1
|
Wirth S, Schöler M, Brügmann J, Leopold CS. An Investigation on the Relationship between Dust Emission and Air Flow as Well as Particle Size with a Novel Containment Two-Chamber Setup. Pharmaceutics 2024; 16:1088. [PMID: 39204433 PMCID: PMC11359288 DOI: 10.3390/pharmaceutics16081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
In the present study with a novel two-chamber setup (TCS) for dustiness investigations, the relationship between pressure differences as well as air velocities and the resulting dust emissions is investigated. The dust emissions of six particle size fractions of acetaminophen at pressure differences between 0 and 12 Pa are examined. The results show that both simulated and measured air velocities increase with increasing pressure difference. Dust emissions decrease significantly with increasing pressure difference and air velocity. Fine particles cause higher dust emissions than coarse particles. A high goodness of fit is obtained with exponential and quadratic functions to describe the relationship between pressure difference and dust emission, indicating that even moderate increases in pressure may lead to a reduction in the emission. Average air velocities within the TCS simulated with Computational Fluid Dynamics are between 0.09 and 0.37 m/s, whereas those measured experimentally are between 0.09 and 0.41 m/s, both ranges corresponding to the recommended values for effective particle separation in containment systems. These results underline the ability of the novel TCS to control pressure and airflow, which is essential for reliable dust emission measurements and thus provide support for further scientific and industrial applications.
Collapse
Affiliation(s)
- Steffen Wirth
- Department of Pharmaceutical Technology, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany;
| | - Martin Schöler
- Fette Compacting GmbH, Grabauer Straße 24, 21493 Schwarzenbek, Germany; (M.S.)
| | - Jonas Brügmann
- Fette Compacting GmbH, Grabauer Straße 24, 21493 Schwarzenbek, Germany; (M.S.)
| | - Claudia S. Leopold
- Department of Pharmaceutical Technology, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany;
| |
Collapse
|
2
|
Dhoble S, Kapse A, Ghegade V, Chogale M, Ghodake V, Patravale V, Vora LK. Design, development, and technical considerations for dry powder inhaler devices. Drug Discov Today 2024; 29:103954. [PMID: 38531423 DOI: 10.1016/j.drudis.2024.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The dry powder inhaler (DPI) stands out as a highly patient-friendly and effective pulmonary formulation, surpassing traditional and other pulmonary dosage forms in certain disease conditions. The development of DPI products, however, presents more complexities than that of other dosage forms, particularly in device design and the integration of the drug formulation. This review focuses on the capabilities of DPI devices in pulmonary drug delivery, with a special emphasis on device design and formulation development. It also discusses into the principles of deep lung particle deposition and device engineering, and provides a current overview of the market for DPI devices. Furthermore, the review highlights the use of computational fluid dynamics (CFD) in DPI product design and discusses the regulatory environment surrounding these devices.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Archana Kapse
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Vaibhav Ghegade
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Manasi Chogale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Vinod Ghodake
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | | |
Collapse
|
3
|
Zhu Q, Kakhi M, Jayasundara C, Walenga R, Behara SRB, Chan HK, Yang R. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler. Int J Pharm 2023; 647:123556. [PMID: 37890648 DOI: 10.1016/j.ijpharm.2023.123556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Capsule based dry powder inhalers (DPIs) often require piercing of the capsule before inhalation, and the characteristics of the apertures (punctured holes) affect air flow and the release of powders from the capsule. This work develops a numerical model based on the two-way coupling of computational fluid dynamics and discrete element method (CFD-DEM) to investigate the effect of aperture size on powder dispersion in the Aerolizer® device loaded with only carrier particles (lactose). Powders (carrier particles) in the size range 60-140 μm (d50: 90 μm and span: 0.66) were initialized in a capsule which had a circular aperture at each end. Boundary conditions corresponding to an air flow rate of 45 L/min were specified at each inlet to the mixing chamber (i.e., a total flow rate 90 L/min), and a capsule spin speed of ∼ 4050 rpm. The velocity magnitudes inside the capsule were considerably lower than those in the mixing chamber in the vicinity of the rotating capsule, with the exception of the capsules featuring 2.5 mm and 4 mm apertures. Larger apertures reduced the capsule emptying time and increased the particle evacuation velocity; the fluid drag force on the particles issuing from the capsule peaked for an aperture of 1.3 mm. Inside the capsule, particle-particle (PP) collisions were more frequent than particle-wall (PW) collisions due to high concentration of powder, but PP collisions had smaller (median) impact energy than PW collisions. Larger apertures resulted in fewer collisions in the capsule with higher PW and virtually unchanged PP collision energies. Outside the capsule (i.e., in the inhaler mixing chamber), PW collisions occurred more frequently than PP collisions with median collision energies typically two orders of magnitude higher than inside the capsule. Larger apertures resulted in more collisions with slightly reduced collision energy, but this effect plateaued for aperture sizes larger than 1.3 mm. Powder dispersion, expressed as the fine particle fraction (FPF) of the powder, was predicted using an empirical equation based on carrier PW collisions. Therefore, consistent with the model prediction of the effect of aperture sizes on the chamber collision frequency, FPF increased with aperture size but plateaued beyond 1.3 mm.
