1
|
Zhou S, Wang Y, Li Z, Wu F, Hong Y, Shen L, Lin X. Fingerprinting of physical manufacturing properties of different acids for effervescent systems. Pharm Dev Technol 2024; 29:649-662. [PMID: 38864367 DOI: 10.1080/10837450.2024.2367519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The study aimed to fingerprint the physical manufacturing properties of five commonly used acid sources in effervescent systems for designing the formulation and process of such systems. The hygroscopicity, texture properties, rheological torque, compressibility, tabletability, etc., were investigated to inspect 'powder direct compression (DC)' and 'wet granulation and compression' properties of citric (CA), tartaric (TA), malic (MA), fumaric (FA), and adipic acid (AA). The DC ability was evaluated by the SeDeM expert system. The results indicated that all acid powders failed to meet flowability requirements for DC, and plastic deformation dominated during compression. Furthermore, CA exhibited strong hygroscopicity and punch sticking, while MA demonstrated the best tabletability. TA had a large wet granulation space and was relatively the most suitable for DC. AA was extremely hygroscopic, and its flowability improved significantly as particle size increased. Finally, FA displayed the lowest hygroscopicity and ejection force as well as great compressibility and wet granulation space, and did not exhibit punch sticking, while the granule fragments dissolved slowly during disintegration. Generally speaking, the formulation or granulation affected the tabletability, indicating that pairing with other acids or suitable fillers could potentially improve its disadvantages. These multidimensional assessments effectively reduce the pre-exploration and enhance the efficiency of the development of effervescent systems.
Collapse
Affiliation(s)
- Shiyi Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yiting Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
2
|
Li Z, Peng W, Zhu L, Liu W, Yang L, Chen L, Naeem A, Zhu W, Feng Y, Ming L. Study on Improving the Performance of Traditional Medicine Extracts with High Drug Loading Based on Co-spray Drying Technology. AAPS PharmSciTech 2023; 24:247. [PMID: 38030948 DOI: 10.1208/s12249-023-02703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
The purpose of this study is to develop modified particles with different structures to improve the flowability and compactibility of Liuwei Dihuang (LWDH) powder using co-spray drying technology, and to investigate the preparation mechanism of modified particles and their modified direct compaction (DC) properties. Moreover, tablets with high drug loading contents were also prepared. Particles were designed using polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC E3) as shell materials, and sodium bicarbonate (NaHCO3) and ammonium bicarbonate (NH4HCO3) as pore-forming agents. The porous particles (Ps), core-shell particles (CPs), and porous core-shell particles (PCPs) were prepared by co-spray drying technology. The key DC properties and texture properties of all the particles were measured and compared. The properties of co-spray drying liquid were also determined and analyzed. According to the results, Ps showed the least improvement in DC properties, followed by CPs, and PCPs showed a significant improvement. The modifier, because of its low surface tension, was wrapped in the outer layer to form a shell, and the pore-forming agent was thermally decomposed to produce pores, forming core-shell, porous, and porous core-shell composite structures. The smooth surface of the shell structure enhances fluidity, while the porous structure allows for greater compaction space, thereby improving DC properties during the compaction process.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Wanghai Peng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Lin Zhu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Wenjun Liu
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lingyu Yang
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yi Feng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Liangshan Ming
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| |
Collapse
|
3
|
Suk Kim J, ud Din F, Jin Choi Y, Ran Woo M, Cheon S, Hun Ji S, Park S, Oh Kim J, Seok Youn Y, Lim SJ, Giu Jin S, Choi HG. Hydroxypropyl-β-cyclodextrin-based solid dispersed granules: A prospective alternative to conventional solid dispersion. Int J Pharm 2022; 628:122286. [DOI: 10.1016/j.ijpharm.2022.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
4
|
Chen FC, Liu WJ, Zhu WF, Yang LY, Zhang JW, Feng Y, Ming LS, Li Z. Surface Modifiers on Composite Particles for Direct Compaction. Pharmaceutics 2022; 14:pharmaceutics14102217. [PMID: 36297653 PMCID: PMC9612340 DOI: 10.3390/pharmaceutics14102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Direct compaction (DC) is considered to be the most effective method of tablet production. However, only a small number of the active pharmaceutical ingredients (APIs) can be successfully manufactured into tablets using DC since most APIs lack adequate functional properties to meet DC requirements. The use of suitable modifiers and appropriate co-processing technologies can provide a promising approach for the preparation of composite particles with high functional properties. The purpose of this review is to provide an overview and classification of different modifiers and their multiple combinations that may improve API tableting properties or prepare composite excipients with appropriate co-processed technology, as well as discuss the corresponding modification mechanism. Moreover, it provides solutions for selecting appropriate modifiers and co-processing technologies to prepare composite particles with improved properties.
