1
|
Biji CA, Balde A, Kim SK, Nazeer RA. Optimization of alginate/carboxymethyl chitosan microbeads for the sustained release of celecoxib and attenuation of intestinal inflammation in vitro. Int J Biol Macromol 2024; 282:137022. [PMID: 39476907 DOI: 10.1016/j.ijbiomac.2024.137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Multiple anti-inflammatory medications have helped treat inflammatory bowel disease (IBD). However, oral administration has minimal absorption and systemic side effects. This study aims to investigate the potential of encapsulating anti-inflammatory drug celecoxib (Cele) within microbeads for the treatment of IBD. Microbeads were formed by cross-linking carboxymethyl chitosan (CMCs) with sodium alginate (Alg) through the ionic gelation method and optimized through response surface methodology. Additionally, the study revealed a mucoadhesivity value of 59.32 ± 0.74 % for the optimized microbead system. The drug release study demonstrated the sustained release of Cele CMCs/Alg microbeads upto 24 h compared to quick release of the free drug. The results of the cell viability assay indicated that the Cele-Alg/CMCs microbeads exhibited a non-toxic nature within the concentration range of 100-250 μM. A significant decrease in nitric oxide (NO) generation (61.14 ± 3.67 %) was seen in HCT-116 cells stimulated with lipopolysaccharide (LPS) upon treatment with Cele-250μM/CMCs/Alg microbeads. The results of the reactive oxygen species and wound healing assay suggest that Cele-250μM/CMCs/Alg microbeads had improved anti-inflammatory characteristics comparable to those of free drug treatment. The western blot analysis demonstrated that the microbeads composed of CMCs/Alg-Cele possess the capacity to inhibit the expression of COX-2 in vitro supressing inflammation.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India.
| |
Collapse
|
2
|
Khatreja K, Santhiya D. Physicochemical characterization of novel okra mucilage/hyaluronic acid-based oral disintegrating films for functional food applications. Int J Biol Macromol 2024; 278:134633. [PMID: 39128761 DOI: 10.1016/j.ijbiomac.2024.134633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Oral disintegrating films (ODFs) offer a patient-friendly approach with enhanced convenience and rapid onset of action over various health benefits. ODFs are fabricated for geriatric, pediatric, and individuals facing swallowing challenges. The present work aims to fabricate and characterize ODFs mainly composed of okra mucilage (OM), hyaluronic acid (HA), vitamin-C-loaded bioactive glass nanoparticles (VBG NPs), and clove essential oil. A bio-inspired method was employed to synthesize VBG NPs using fructose template. The nutrient analysis of OM depicted that it is a rich source of protein, carbohydrates, magnesium, and flavonoids (quercetin), accounting for its antioxidant activity. The physicochemical characteristics of the ODFs studied using contact angle measurement, surface pH, opacity, and in vitro disintegration time revealed that ODFs disintegrated rapidly in simulated saliva. The neutral surface pH of ODFs indicates their non-irritant behaviour to the oral mucosa. VBG NPs and essential oil (EO) addition enhance the thermal and mechanical properties. Further, EO infusion in the film matrix resulted in the porous and antibacterial nature of the functional film as revealed by FE-SEM micrographs and antibacterial disk diffusion assay respectively. The obtained novel nutrient-rich ODF is hemocompatible with a hemolysis rate (HR%) <5 % and suitable for functional food applications.
Collapse
Affiliation(s)
- Krizma Khatreja
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi 110 042, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi 110 042, India.
| |
Collapse
|
3
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
4
|
Liu T, Gong X, Cai Y, Li HY, Forbes B. Pullulan-Based Spray-Dried Mucoadhesive Microparticles for Sustained Oromucosal Drug Delivery. Pharmaceutics 2024; 16:460. [PMID: 38675121 PMCID: PMC11053838 DOI: 10.3390/pharmaceutics16040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Mucoadhesive microparticles for oromucosal drug delivery offer several advantages, including intimate contact with the mucosa, delivery to less accessible regions, extended residence time, sustained drug release, reduced irritation, and improved patient compliance. In this study, pullulan was used to prepare mucoadhesive spray-dried microparticles for delivering benzydamine hydrochloride (BZH) to oral mucosa. The BZH-pullulan spray-dried microparticles had a mean size of <25 μm with an angle of repose values between 25.8-36.6°. Pullulan markedly extended drug-release time to >180 min, ~9 times greater than the duration (i.e., 20 min) reportedly achieved by chitosan. Kinetic analysis showed the drug-release rate was concentration dependent and jointly controlled by drug diffusion and polymer chain relaxation. Further, pullulan was mucoadhesive and was able to retain up to 78.8% w/w of microencapsulated gold nanoparticle probes at the mucosal membrane. These data strongly suggest that BZH-pullulan microparticles have great potential for oromucosal drug delivery, by providing elongated residence time in situ and sustained drug release for the treatment of local diseases.