Collapse
Affiliation(s)
- Qixuan Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maziar Kakhi
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chandana Jayasundara
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Srinivas Ravindra Babu Behara
- Division of Immediate and Modified Release Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Runyu Yang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Simulations of high-pressure fluid flow in a pre-cracked rock specimen composed of densely packed bonded spheres using a 3D CFD model and simplified 2D coupled CFD-DEM approach. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Azeem A, Singh G, Li L, Chan HK, Yang R, Cheng S, Kourmatzis A. Quantifying Agglomerate-to-Wall Impaction in Dry Powder Inhalers. Pharm Res 2023; 40:307-319. [PMID: 36471024 DOI: 10.1007/s11095-022-03446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE The probability of agglomerate-to-wall collision was quantified using a unique image processing technique applied to high-speed microscopic images. The study aimed to investigate the effects of flow rate and particle size on the percentage of colliding agglomerates detected within an in-house powder dispersion device. METHOD The device consists of a swirl chamber and two tangential inlets in various configurations, designed to emulate the geometric features of commercial devices such as the Aerolizer® and Osmohaler®. The test cases were conducted with constant flow rates of 30 SLPM and 60 SLPM. Four powder samples were tested, including carrier Respitose® SV010 (median volume diameter 104 µm, span 1.7) and mannitol of three constituent primary particle sizes (3 µm, 5 µm and 7 µm; span 1.6 - 1.9). RESULTS At the lower flow rate of 30 SLPM, collision frequencies were significantly different between powders of different constituent particle sizes, but the effects of powder properties diminished on increasing the flow rate to 60 SLPM. At the higher flow rate, all powders experienced a significant increase in the proportion of colliding particles. CONCLUSION Analysis of collision events showed that the probability of collision for each agglomerate increased with agglomerate diameter and velocity. Experimental data of agglomerate-to-wall collision were utilised to develop a logistic regression model that can accurately predict collisions with various powders and flow rates.
Collapse
Affiliation(s)
- Athiya Azeem
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gajendra Singh
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, IIT Mandi, Mandi, HP, 175075, India
| | - Lunjian Li
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hak-Kim Chan
- School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Runyu Yang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Alfano FO, Sommerfeld M, Di Maio FP, Di Renzo A. DEM analysis of powder deaggregation and discharge from the capsule of a carrier-based Dry Powder Inhaler. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Numerical Modeling of Particle Dynamics Inside a Dry Powder Inhaler. Pharmaceutics 2022; 14:pharmaceutics14122591. [PMID: 36559084 PMCID: PMC9783107 DOI: 10.3390/pharmaceutics14122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
The development of novel dry powders for dry powder inhalers (DPIs) requires the in vitro assessment of DPI aerodynamic performance. As a potential complementary method, in silico numerical simulations can provide additional information about the mechanisms that guide the particles and their behavior inside DPIs. The aim of this study was to apply computational fluid dynamics (CFDs) coupled with a discrete phase model (DPM) to describe the forces and particle trajectories inside the RS01® as a model DPI device. The methodology included standard fluid flow equations but also additional equations for the particle sticking mechanism, as well as particle behavior after contacting the DPI wall surface, including the particle detachment process. The results show that the coefficient of restitution between the particle and the impact surface does not have a high impact on the results, meaning that all tested combinations gave similar output efficiencies and particle behaviors. No sliding or rolling mechanisms were observed for the particle detachment process, meaning that simple bouncing off or deposition particle behavior is present inside DPIs. The developed methodology can serve as a basis for the additional understanding of the particles' behavior inside DPIs, which is not possible using only in vitro experiments; this implies the possibility of increasing the efficiency of DPIs.
Collapse
|
8
|
Wirth S, Schöler M, Brügmann J, Leopold CS. A Novel Two-Chamber Setup for Containment Investigations with Special Focus on the Dustiness of Pharmaceutical Powders Depending on the Airflow. Pharmaceutics 2022; 14:2387. [PMID: 36365205 PMCID: PMC9696387 DOI: 10.3390/pharmaceutics14112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In the present study, it was shown that a newly developed two-chamber setup (TCS) for containment investigations consisting of an emission and a detection chamber may serve to predict the dustiness of HPAPIs in a sealed system at different flow conditions. These flow conditions include the plain diffusive transport and the diffusive transport with the oppositely directed convective flow of airborne particles of the safe surrogate substance acetaminophen (ACAM). A linear correlation was found between an atomized amount of up to 400 mg of ACAM and the resulting dust emissions. The dust emission was reduced significantly by an oppositely directed convective flow. The results from the examinations, using either atomized ACAM or smoke for the determination of the evacuation time of the detection chamber, indicated that both methods are comparable. Furthermore, computational fluid dynamics (CFD) simulations were performed to determine the evacuation time. A time period of 9 min was sufficient for a reproducible evacuation and a reliable detection of most airborne ACAM particles within the detection chamber. CFD simulations were also carried out to simulate the air velocity resulting from various pressure differences and to visualize the flow of the airborne particles within the detection chamber.
