1
|
Roy S, Mishra SR, Ahmaruzzaman M. Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: Synergistic effect and mechanistic insight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121802. [PMID: 39003907 DOI: 10.1016/j.jenvman.2024.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
This study proposes a novel one-pot hydrothermal impregnation strategy for surface decoration of waste derived pisum sativum biochar with zero‒dimensional Cu‒MOF Quantum dots (PBC‒HK), with an average particle size of 5.67 nm, for synergistic removal of an emerging sulfur containing drug pantoprazole (PTZ) and Basic Blue 26 (VB) dye within 80 min and 50 min of visible-light exposure, respectively. The designed Integrated Photocatalytic Adsorbent (IPA) presented an enhanced PTZ removal efficiency of 95.23% with a catalyst loading of 0.24 g/L and initial PTZ conc. 30 mg/L at pH 7, within 80 min via synergistic adsorption and photodegradation under visible-light exposure. While, on the other hand, 96.31% VB removal efficiency was obtained in 50 min with a catalyst dosage of 0.20 g/L, initial VB conc. 60 mg/L at pH 7 under similar irradiation conditions. An in-depth analysis of the synergistic adsorption and photocatalysis mechanism resulting in the shortened time for the removal of contaminants in the synergistic integrated model has been performed by outlining the various advantageous attributes of this strategy. The first-order degradation rate constant for PTZ was found to be 0.04846 min-1 and 0.04370 min-1 for PTZ and VB, respectively. Adsorption of contaminant molecules on the biochar (PS‒BC) surface can facilitate photodegradation by accelerating the kinetics, and photodegradation promotes regeneration of adsorption sites, contributing to an overall reduction in operation time for removal of contaminants. Besides enhancing the adsorption of targeted pollutants, the carbon matrix of IPAs serves as a surface for adsorption of intermediates of degradation, thereby minimizing the risk of secondary pollution. The photogenerated holes present in the VB is responsible for the generation of •OH radicals. While, the photogenerated electrons present in the CB are captured by Cu2+ of the MOF metal center, reducing it to Cu+, which is subsequently oxidized to produce additional •OH species in the aqueous medium. This process leads to effective charge separation of the photogenerated charge carriers and minimizes the probability of charge recombination as evident from photoluminescence (PL) analysis. Meanwhile, PL studies, EPR and radical trapping experiments indicate the predominant role of •OH radicals in the removal mechanism of PTZ and VB. The investigation of the degradation reaction intermediates was confirmed by HR‒LCMS, on the basis of which the plausible degradation pathway was elucidated in detail. Moreover, effects of pH, inorganic salts, other organic compounds and humic acid concentration have been investigated in detail. The environmental impact of the proposed method was comprehensively evaluated by ICP-OES analysis and TOC and COD removal studies. Furthermore, the economic feasibility and the cost-effectiveness of the catalyst was assessed to address the potential for large scale commercialization. Notably, this research not only demonstrates a rational design strategy for the utilization of solid waste into treasure via the fabrication of IPAs based on MOF Quantum dots (QDs) and waste-derived biochar, but also provides a practical solution for real wastewater treatment systems for broader industrial applications.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
2
|
Gadore V, Mishra SR, Ahmaruzzaman M. Bio-inspired sustainable synthesis of novel SnS 2/biochar nanocomposite for adsorption coupled photodegradation of amoxicillin and congo red: Effects of reaction parameters, and water matrices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117496. [PMID: 36801688 DOI: 10.1016/j.jenvman.2023.117496] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study aims to fabricate a novel integrated photocatalytic adsorbent (IPA) via a green solvothermal process employing tea (Camellia sinensis var. assamica) leaf extract as a stabilizing and capping agent for the removal of organic pollutants from wastewater. An n-type semiconductor photocatalyst, SnS2, was chosen as a photocatalyst due to its remarkable photocatalytic activity supported over areca nut (Areca catechu) biochar for the adsorption of pollutants. The adsorption and photocatalytic