Collapse
Affiliation(s)
- Fu-Cai Chen
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jun Liu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Wei-Feng Zhu
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ling-Yu Yang
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Ji-Wen Zhang
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Feng
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang-Shan Ming
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| | - Zhe Li
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| |
Collapse
|
5
|
Gao Y, Li J, Zhao L, Hong Y, Shen L, Wang Y, Lin X. Distribution pattern and surface nature-mediated differential effects of hydrophilic and hydrophobic nano-silica on key direct compaction properties of Citri Reticulatae Pericarpium powder by co-processing. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
A Continuous Conical-Mill Operation for Dry Coating of Pharmaceutical Powders: The Role of Processing Time. Processes (Basel) 2022. [DOI: 10.3390/pr10030540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over the last decade, the conical mill has emerged as a potential piece of equipment to use for continuous dry coating pharmaceutical powders. In this work, silicon dioxide was used as a guest particle on two excipients, fast flow lactose (FFL) and grade PH200 microcrystalline cellulose (MCC), for dry coating by a conical mill with a modified screen that permitted batch and continuous mode operation. Samples were pre-processed in a V-blender. SEM images, particle size distribution, and EDS mapping were used to characterise the treated powders. Pre-processed samples showed some discrete coating of the host particle. After batch processing, the samples were covered with a complete coating. When processed at high impeller speed, coating of FFL was a mix of A200P and FFL fines generated by attrition. Continuous mode processed samples, which had a lower processing time, were coated discretely and showed a better coating than the pre-processed samples. Increasing guest/host mass ratio with FFL host particle had a positive impact on the quality of the coating. These results help to build the case that the processing time of the conical mill is a key parameter to the success of the conical mill as dry coating equipment in the pharmaceutical industry.
Collapse
|
7
|
You G, Zhao H, Gao D, Wang M, Ren X, Wang Y. Predictive models of tensile strength and disintegration time for simulated Chinese herbal medicine extracts compound tablets based on artificial neural networks. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Li Z, Wu F, Hong Y, Shen L, Lin X, Feng Y. The Fundamental and Functional Property Differences Between HPMC and PVP Co-Processed Herbal Particles Prepared by Fluid Bed Coating. AAPS PharmSciTech 2020; 21:201. [PMID: 32676863 DOI: 10.1208/s12249-020-01739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
Core-shell composite particles (CPs) are the most preferred choice for direct compaction (DC), but their application in herbal tablets is limited. Hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) are usually employed as the shell materials, but there are few, if any, researches exploring the different effects of HPMC and PVP on the properties of herbal CPs. In this study, the CPs containing HPMC (CP X-H) and CPs containing PVP (CP X-P) were prepared based on herbal powders (X). Their physical properties were characterized comprehensively. The differences in properties between CP X-H and CP X-P were explored, and their mechanism analysis was also performed profoundly. The results demonstrated that (i) CP X-H and CP X-P exhibited similar flowability; (ii) CP X-H generally exhibited better compactibility, larger particle size, and more uniform particle size distribution, and lower bulk density, tap density, and hygroscopicity than CP X-P; (iii) compared with the tablets produced with CP X-P, ones with CP X-H exhibited similar weight variation (%), lower friability, and longer disintegration time. The mechanism analysis manifested that the differences in physical properties between HPMC and PVP were the important and fundamental factors, which led to the differences in structure and surface morphology of particles, and in fundamental properties of CPs. These findings are beneficial to the development of herbal core-shell CPs for DC.