Collapse
Affiliation(s)
- Steffen Wirth
- Department of Pharmaceutical Technology, University of Hamburg, Bundesstr. 45, D-20146 Hamburg, Germany
| | - Martin Schöler
- Fette Compacting GmbH, Grabauer Straße 24, D-21493 Schwarzenbek, Germany
| | - Jonas Brügmann
- Fette Compacting GmbH, Grabauer Straße 24, D-21493 Schwarzenbek, Germany
| | - Claudia S. Leopold
- Department of Pharmaceutical Technology, University of Hamburg, Bundesstr. 45, D-20146 Hamburg, Germany
| |
Collapse
|
9
|
Zhu Q, Gou D, Li L, Chan HK, Yang R. Numerical investigation of powder dispersion mechanisms in Turbuhaler and the contact electrification effect. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ye Y, Ma Y, Fan Z, Zhu J. The effects of grid design on the performance of 3D-printed dry powder inhalers. Int J Pharm 2022; 627:122230. [PMID: 36162608 DOI: 10.1016/j.ijpharm.2022.122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
The grid structure is an indispensable part of most dry powder inhalers, but the effects of grid geometry on inhaler performance are rarely reported. This study aims to systemically investigate the influence of grid design on the aerosolization performance of capsule-based inhalers through experiments and computational analysis. In-vitro aerosolization and deposition performance of commercial and 3D-printed customized inhalers with different grid mesh designs were experimentally studied using a Next Generation Impactor (NGI). Flow fields in the inhalers were generated, and average turbulence kinetic energy (TKE) and airstream trajectories were obtained through Computational Fluid Dynamics (CFD) analysis, delineating the effects of the different grid designs. Comparative studies using the commercial inhalers and the 3D-printed inhalers show a slightly better performance for the latter, probably due to the different materials used for the inhalers, confirming the suitability of 3D printing. Experimental results show that intensive grid meshes with a relatively small aperture size are beneficial to enhancing inhaler performance. Computational results illustrate that the intensive grid meshes can reduce vortexed airstreams and increase turbulent kinetic energy at the grids in general, which also supports the experimental results. In summary, inhalers with intensive grid meshes are preferred for capsule-based inhalers to enhance aerosolization performance. These findings have significant implications for the comprehensive understanding of how grid designs influence inhaler performance.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 502-Bldf A SIP, 108 Yuxi Road, Suzhou 215125, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 502-Bldf A SIP, 108 Yuxi Road, Suzhou 215125, China
| | - Ziyi Fan
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada.
| |
Collapse
|
11
|
A CFD-DEM investigation of powder transport and aerosolization in ELLIPTA® dry powder inhaler. POWDER TECHNOL 2022; 409. [DOI: 10.1016/j.powtec.2022.117817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Capecelatro J, Longest W, Boerman C, Sulaiman M, Sundaresan S. Recent developments in the computational simulation of dry powder inhalers. Adv Drug Deliv Rev 2022; 188:114461. [PMID: 35868587 DOI: 10.1016/j.addr.2022.114461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
This article reviews recent developments in computational modeling of dry powder inhalers (DPIs). DPIs deliver drug formulations (sometimes blended with larger carrier particles) to a patient's lungs via inhalation. Inhaler design is complicated by the need for maximum aerosolization efficiency, which is favored by high levels of turbulence near the mouthpiece, with low extrathoracic depositional loss, which requires low turbulence levels near the mouth-throat region. In this article, we review the physical processes contributing to aerosolization and subsequent dispersion and deposition. We assess the performance characteristics of DPIs using existing simulation techniques and offer a perspective on how such simulations can be improved to capture the physical processes occurring over a wide range of length- and timescales more efficiently.