Collapse
Affiliation(s)
- Ting Liu
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; (T.L.); (Y.C.)
| | - Xiang Gong
- Guiyang Hospital of Stomatology, Guiyang 550007, China;
| | - Yang Cai
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; (T.L.); (Y.C.)
| | - Hao-Ying Li
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| |
Collapse
|
5
|
Milenkova S, Ambrus R, Mukhtar M, Pilicheva B, Marudova M. Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride. Gels 2024; 10:189. [PMID: 38534607 DOI: 10.3390/gels10030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Chitosan, being a biocompatible and mucoadhesive polysaccharide, is one of the most preferred hydrogel-forming materials for drug delivery. The objectives of the present study are to obtain spray-dried microparticles based on low-molecular-weight chitosan and study their potential application as cargo systems for the orally active drug benzydamine hydrochloride. Three types of particles are obtained: raw chitosan particles (at three different concentrations), cross-linked with sodium tripolyphosphate (NaTPP) particles (at three different chitosan:NaTPP ratios), and particles coated with mannitol (at three different chitosan:mannitol ratios), all of them in the size range between 1 and 10 µm. Based on the loading efficiency and the yields of the formulated hydrogel particles, one model of each type is chosen for further investigation of the effect of the cross-linker or the excipient on the properties of the gel structures. The morphology of both empty and benzydamine hydrochloride-loaded chitosan particles was examined by scanning electron microscopy, and it was quite regular and spherical. Interactions and composition in the samples are investigated by Fourier-transformed infrared spectroscopy. The thermal stability and phase state of the drug and drug-containing polymer matrixes were tested by differential scanning calorimetry and X-ray powdered diffraction, revealing that the drug underwent a phase transition. A drug release kinetics study of the chosen gel-based structures in simulated saliva buffer (pH = 6.8) and mathematical modeling of the process were performed, indicating the Weibull model as the most appropriate one.
Collapse
Affiliation(s)
- Sofia Milenkova
- Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Maria Marudova
- Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Bahrampour Z, Peighambardoust SH, Amini AM, Soltanzadeh M. Application of low-, and medium-molecular weight chitosan for preparation of spray-dried microparticles loaded with Ferulago angulata essential oil: Physicochemical, antioxidant, antibacterial and in-vitro release properties. Int J Biol Macromol 2023; 253:126554. [PMID: 37652336 DOI: 10.1016/j.ijbiomac.2023.126554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
The present work aimed at spray-drying encapsulation of Chavir (Ferulago angulata) essential oil (EO) using low-, and medium-molecular weight chitosan. The obtained EO was observed to be mainly composed of β-ocimene, α-pinene, and bornyl acetate with antioxidant, and antimicrobial activity. The results indicated that stable emulsions with uniform particle size distribution and encapsulation efficiencies higher than 93 % could be prepared using chitosan as feed for spray-drying. In addition, spray-drying resulted in fabricating stable microspheres with yields higher than 50 %, uniform particle size, and encapsulation efficiency exceeding 70 %. The microspheres were fairly soluble and hygroscopic, and exhibited antioxidant and bacteriostatic activities with a biphasic release pattern. FTIR characterisation confirmed successful encapsulation of EO and thermal properties of microspheres indicated enhanced stability of EO after microencapsulation. Overall, it was revealed that molecular weight of chitosan and EO:chitosan ratio affects some physicochemical properties of obtained chitosan microspheres.
