The
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Junfeng Cheng
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Kailun Wang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xiaoqian Wen
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenzhong Ma
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Dun Wu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Chunlin Liu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Changzhou
University Huaide College, Changzhou 213016, China
- National
Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Kohári A, Halász IZ, Bárány T. Thermoplastic Dynamic Vulcanizates with In Situ Synthesized Segmented Polyurethane Matrix. Polymers (Basel) 2019; 11:polym11101663. [PMID: 31614744 PMCID: PMC6836004 DOI: 10.3390/polym11101663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this paper was the detailed investigation of the properties of one-shot bulk polymerized thermoplastic polyurethanes (TPUs) produced with different processing temperatures and the properties of thermoplastic dynamic vulcanizates (TDVs) made by utilizing such in situ synthetized TPUs as their matrix polymer. We combined TPUs and conventional crosslinked rubbers in order to create TDVs by dynamic vulcanization in an internal mixer. The rubber phase was based on three different rubber types: acrylonitrile butadiene rubber (NBR), carboxylated acrylonitrile butadiene rubber (XNBR), and epoxidized natural rubber (ENR). Our goal was to investigate the effect of different processing conditions and material combinations on the properties of the resulting TDVs with the opportunity of improving the interfacial connection between the two phases by chemically bonding the crosslinked rubber phase to the TPU matrix. Therefore, the matrix TPU was synthesized in situ during compounding from diisocyanate, diol, and polyol in parallel with the dynamic vulcanization of the rubber mixture. The mechanical properties were examined by tensile and dynamical mechanical analysis (DMTA) tests. The morphology of the resulting TDVs was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and the thermal properties by differential scanning calorimetry (DSC). Based on these results, the initial temperature of 125 °C is the most suitable for the production of TDVs. Based on the atomic force micrographs, it can be assumed that phase separation occurred in the TPU matrix and we managed to evenly distribute the rubber phase in the TDVs. However, based on the SEM images, these dispersed rubber particles tended to agglomerate and form a quasi-continuous secondary phase where rubber particles were held together by secondary forces (dipole–dipole and hydrogen bonding) and can be broken up reversibly by heat and/or shear. In terms of mechanical properties, the TDVs we produced are on a par with commercially available TDVs with similar hardness.
Collapse
Affiliation(s)
- Andrea Kohári
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - István Zoltán Halász
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Tamás Bárány
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|