Collapse
Affiliation(s)
- Jesse Capecelatro
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Connor Boerman
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mostafa Sulaiman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sankaran Sundaresan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
13
|
Wang J, Zhang Y, Chen X, Feng Y, Ren X, Yang M, Ding T. Targeted delivery of inhalable drug particles in a patient-specific tracheobronchial tree with moderate COVID-19: A numerical study. POWDER TECHNOL 2022; 405:117520. [PMID: 35602760 PMCID: PMC9110329 DOI: 10.1016/j.powtec.2022.117520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to severe social and economic disruption worldwide. Although currently no consent has been reached on a specific therapy that can treat COVID-19 effectively, several inhalation therapy strategies have been proposed to inhibit SARS-CoV-2 infection. These strategies include inhalations of antiviral drugs, anti-inflammatory drugs, and vaccines. To investigate how to enhance the therapeutic effect by increasing the delivery efficiency (DE) of the inhaled aerosolized drug particles, a patient-specific tracheobronchial (TB) tree from the trachea up to generation 6 (G6) with moderate COVID-19 symptoms was selected as a testbed for the in silico trials of targeted drug delivery to the lung regions with pneumonia alba, i.e., the severely affected lung segments (SALS). The 3D TB tree geometry was reconstructed from spiral computed tomography (CT) scanned images. The airflow field and particle trajectories were solved using a computational fluid dynamics (CFD) based Euler-Lagrange model at an inhalation flow rate of 15 L/min. Particle release maps, which record the deposition locations of the released particles, were obtained at the inlet according to the particle trajectories. Simulation results show that particles with different diameters have similar release maps for targeted delivery to SALS. Point-source aerosol release (PSAR) method can significantly enhance the DE into the SALS. A C++ program has been developed to optimize the location of the PSAR tube. The optimized simulations indicate that the PSAR approach can at least increase the DE of the SALS by a factor of 3.2× higher than conventional random-release drug-aerosol inhalation. The presence of the PSAR tube only leads to a 7.12% change in DE of the SALS. This enables the fast design of a patient-specific treatment for reginal lung diseases.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Ya Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaole Chen
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China,Corresponding author
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaoyong Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Minjuan Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ting Ding
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
14
|
Capsule-Based Dry Powder Inhaler Evaluation Using CFD-DEM Simulations and Next Generation Impactor Data. Eur J Pharm Sci 2022; 175:106226. [DOI: 10.1016/j.ejps.2022.106226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
|
15
|
Kadota K, Matsumoto K, Uchiyama H, Tobita S, Maeda M, Maki D, Kinehara Y, Tachibana I, Sosnowski TR, Tozuka Y. In silico evaluation of particle transport and deposition in the airways of individual patients with chronic obstructive pulmonary disease. Eur J Pharm Biopharm 2022; 174:10-19. [DOI: 10.1016/j.ejpb.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
|
16
|
Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers. Int J Pharm 2022; 612:121293. [PMID: 34808267 DOI: 10.1016/j.ijpharm.2021.121293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the device performance of a new design by comparing with a typical commercial DPI. Computational fluid dynamics (CFD) coupled with the discrete element method (DEM) collision has been utilized in this study to characterize and examine the flow field and particle transportation, respectively. A typical commercial DPI and an in-house designed novel DPI with distinct design features were compared to explore their dispersion capabilities and suitability for delivery to the respiratory tract. For this exploration, realistic oral to larynx and tracheobronchial airway models consisting of bio-relevant features were adopted to enhance practical feasibility. Distinct aerosol performances were observed between the two DPIs in the respiratory tract, where the in-house DPI, in comparison with the commercial DPI, has shown approximately 30% lower deposition fraction in the mouth-throat region with approximately 7% higher escape rate in the tracheobronchial region under the identical inhalation condition. This observation demonstrates that a novel in-house designed DPI provides higher device efficiency over the selected typical commercial DPI.
Collapse
|
17
|
Park H, Han CS, Park CW, Kim K. Change in spray behavior of pharmaceutical particles by creating bypass hole in dry powder inhaler. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Comparative Assessment of In Vitro and In Silico Methods for Aerodynamic Characterization of Powders for Inhalation. Pharmaceutics 2021; 13:pharmaceutics13111831. [PMID: 34834247 PMCID: PMC8619946 DOI: 10.3390/pharmaceutics13111831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
In vitro assessment of dry powders for inhalation (DPIs) aerodynamic performance is an inevitable test in DPI development. However, contemporary trends in drug development also implicate the use of in silico methods, e.g., computational fluid dynamics (CFD) coupled with discrete phase modeling (DPM). The aim of this study was to compare the designed CFD-DPM outcomes with the results of three in vitro methods for aerodynamic assessment of solid lipid microparticle DPIs. The model was able to simulate particle-to-wall sticking and estimate fractions of particles that stick or bounce off the inhaler's wall; however, we observed notable differences between the in silico and in vitro results. The predicted emitted fractions (EFs) were comparable to the in vitro determined EFs, whereas the predicted fine particle fractions (FPFs) were generally lower than the corresponding in vitro values. In addition, CFD-DPM predicted higher mass median aerodynamic diameter (MMAD) in comparison to the in vitro values. The outcomes of different in vitro methods also diverged, implying that these methods are not interchangeable. Overall, our results support the utility of CFD-DPM in the DPI development, but highlight the need for additional improvements in these models to capture all the key processes influencing aerodynamic performance of specific DPIs.
Collapse
|
19
|
Zhang B, Wang B, Yan S, Bai Z, Hu Z, Lu Z. CFD-DEM coupling simulation of fixed bed reactor with small diameter ratio. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1788577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bin Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Bingjie Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Shenglin Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Ziqiang Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Zhaojin Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
20
|
Li M, Chang RYK, Lin Y, Morales S, Kutter E, Chan HK. Phage cocktail powder for Pseudomonas aeruginosa respiratory infections. Int J Pharm 2021; 596:120200. [PMID: 33486032 DOI: 10.1016/j.ijpharm.2021.120200] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/30/2022]
Abstract
Phage cocktail broadens the host range compared with a single phage and minimizes the development of phage-resistant bacteria thereby promoting the long-term usefulness of inhaled phage therapy. In this study, we produced a phage cocktail powder by spray drying three Pseudomonas phages PEV2 (podovirus), PEV1 and PEV20 (both myovirus) with lactose (80 wt%) and leucine (20 wt%) as excipients. Our results showed that the phages remained viable in the spray dried powder, with little to mild titer reduction (ranging from 0.11 to 1.3 logs) against each of their specific bacterial strains. The powder contained spherical particles with a small volume median diameter of 1.9 µm (span 1.5), a moisture content of 3.5 ± 0.2 wt%., and was largely amorphous with some crystalline peaks, which were assigned to the excipient leucine, as shown in the X-ray diffraction pattern. When the powder was dispersed using the low- and high-resistance Osmohalers, the fine particle fraction (FPF, wt. % of particles < 5 µm in the aerosols relative to the loaded dose) values were 45.37 ± 0.27% and 62.69 ± 2.1% at the flow rate of 100 and 60 L/min, respectively. In conclusion, the PEV phage cocktail powder produced was stable, inhalable and efficacious in vitro against various MDR P. aeruginosa strains that cause pulmonary infections. This formulation will broaden the bactericidal spectrum and reduce the emergence of resistance in bacteria compared with single-phage formulations reported previously.