properties of fabricated IPA were examined by taking amoxicillin (AM) and congo red (CR) as two emerging pollutants found in wastewater. Investigating synergistic adsorption and photocatalytic properties under varying reaction conditions mimicking actual wastewater conditions marks the novelty of the present research. The support of biochar for the SnS2 thin films induced a reduction in charge recombination rate, which enhanced the photocatalytic activity of the material. The adsorption data were in accordance with the Langmuir nonlinear isotherm model, indicating monolayer chemosorption with the pseudo-second-order rate kinetics. The photodegradation process follows pseudo-first-order kinetics with the highest rate constant of 0.0450 min-1 for AM and 0.0454 min-1 for CR. The overall removal efficiency of 93.72 ± 1.19% and 98.43 ± 1.53% could be achieved within 90 min for AM and CR via simultaneous adsorption and photodegradation model. A plausible mechanism of synergistic adsorption and photodegradation of pollutants is also presented. The effect of pH, Humic acid (HA) concentration, inorganic salts and water matrices have also been included.The photodegradation activity of SnS2 under visible light coupled with the adsorption capability of the biochar results in the excellent removal of the contaminants from the liquid phase.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
3
|
Vinayagasundaram C, Samson Nesaraj A, Sivaranjana P. Overview on multicomponent ceramic composite materials used for efficient photocatalysis – An update. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Lammini A, Dehbi A, Omari H, ELazhari K, Mehanned S, Bengamra Y, Dehmani Y, Rachid O, Alrashdi AA, Gotore O, Abdellaoui A, Lgaz H. Experimental and theoretical evaluation of synthetized cobalt oxide for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Majumder P, Gangopadhyay R. Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC Adv 2022; 12:5686-5719. [PMID: 35425552 PMCID: PMC8981679 DOI: 10.1039/d1ra06731a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
The discovery of the 2D nanostructure of graphene was in fact the beginning of a new generation of materials. Graphene itself, its oxidized form graphene oxide (GO), the reduced form of GO (RGO) and their numerous composites are associates of this generation. Out of this spectrum of materials, the development of GO and related hybrid materials has been reviewed in the present article. GO can be functionalized with metals (Ag and Mg) and metal oxides (CuO, MgO, Fe2O3, Ag2O, etc.) nanoparticles (NPs), organic ligands (chitosan and EDTA) and can also be dispersed in different polymeric matrices (PVA, PMMA, PPy, and PAn). All these combinations give rise to nanohybrid materials with improved functionality. An updated report on the chronological development of such nanohybrid materials of diverse nature has been delivered in the present context. Modifications in synthesis methodologies as well as performances and applications of individual materials are addressed accordingly. The functional properties of GO were synergistically modified by photoactive semiconductor NPs; as a result, the GO-MO hybrids acquired excellent photocatalytic ability and were able to degrade a large variety of organic dyes (MB, RhB, MO, MR, etc.) and pathogens. The large surface area of GO was successfully complemented by the NPs so that high and selective adsorption capacity towards metal ions and organic molecules as well as improved charge separation properties could be achieved. As a result, GO-MO hybrids have been considered effective materials in water purification, energy storage and antibacterial applications. GO-MO hybrids with magnetic particles have exhibited selective destruction of cancerous cells and controlled drug release properties, extremely important in the pharmaceutical field. Chitosan and EDTA-modified GO could form 3D network-like structures with strong efficiency in removing heavy metal ions and organic pollutants. GO as a filler enhanced the strength, flexibility and functional properties of common polymers, such as PVA and PVC, to a large extent while, GO-CP composites with polyaniline and polypyrrole are considered suitable for the fabrication of biosensors, supercapacitors, and MEMS as well as efficient photothermal therapy agents. In summary, GO-based hybrids with inorganic and organic counterparts have been designed, the unique properties of which are exploited in versatile fields of applications.