Collapse
|
9
|
Sharma R, Setia G. Mechanical dry particle coating on cohesive pharmaceutical powders for improving flowability - A review. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li Z, Zhou M, Wu F, Shen L, Lin X, Feng Y. Direct compaction properties of Zingiberis Rhizoma extracted powders coated with various shell materials: Improvements and mechanism analysis. Int J Pharm 2019; 564:10-21. [PMID: 30974193 DOI: 10.1016/j.ijpharm.2019.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/19/2019] [Accepted: 04/07/2019] [Indexed: 02/08/2023]
Abstract
Direct compaction (DC) attracts more and more attention for tablet manufacturing; however, its application in natural plant product (NPP) tablets is still extremely limited. In this study, 8 kinds of composite particles (CPs) based on the Zingiberis Rhizoma extracted powder (ZR) (a natural plant product powder with poor DC properties) were prepared with different shell materials, including hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), dextran, inulin, mannitol, silica, and their combinations. Their physical properties and compacting parameters were characterized comprehensively. The results demonstrated that (i) fluid bed coating was not a simple process of superposition and transmission of the physical properties of raw materials; and (ii) all the shell materials studied could improve the DC properties of problematic ZR to some degree and the combination of 7% HPMC and 1% silica showed to be the best to markedly improve both the compactibility and flowability of ZR. As a whole, by virtue of the design of core-shell particles, qualified tablets with high ZR loadings were successfully produced via continuous DC in this study. These findings are beneficial to boosting the development of natural plant tablets through DC.
Collapse
Affiliation(s)
- Zhe Li
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Miaomiao Zhou
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Wu
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
11
|
Li Z, Wu F, Zhao L, Lin X, Shen L, Feng Y. Evaluation of fundamental and functional properties of natural plant product powders for direct compaction based on multivariate statistical analysis. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Zhou M, Wang Y, Wu F, Shen L, Lin X, Feng Y. Development on porous particles of Pueraria lobatae Radix for improving its compactibility and dissolution. RSC Adv 2018; 8:24250-24260. [PMID: 35539169 PMCID: PMC9082050 DOI: 10.1039/c8ra04125c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a study on the influence of particles having different porosities on tablet performance. The ethanol extract of Pueraria lobatae Radix (EPL) was chosen as the model drug. A series of porous EPL particles were prepared by co-spray drying EPL with different amounts of ammonium bicarbonate (NH4HCO3), and their powder properties (particle morphology, particle size, porosity, flowability, bulk density, and tap density) and tablet properties (tensile strength, E sp, yield pressure, dissolution, etc.) were comparatively investigated. The results showed that there were significant differences in the fundamental and functional properties of the spray-dried and parent EPLs. First, the irregular and dense primary EPL particles were transformed into loose, hollow, and spheroidal particles via co-spray drying with NH4HCO3. Second, compared to parent EPL, porous EPLs showed a significant improvement (1.80-7.03 times) in compactibility. Third, the dissolution rates of porous EPLs were similar, and all were more than twice as fast as that of parent EPL. The increased porosity, on the one hand, led to the increase in interparticle and intraparticle bonding forces during tableting and, on the other hand, facilitated water intrusion into tablets for disintegration and dissolution. Porous particle design is therefore promising, especially for drugs with both poor compactibility and dissolution.
Collapse
Affiliation(s)
- MiaoMiao Zhou
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322197 +86 21 51322197
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322429 +86 21 51322429
| | - YouJie Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322429 +86 21 51322429
| | - Fei Wu
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322197 +86 21 51322197
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322429 +86 21 51322429
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322197 +86 21 51322197
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322197 +86 21 51322197
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine Shanghai 201203 PR China +86 21 51322429 +86 21 51322429
| |
Collapse
|
13
|
Dong Q, Zhou M, Lin X, Shen L, Feng Y. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying. Eur J Pharm Sci 2018; 119:147-158. [PMID: 29626592 DOI: 10.1016/j.ejps.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022]
Abstract
This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development.