Collapse
Affiliation(s)
- Mengyu Li
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Yu Lin
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Zheng Z, Leung SSY, Gupta R. Flow and Particle Modelling of Dry Powder Inhalers: Methodologies, Recent Development and Emerging Applications. Pharmaceutics 2021; 13:189. [PMID: 33535512 PMCID: PMC7912775 DOI: 10.3390/pharmaceutics13020189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients' inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.
Collapse
Affiliation(s)
- Zhanying Zheng
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong;
| | - Raghvendra Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India;
| |
Collapse
|
22
|
Sou T, Bergström CAS. Contemporary Formulation Development for Inhaled Pharmaceuticals. J Pharm Sci 2020; 110:66-86. [PMID: 32916138 DOI: 10.1016/j.xphs.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary delivery has gained increased interests over the past few decades. For respiratory conditions, targeted drug delivery directly to the site of action can achieve a high local concentration for efficacy with reduced systemic exposure and adverse effects. For systemic conditions, the unique physiology of the lung evolutionarily designed for rapid gaseous exchange presents an entry route for systemic drug delivery. Although the development of inhaled formulations has come a long way over the last few decades, many aspects of it remain to be elucidated. In particular, a reliable and well-understood method for in vitro-in vivo correlations remains to be established. With the rapid and ongoing advancement of technology, there is much potential to better utilise computational methods including different types of modelling and simulation approaches to support inhaled formulation development. This review intends to provide an introduction on some fundamental concepts in pulmonary drug delivery and inhaled formulation development followed by discussions on some challenges and opportunities in the translation of inhaled pharmaceuticals from preclinical studies to clinical development. The review concludes with some recent advancements in modelling and simulation approaches that could play an increasingly important role in modern formulation development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Tomás Sou
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Christel A S Bergström
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
He Y, Muller F, Hassanpour A, Bayly AE. A CPU-GPU cross-platform coupled CFD-DEM approach for complex particle-fluid flows. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Davydzenka T, Fagbemi S, Tahmasebi P. Wettability control on deformation: Coupled multiphase fluid and granular systems. Phys Rev E 2020; 102:013301. [PMID: 32794917 DOI: 10.1103/physreve.102.013301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 06/15/2020] [Indexed: 11/07/2022]
Abstract
Understanding of multiphase flow in porous media is important for a wide range of applications such as soil science, environmental remediation, energy resources, and CO_{2} sequestration. This phenomenon depends on the complex interplay between the fluid and solid forces such as gravitational, capillary, and viscous forces, as well as wettability of the solid phase. Such interactions along with the geometry of the medium give rise to a variety of complex flow regimes. Although much research has been done in the area of wettability, its mechanical effect is not well understood, and it continues to challenge our understanding of the phenomena on macroscopic and microscopic scales. In this paper, therefore, the effect of wettability on the deformation of porous media and fluid-fluid patterns is studied through a series of three-dimensional (3D) simulations. To this end, the discrete element method (DEM) and volume of fluid (VOF) are coupled to accurately model free-surface flow interaction in a cylindrical pack of spheres. The fluid-particle interactions are modeled by exchanging information between DEM and VOF, while the effect of wettability is considered to study how it controls fluid displacement. The results indicate that the drag force and deformation in the pack vary with the change in wettability and capillary number. To demonstrate the effect of both wettability and capillary number, a series of numerical experiments were conducted with two capillary numbers and three wettability conditions. Our results show that the drag force was greatest for near extreme wettability conditions, which resulted in a larger deformation.
Collapse
Affiliation(s)
- Tsimur Davydzenka
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Samuel Fagbemi
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Pejman Tahmasebi
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, USA.,Department of Civil Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
| |
Collapse
|
25
|
Mitani R, Ohsaki S, Nakamura H, Watano S. Numerical Study on Particle Adhesion in Dry Powder Inhaler Device. Chem Pharm Bull (Tokyo) 2020; 68:726-736. [PMID: 32741913 DOI: 10.1248/cpb.c20-00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the particle adhesion mechanism in a capsule of dry powder inhaler (DPI) based on a combined computational fluid dynamics and discrete element method (CFD-DEM) approach. In this study, the Johnson-Kendall-Roberts (JKR) theory was selected as the adhesion force model. The simulation results corroborated the experimental results-numerous particles remained on the outlet side of the capsule, while a few particles remained on the inlet side. In the computer simulation, the modeled particles were placed in a capsule. They were quickly dispersed to both sides of the capsule, by air fed from one side of the capsule, and delivered from the air inlet side to the outlet side of the capsule. It was confirmed that vortex flows were seen at the outlet side of the capsule, which, however, were not seen at the inlet side. Numerous collisions were observed at the outlet side, while very few collisions were observed at the inlet side. These results suggested that the vortex flows were crucial to reduce the amount of residual particles in the capsule. The original capsule was then modified to enhance the vortex flow in the area, where many particles were found remaining. The modified capsule reduced the number of residual particles compared to the original capsule. This investigation suggests that the CFD-DEM approach can be a great tool for understanding the particle adhesion mechanism and improving the delivery efficiency of DPIs.