Collapse
Affiliation(s)
- Pampi Majumder
- A/515, H. B. Town, Purbayan, Sodepur Kolkata 700110 West Bengal India
| | - Rupali Gangopadhyay
- Department of Chemistry, Sister Nivedita University Action Area I, DG Block, 1/2, New Town Kolkata 700156 West Bengal India
| |
Collapse
|
6
|
Graphene Oxide/Fe3O4/Chitosan−Coated Nonwoven Polyester Fabric Extracted from Disposable Face Mask for Enhanced Efficiency of Organic Dye Adsorption. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8055615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Owing to the COVID-19 pandemic, huge amounts of disposable face masks have been manufactured and used, and these discarded face masks have to be treated. In this study, we propose a simple approach for reusing the nonwoven polyester fabric (NWPF) from disposable face masks. In this approach, NWPF is utilized as a supporter for coating of a layer of graphene oxide/Fe3O4/chitosan (GFC) to form a GFC/NWPF adsorbent at room temperature via a simple spray coating method that does not require any solvent. The specific properties of GFC, NWPF, and the GFC/NWPF adsorbent were analysed via X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy, vibrating sample magnetometry, and field-emission scanning electron microscopy. Results showed that the presence of NWPF enhanced the adsorption capacity of GFC towards organic dyes. At high concentrations of the organic dyes, the adsorption efficiency of the GFC/NWPF adsorbent to the dyes reached 100% within 24 h. The adsorption capacity (
) of the GFC/NWPF adsorbent to methylene blue, methyl orange, Congo red, and moderacid red was 54.795, 87.489, 88.573, and 29.010 mg g−1, respectively, which were considerably higher than that of bulk GFC (39.308, 82.304, 52.910, and 21.249 mg g−1, respectively).
Collapse
|
7
|
Qiu F, Pan S, Zhu X, Zhang T. Synthesis of Ternary Heterostructure Semiconductor Photocatalyst and Its Photocatalytic Performance Under Visible Light Irradiation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Al-Aoh HA, Darwish AAA. Enhancement of the adsorptive performance of TiO 2nanoparticles towards methylene blue by adding suspended nanoparticles of Pt: kinetics, isotherm, and thermodynamic studies. NANOTECHNOLOGY 2021; 32:415706. [PMID: 34233310 DOI: 10.1088/1361-6528/ac121f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Methylene blue (MB) is one of the most dangerous dyes found in numerous industries' wastewaters. Thus, the effect of suspended Pt nanoparticles (NPs) on the adsorption capability of TiO2NPs towards MB was investigated in this research. Factors affecting (adsorbate initial concentration, agitation time, solution pH, and temperature) the adsorption capacity of MB on the modified TiO2NPs were also studied. It was found that the first two factors have a positive effect, the temperature has an adverse impact, and the maximum uptake was observed when pH is 11. Isotherm parameters of Langmuir, Freundlich, and Timken models were determined. Langmuir's model was found to be the best one for analyzing the experimental data. The adsorption capacities obtained were 100.61, 90.66, and 80.26 mg g-1at 25 °C, 40 °C, and 55 °C, respectively. 1storder, 2ndorder, and intra-particle diffusion kinetic models were utilized to analyze experimental data. It found that these data were explained well by the 2ndorder model, indicating that this adsorption is chemisorption. Thermodynamic parameters were also determined, and the results obtained suggest that this adsorption is an exothermic and spontaneous process. The findings show that TiO2NPs modified by suspended Pt NPs will get a strong attraction in the treatment of fluids and wastewaters.