Collapse
Affiliation(s)
- QianQian Dong
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - MiaoMiao Zhou
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
14
|
Makar RR, Latif R, Hosni EA, El Gazayerly ON. The Impact of Amorphisation and Spheronization Techniques on the Improved in Vitro & in Vivo Performance of Glimepiride Tablets. Adv Pharm Bull 2017; 7:557-567. [PMID: 29399545 PMCID: PMC5788210 DOI: 10.15171/apb.2017.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 12/01/2022] Open
Abstract
Purpose: Triple solid dispersion adsorbates (TSDads) and spherical agglomerates (SA) present new techniques that extensively enhance dissolution of poorly soluble drugs. The aim of the present study is to hasten the onset of hypoglycemic effect of glimepiride through enhancing its rate of release from tablet formulation prepared from either technique. Methods: Drug release from TSDads or SA tablets with different added excipients was explored. Scanning electron microscopy (SEM) and effect of compression on dissolution were illustrated. Pharmacodynamic evaluation was performed on optimized tablets. Results: TSDads & SA tablets with Cross Povidone showed least disintegration times of 1.48 and 0.5 min. respectively. Kinetics of drug release recorded least half-lives (54.13 and 59.83min for both techniques respectively). Cross section in tablets displayed an organized interconnected matrix under SEM, accounting for the rapid access of dissolution media to the tablet core. Components of tablets filled into capsules showed a similar release profile to that of tablets after compression as indicated by similarity factor. The onset time of maximum reduction in blood glucose in male albino rabbits was hastened to 2h instead of 3h for commercial tablets. Conclusion: After optimization of tablet excipients that interacted differently with respect to their effect on drug release, we could conclude that both amorphisation and spheronization were equally successful in promoting in vitro dissolution enhancement as well as providing a more rapid onset time for drug action in vivo.
Collapse
Affiliation(s)
| | - Randa Latif
- Faculty of Pharmacy, Department of Pharmaceutics, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
15
|
Production of composite particles using an innovative continuous dry coating process derived from extrusion. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Li Z, Zhao L, Lin X, Shen L, Feng Y. Direct compaction: An update of materials, trouble-shooting, and application. Int J Pharm 2017; 529:543-556. [PMID: 28720538 DOI: 10.1016/j.ijpharm.2017.07.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 01/25/2023]
Abstract
Direct compaction (DC) is the preferred choice for tablet manufacturing; however, only less than 20% of active pharmaceutical ingredients could be compacted via DC as its high requirement for functional properties of materials. Materials with improper functionalities could lead to serious troubles during DC manufacturing, such as content non-uniformity, sticking, and capping, all of which profoundly affect the properties of final products and, thus, severely restrict the practical application of DC. With undoubted importance, these seem to be unexpectedly ignored by reviewers but not researchers in terms of many original research articles published recently. Therefore, as an informative supplement and update, this review mainly focused on trouble-shooting and application situation of DC, together with several newly reported materials.
Collapse
Affiliation(s)
- Zhe Li
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - LiJie Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
17
|
Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants. J Pharm Sci 2017; 106:3022-3032. [PMID: 28551425 DOI: 10.1016/j.xphs.2017.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 11/22/2022]
Abstract
This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders.
Collapse
|
18
|
Composite particles based on particle engineering for direct compaction. Int J Pharm 2017; 519:272-286. [DOI: 10.1016/j.ijpharm.2017.01.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 02/04/2023]
|
19
|
Gong X, Chang SY, Osei-Yeboah F, Paul S, Perumalla SR, Shi L, Sun WJ, Zhou Q, Sun CC. Dependence of tablet brittleness on tensile strength and porosity. Int J Pharm 2015; 493:208-13. [DOI: 10.1016/j.ijpharm.2015.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/06/2015] [Accepted: 07/16/2015] [Indexed: 11/28/2022]
|
20
|
Karde V, Panda S, Ghoroi C. Surface modification to improve powder bulk behavior under humid conditions. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Huang Z, Scicolone JV, Han X, Davé RN. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. Int J Pharm 2015; 478:447-55. [DOI: 10.1016/j.ijpharm.2014.11.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
22
|
Zhou Q, Shi L, Marinaro W, Lu Q, Sun CC. Improving manufacturability of an ibuprofen powder blend by surface coating with silica nanoparticles. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2013.08.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|