Collapse
Affiliation(s)
- Ryosuke Mitani
- Department of Chemical Engineering, Osaka Prefecture University
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Prefecture University
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Prefecture University
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Prefecture University
| |
Collapse
|
26
|
Davydzenka T, Fagbemi S, Tahmasebi P. Coupled fine-scale modeling of the wettability effects: Deformation and fracturing. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2020; 32:083308. [PMID: 32831539 PMCID: PMC7437159 DOI: 10.1063/5.0018455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Multiphase flow in porous media has been thoroughly studied over the years and its importance is encountered in several areas related to geo-materials. One of the most important parameters that control multiphase flow in any complex geometry is wettability, which is an affinity of a given fluid toward a surface. In this paper, we have quantified the effects of wettability on deformation in porous media, along with other parameters that are involved in this phenomenon. To this end, we conducted numerical simulations on a porous medium by coupling the exchanged forces between the fluid and solid. To include the effect of wettability in the medium, we used the Fictitious Domain methodology and coupled it with volume of fluid through which one can model more than one fluid in the system. To observe the effect of wettability on dynamic processes in the designated porous medium, such as deformation, particle-particle contact stresses, particle velocity, and injection pressure, a series of systematic computations were conducted where wettability is varied through five different contact angles. We found that wettability not only controls the fluid propagation patterns but also affects drag forces exerted on the particles during injection such that larger deformations are induced for particles with lower wettability. Our results are also verified against experimental tests.
Collapse
Affiliation(s)
- Tsimur Davydzenka
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Samuel Fagbemi
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
27
|
Gao X, Zhou Z, Xu Y, Yu Y, Su Y, Cui T. Numerical simulation of particle motion characteristics in quantitative seed feeding system. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Tamadondar MR, Rasmuson A. The effect of carrier surface roughness on wall collision‐induced detachment of micronized pharmaceutical particles. AIChE J 2019. [DOI: 10.1002/aic.16771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad R. Tamadondar
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Anders Rasmuson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
29
|
Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Eur J Pharm Sci 2019; 128:299-324. [DOI: 10.1016/j.ejps.2018.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022]
|
30
|
Lee HJ, Kwon IH, Lee HG, Kwon YB, Woo HM, Cho SM, Choi YW, Chon J, Kim K, Kim DW, Park CW. Spiral mouthpiece design in a dry powder inhaler to improve aerosolization. Int J Pharm 2018; 553:149-156. [DOI: 10.1016/j.ijpharm.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
31
|
Approach for Multicriteria Equipment Redesign in Sterile Manufacturing of Biopharmaceuticals. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Towards quantitative prediction of the performance of dry powder inhalers by multi-scale simulations and experiments. Int J Pharm 2018; 547:31-43. [DOI: 10.1016/j.ijpharm.2018.05.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 02/02/2023]
|
33
|
Ruzycki CA, Martin AR, Vehring R, Finlay WH. AnIn VitroExamination of the Effects of Altitude on Dry Powder Inhaler Performance. J Aerosol Med Pulm Drug Deliv 2018; 31:221-236. [DOI: 10.1089/jamp.2017.1417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Conor A. Ruzycki
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Andrew R. Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Warren H. Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
34
|
Lee HJ, Lee HG, Kwon YB, Kim JY, Rhee YS, Chon J, Park ES, Kim DW, Park CW. The role of lactose carrier on the powder behavior and aerodynamic performance of bosentan microparticles for dry powder inhalation. Eur J Pharm Sci 2018; 117:279-289. [DOI: 10.1016/j.ejps.2018.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
|
35
|
Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. Eur J Pharm Sci 2018; 113:171-184. [DOI: 10.1016/j.ejps.2017.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023]
|
36
|
Imagine the Superiority of Dry Powder Inhalers from Carrier Engineering. JOURNAL OF DRUG DELIVERY 2018; 2018:5635010. [PMID: 29568652 PMCID: PMC5820590 DOI: 10.1155/2018/5635010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Inhalation therapy has strong history of more than 4000 years and it is well recognized around the globe within every culture. In early days, inhalation therapy was designed for treatment of local disorders such as asthma and other pulmonary diseases. Almost all inhalation products composed a simple formulation of a carrier, usually α-lactose monohydrate orderly mixed with micronized therapeutic agent. Most of these formulations lacked satisfactory pulmonary deposition and dispersion. Thus, various alternative carrier's molecules and powder processing techniques are increasingly investigated to achieve suitable aerodynamic performance. In view of this fact, more suitable and economic alternative carrier's molecules with advanced formulation strategies are discussed in the present review. Furthermore, major advances, challenges, and the future perspective are discussed.