Collapse
Affiliation(s)
- Hatem A Al-Aoh
- Water Treatment Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - A A A Darwish
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Physics, Faculty of Education at Al-Mahweet, Sana'a University, Al-Mahweet, Yemen
| |
Collapse
|
9
|
Ghazal S, Akbari A, Hosseini HA, Sabouri Z, Forouzanfar F, Khatami M, Darroudi M. Sol-gel biosynthesis of nickel oxide nanoparticles using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Akbari A, Sabouri Z, Hosseini HA, Hashemzadeh A, Khatami M, Darroudi M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107867] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Khandan Nasab N, Sabouri Z, Ghazal S, Darroudi M. Green-based synthesis of mixed-phase silver nanoparticles as an effective photocatalyst and investigation of their antibacterial properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127411] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Al-Aoh HA, Mihaina IAM, Alsharif MA, Darwish AAA, Rashad M, Mustafa SK, Aljohani MMH, Al-Duais MA, Al-Shehri HS. Removal of methylene blue from synthetic wastewater by the selected metallic oxides nanoparticles adsorbent: equilibrium, kinetic and thermodynamic studies. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1680366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hatem A. Al-Aoh
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ibrahim A. M. Mihaina
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - A. A. A. Darwish
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - M. Rashad
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Physics, Faculty of Science, Assiut University, Assiut, Egypt
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Mohammed A. Al-Duais
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Chemistry, Faculty of Science, Ibb University, Ibb, Yemen
| | | |
Collapse
|
13
|
Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.075] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
A novel multifunctional sandwiched activated carbon between manganese and tin oxides nanoparticles for removal of divalent metal ions. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sodium hydroxide-modified graphene oxide was used as manganese oxides support for the preparation of nanocomposites via a one-pot preparation route for the degradation of Reactive Black 5. The nanocomposites were characterized for their structure by X-ray diffraction, for their textural properties by Nitrogen adsorption, and for their surface chemistry by Fourier transform infrared spectroscopy, potentiometric titration, and thermal analysis measurements. The nanocomposites prepared showed to possess high activity for the degradation/oxidation of Reactive Black 5 at ambient conditions, without light irradiation, which was higher than that of the precursors manganese oxides and can be attributed to the synergistic effect of the manganese oxides and the modified graphene oxide.
Collapse
|
16
|
Liu Y, Gao C, Li Q, Pang H. Nickel Oxide/Graphene Composites: Synthesis and Applications. Chemistry 2018; 25:2141-2160. [DOI: 10.1002/chem.201803982] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yushu Liu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy; Yangzhou University; Yangzhou 225009 Jiangsu P.R. China
| | - Chun Gao
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy; Yangzhou University; Yangzhou 225009 Jiangsu P.R. China
- Jiangsu Commercial Vocational College; Nantong 226011 Jiangsu P.R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy; Yangzhou University; Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy; Yangzhou University; Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
17
|
Lingamdinne LP, Singh J, Choi JS, Chang YY, Yang JK, Karri RR, Koduru JR. Multivariate modeling via artificial neural network applied to enhance methylene blue sorption using graphene-like carbon material prepared from edible sugar. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Ahmad J, Majid K. Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants. NEW J CHEM 2018. [DOI: 10.1039/c7nj03617e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of efficient CdO based photocatalysts for enhanced visible light driven photocatalytic degradation of organic pollutants mostly emphasize on (1) increase of surface area of the photocatalyst and (2) high charge separation and suppressed recombination of photogenerated electron–hole pairs.
Collapse
Affiliation(s)
- Jahangir Ahmad
- Department of Chemistry
- National Institute of Technology
- Srinagar
- India
| | - Kowsar Majid
- Department of Chemistry
- National Institute of Technology
- Srinagar
- India
| |
Collapse
|
19
|
Phasuk A, Srisantitham S, Tuntulani T, Anutrasakda W. Facile synthesis of magnetic hydroxyapatite-supported nickel oxide nanocomposite and its dye adsorption characteristics. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9931-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Qiu F, Zhu X, Guo Q, Dai Y, Xu J, Zhang T. Fabrication of a novel hierarchical flower-like hollow structure Ag 2 WO 4 /WO 3 photocatalyst and its enhanced visible-light photocatalytic activity. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.05.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Wei Y, Wu Y, Chang Q, Xie M, Wang X, Mo J, He X, Zhao Z, Zhao Z. Ultrasonic-assisted modification of a novel silkworm-excrement-based porous carbon with various Lewis acid metal ions for the sustained release of the pesticide thiamethoxam. RSC Adv 2017. [DOI: 10.1039/c7ra04595f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrasonic-assisted metal modification of a novel biocarbon for enhance the sustained release (∼40 days) of pesticide thiamethoxam.