Collapse
|
37
|
Kopsch T, Murnane D, Symons D. A personalized medicine approach to the design of dry powder inhalers: Selecting the optimal amount of bypass. Int J Pharm 2018; 529:589-596. [PMID: 28743094 DOI: 10.1016/j.ijpharm.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 11/29/2022]
Abstract
In dry powder inhalers (DPIs) the patient's inhalation manoeuvre strongly influences the release of drug. Drug release from a DPI may also be influenced by the size of any air bypass incorporated in the device. If the amount of bypass is high less air flows through the entrainment geometry and the release rate is lower. In this study we propose to reduce the intra- and inter-patient variations of drug release by controlling the amount of air bypass in a DPI. A fast computational method is proposed that can predict how much bypass is needed for a specified drug delivery rate for a particular patient. This method uses a meta-model which was constructed using multiphase computational fluid dynamic (CFD) simulations. The meta-model is applied in an optimization framework to predict the required amount of bypass needed for drug delivery that is similar to a desired target release behaviour. The meta-model was successfully validated by comparing its predictions to results from additional CFD simulations. The optimization framework has been applied to identify the optimal amount of bypass needed for fictitious sample inhalation manoeuvres in order to deliver a target powder release profile for two patients.
Collapse
Affiliation(s)
- Thomas Kopsch
- University of Cambridge, Department of Engineering, Trumpington Street, CB2 1PZ, UK.
| | - Darragh Murnane
- University of Hertfordshire, Department of Pharmacy, Pharmacology and Postgraduate Medicine, College Lane, AL10 9AB, UK
| | - Digby Symons
- University of Canterbury, Mechanical Engineering Department, Christchurch 8140, New Zealand
| |
Collapse
|
38
|
Gourgoulianis K, Daniil Z, Athanasiou K, Rozou S, Bontozoglou V. Application of a One-Dimensional Computational Model for the Prediction of Deposition from a Dry Powder Inhaler. J Aerosol Med Pulm Drug Deliv 2017; 30:435-443. [PMID: 28683222 DOI: 10.1089/jamp.2016.1363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Accurate prediction of the regional deposition of inhaled dry powders as a function of powder properties and breathing pattern is a long-term research goal for pulmonary drug delivery. In the present work, deposition along the respiratory tract of dry powders of Fluticasone propionate and Salmeterol is predicted. METHODS A one-dimensional particle transport and deposition model is used, whose novelty is in the treatment of the alveolar space of each airway generation as an efficient mixing chamber. This assumption has been supported by simulations and measurements during the last 20 years. The model is applied to two popular pulmonary tree geometries, to investigate the effect of particle size on localized deposition and to estimate the uncertainty due to variations in airway size. RESULTS AND CONCLUSIONS Application of the model for the specific particle size distribution measured by a cascade impactor in the marketed product ELPENhaler, predicts the whole lung deposition (WLD), as well as the split between pulmonary (PU) and tracheobronchial (TB) deposition. Introduction in the model of modified particle size distributions with increased fractions of fine particles, indicates that the fine-particle dose is a satisfactory predictor of WLD but not of the PU/TB ratio.
Collapse
Affiliation(s)
| | - Zoi Daniil
- 1 Department of Respiratory Medicine, Medical School, University of Thessaly , Larissa, Greece
| | | | | | - Vasileios Bontozoglou
- 3 Department of Mechanical Engineering, School of Engineering, University of Thessaly , Volos, Greece
| |
Collapse
|
39
|
Tong Z, Yang R, Yu A. CFD-DEM study of the aerosolisation mechanism of carrier-based formulations with high drug loadings. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Wilson R, Dini D, Van Wachem B. The influence of surface roughness and adhesion on particle rolling. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.01.080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Optimization of a DPI Inhaler: A Computational Approach. J Pharm Sci 2017; 106:850-858. [DOI: 10.1016/j.xphs.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 11/20/2022]
|
42
|
Wang Y, Chu K, Yu A. Transport and deposition of cohesive pharmaceutical powders in human airway. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714008004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Kolanjiyil AV, Kleinstreuer C, Sadikot RT. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application. Comput Biol Med 2016; 84:247-253. [PMID: 27836120 DOI: 10.1016/j.compbiomed.2016.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/04/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of drugs are deposited in the oral cavity. Hence, the output of a modified DPI has been evaluated to achieve improved drug delivery, especially needed when targeting the smaller lung airways. This study is the first to utilize CF-PD methodology to simulate drug-aerosol transport and deposition under actual breathing conditions in a whole lung model, using a commercial dry-powder inhaler for realistic inlet conditions.
Collapse
Affiliation(s)
- Arun V Kolanjiyil
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, United States
| | - Clement Kleinstreuer
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, United States; Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7910, United States.
| | - Ruxana T Sadikot
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, School of Medicine, United States; Department of Veterans Affairs, Atlanta VAMC, United States
| |
Collapse
|
44
|
Parumasivam T, Leung SSY, Tang P, Mauro C, Britton W, Chan HK. The Delivery of High-Dose Dry Powder Antibiotics by a Low-Cost Generic Inhaler. AAPS JOURNAL 2016; 19:191-202. [PMID: 27679516 DOI: 10.1208/s12248-016-9988-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/09/2016] [Indexed: 01/31/2023]
Abstract
The routine of loading multiple capsules for delivery of high-dose antibiotics is time consuming, which may reduce patient adherence to inhaled treatment. To overcome this limitation, an investigation was carried out using four modified versions of the Aerolizer® that accommodate a size 0 capsule for delivery of high payload formulations. In some prototypes, four piercing pins of 0.6 mm each were replaced with a single centrally located 1.2-mm pin and one-third reduced air inlet of the original design. The performance of these inhalers was evaluated using spray-dried antibiotic powders with distinct morphologies: spherical particles with a highly corrugated surface (colistin and tobramycin) and needle-like particles (rifapentine). The inhalers were tested at capsule loadings of 50 mg (colistin), 30 mg (rifapentine) and 100 mg (tobramycin) using a multistage liquid impinger (MSLI) operating at 60 L/min. The device with a single pin and reduced air inlet showed a superior performance than the other prototypes in dispersing colistin and rifapentine powders, with a fine particle fraction (FPF wt% <5 μm in the aerosol) between 62 and 68%. Subsequently, an Aerolizer® with the same configuration (single pin and one-third air inlet) that accommodates a size 00 capsule was designed to increase the payload of colistin and rifapentine. The performance of the device at various inspiratory flow rates and air volumes achievable by most cystic fibrosis (CF) patients was examined at the maximum capsule loading of 100 mg. The device showed optimal performance at 45 L/min with an air volume of 1.5-2.0 L for colistin and 60 L/min with an air volume of 2.0 L for rifapentine. In conclusion, the modified size 00 Aerolizer® inhaler as a low-cost generic device demonstrated promising results for delivery of various high-dose formulations for treatment of lung infections.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sharon S Y Leung
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Citterio Mauro
- R & D and Industrialization, Plastiape S.p.A., 23875, Osnago, Italy
| | - Warwick Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, 2006, Australia.,Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
45
|
Leung CMS, Tong Z, Zhou Q, Chan JGY, Tang P, Sun S, Yang R, Chan HK. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure. AAPS JOURNAL 2016; 18:1159-1167. [DOI: 10.1208/s12248-016-9922-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/17/2016] [Indexed: 01/08/2023]
|
46
|
Li Y, Dove A, Curtis JS, Colwell JE. 3D DEM simulations and experiments exploring low-velocity projectile impacts into a granular bed. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Computational fluid dynamics (CFD) investigation of the gas–solid flow and performance of Andersen cascade impactor. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Leung SSY, Tang P, Zhou QT, Tong Z, Leung C, Decharaksa J, Yang R, Chan HK. De-agglomeration Effect of the US Pharmacopeia and Alberta Throats on Carrier-Based Powders in Commercial Inhalation Products. AAPS JOURNAL 2015. [PMID: 26201967 DOI: 10.1208/s12248-015-9802-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The US pharmacopeia (USP) and Alberta throats were recently reported to cause further de-agglomeration of carrier-free powders emitted from some dry powder inhalers (DPIs). This study assessed if they have similar influences on commercially available carrier-based DPIs. A straight tube, a USP throat, and an Alberta throat (non-coated and coated) were used for cascade impaction testing. Aerosol fine particle fraction (FPF ≤ 5 μm) was computed to evaluate throat-induced de-agglomeration. Computational fluid dynamics are employed to simulate airflow patterns and particle trajectories inside the USP and Alberta throats. For all tested products, no significant differences in the in vitro aerosol performance were observed between the USP throat and the straight tube. Using fine lactose carriers (<10 μm), Symbicort(®) and Oxis(™) showed minimal impaction inside the Alberta throat and resulted in similar FPF among all induction ports. For products using coarse lactose carriers (>10 μm), impaction frequency and energy inside the Alberta throat were significant. Further de-agglomeration was noted inside the non-coated Alberta throat for Seretide(®) and Spiriva(®), but agglomerates emitted from Relenza(®), Ventolin(®), and Foradil(®) did not further break up into smaller fractions. The coated Alberta throat considerably reduced the FPF values of these products due to the high throat retention, but they generally agreed better with the in vivo data. In conclusion, depending on the powder formulation (including carrier particle size), the inhaler, and the induction port, further de-agglomeration could happen ex-inhaler and create differences in the in vitro measurements.
Collapse
Affiliation(s)
| | - Patricia Tang
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qi Tony Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zhenbo Tong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Cassandra Leung
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Janwit Decharaksa
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Runyu Yang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
49
|
Numerical evaluation of stresses acting on particles in high-pressure microsystems using a Reynolds stress model. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Multi-Scale Modelling of Powder Dispersion in a Carrier-Based Inhalation System. Pharm Res 2014; 32:2086-96. [DOI: 10.1007/s11095-014-1601-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
|