Collapse
Affiliation(s)
- Yannan Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Yuxiang Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Qing Chang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Meixuan Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Xinhui Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Jinwen Mo
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Xuekun He
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Zhenxia Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Zhongxing Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| |
Collapse
|
22
|
Chen D, Zhang H, Yang K, Wang H. Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:179-87. [PMID: 26921511 DOI: 10.1016/j.jhazmat.2016.02.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/12/2016] [Accepted: 02/19/2016] [Indexed: 05/04/2023]
Abstract
In this work, 4-aminothiophenol and 3-aminopropyltriethoxysilane were firstly used to functionalize graphene oxide (GO) in order to promote the sorption efficiencies of methylene blue (MB) and copper (Cu(2+)). Characterization experiments illustrated that sulfydryl group (SH) and amino group (NH2) were existed onto 4-aminothiophenol modified GO (GO-SH) and 3-aminopropyltriethoxysilane modified GO (GO-N), respectively. Adsorption isotherm results showed that the maximum adsorption capacities of MB by GO-SH and GO-N were 763.30 and 676.22mg/g, which was much higher than original GO 455.95mg/g. For Cu(2+) adsorption, the maximum adsorption capacities by GO-SH and GO-N were 99.17 and 103.28mg/g, suggesting that the engineered GO exhibited greater Cu(2+) sorption ability than original GO 32.91mg/g. Both MB and Cu(2+) removal rates increased with pH and adsorbent dosage increased, while the sorption rates weakly reduced with increasing ionic strength. The modification by SH and NH2 would not only increase the sorption sites, but also cause chelation with heavy metals, and thus improving the sorption capacities of MB and Cu(2+).
Collapse
Affiliation(s)
- Dan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Huining Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
Photocatalytic Decolorization of Dye Effluent Using Radiation Developed Polymeric Nanocomposites. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0346-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Yin W, Cao H. One-step synthesis of SnO2-reduced graphene oxide (SOG) composites for efficient removal of organic dyes from wastewater. RSC Adv 2016. [DOI: 10.1039/c6ra21856c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this work, SnO2 functionalized graphene oxide was shown to possess high adsorption capacities and fast adsorption rates for organic dyes over wide pH ranges. Additionally, the adsorbent could be easily regenerated by washing with ethanol.
Collapse
Affiliation(s)
- Wenzhu Yin
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Huaqiang Cao
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
25
|
Kumar R, Singh RK, Savu R, Dubey PK, Kumar P, Moshkalev SA. Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Adv 2016. [DOI: 10.1039/c6ra00426a] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A simple and fast microwave irradiation technique has been used to synthesize void-induced with graphene-wrapped nickel oxide (VGWN) hybrids. The VGWN hybrid material provides long term cyclic stability and excellent electrochemical performance.
Collapse
Affiliation(s)
- Rajesh Kumar
- Centre for Semiconductor Components
- State University of Campinas (UNICAMP)
- 13083-870 Campinas
- Brazil
| | - Rajesh Kumar Singh
- Department of Physics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221005
- India
| | - Raluca Savu
- Centre for Semiconductor Components
- State University of Campinas (UNICAMP)
- 13083-870 Campinas
- Brazil
| | - Pawan Kumar Dubey
- Nanotechnology Application Centre
- University of Allahabad
- Allahabad 211002
- India
| | - Pradip Kumar
- Centre for Materials Architecturing
- Korea Institute of Science and Technology
- Seoul 136-791
- Republic of Korea
| | - Stanislav A. Moshkalev
- Centre for Semiconductor Components
- State University of Campinas (UNICAMP)
- 13083-870 Campinas
- Brazil
| |
Collapse
|