Collapse
Affiliation(s)
- Zahra Bahrampour
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Asad Mohammad Amini
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
7
|
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, Bhowmik S, Yusa SI. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel) 2023; 15:4563. [PMID: 38231996 PMCID: PMC10708661 DOI: 10.3390/polym15234563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Most. Nazmin Aktar
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Md. Sabbir Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Easin Arafat
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| |
Collapse
|
8
|
Racaniello GF, Pistone M, Meazzini C, Lopedota A, Arduino I, Rizzi R, Lopalco A, Musazzi UM, Cilurzo F, Denora N. 3D printed mucoadhesive orodispersible films manufactured by direct powder extrusion for personalized clobetasol propionate based paediatric therapies. Int J Pharm 2023; 643:123214. [PMID: 37423374 DOI: 10.1016/j.ijpharm.2023.123214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The aim of this work is the development and production by Direct Powder Extrusion (DPE) 3D printing technique of novel oral mucoadhesive films delivering Clobetasol propionate (CBS), useful in paediatric treatment of Oral Lichen Planus (OLP), a rare chronic disease. The DPE 3D printing of these dosage forms can allow the reduction of frequency regimen, the therapy personalization, and reduction of oral cavity administration discomfort. To obtain suitable mucoadhesive films, different polymeric materials, namely hydroxypropylmethylcellulose or polyethylene oxide blended with chitosan (CS), were tested and hydroxypropyl-β-cyclodextrin was added to increase the CBS solubility. The formulations were tested in terms of mechanical, physico-chemical, and in vitro biopharmaceutical properties. The film showed a tenacious structure, with drug chemical-physical characteristics enhancement due to its partial amorphization during the printing stage and owing to cyclodextrins multicomponent complex formation. The presence of CS enhanced the mucoadhesive properties leading to a significant increase of drug exposure time on the mucosa. Finally, the printed films permeation and retention studies through porcine mucosae showed a marked retention of the drug inside the epithelium, avoiding drug systemic absorption. Therefore, DPE-printed films could represent a suitable technique for the preparation of mucoadhesive film potentially usable for paediatric therapy including OLP.
Collapse
Affiliation(s)
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Chiara Meazzini
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Angela Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, Bari 70126, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy.
| |
Collapse
|
9
|
Meirelles LMA, de Melo Barbosa R, de Almeida Júnior RF, Machado PRL, Perioli L, Viseras C, Raffin FN. Biocomposite for Prolonged Release of Water-Soluble Drugs. Pharmaceutics 2023; 15:1722. [PMID: 37376170 DOI: 10.3390/pharmaceutics15061722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to develop a prolonged-release system based on palygorskite and chitosan, which are natural ingredients widely available, affordable, and accessible. The chosen model drug was ethambutol (ETB), a tuberculostatic drug with high aqueous solubility and hygroscopicity, which is incompatible with other drugs used in tuberculosis therapy. The composites loaded with ETB were obtained using different proportions of palygorskite and chitosan through the spray drying technique. The main physicochemical properties of the microparticles were determined using XRD, FTIR, thermal analysis, and SEM. Additionally, the release profile and biocompatibility of the microparticles were evaluated. As a result, the chitosan-palygorskite composites loaded with the model drug appeared as spherical microparticles. The drug underwent amorphization within the microparticles, with an encapsulation efficiency greater than 84%. Furthermore, the microparticles exhibited prolonged release, particularly after the addition of palygorskite. They demonstrated biocompatibility in an in vitro model, and their release profile was influenced by the proportion of inputs in the formulation. Therefore, incorporating ETB into this system offers improved stability for the administered product in the initial tuberculosis pharmacotherapy dose, minimizing its contact with other tuberculostatic agents in the treatment, as well as reducing its hygroscopicity.
Collapse
Affiliation(s)
- Lyghia M A Meirelles
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| | | | - Paula Renata Lima Machado
- Immunology Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de Las Palmeras 4, 18100 Armilla, Spain
| | - Fernanda Nervo Raffin
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| |
Collapse
|
10
|
Li HY, Xu EY. Dual functional pullulan-based spray-dried microparticles for controlled pulmonary drug delivery. Int J Pharm 2023; 641:123057. [PMID: 37207859 DOI: 10.1016/j.ijpharm.2023.123057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Two main challenges are associated with current spray-dried microparticles for inhalation, including the enhancement of aerosolization performance of microparticles and the creation of sustained drug release for continuous treatment on-site. For achieving these purposes, pullulan was explored as a novel excipient to prepare spray-dried inhalable microparticles (with salbutamol sulphate, SS, as a model drug), which were further modified by additives of leucine (Leu), ammonium bicarbonate (AB), ethanol and acetone. It was demonstrated that all pullulan-based spray-dried microparticles had improved flowability and enhanced aerosolization behavior, with the fine particle (<4.46µm) fraction of 42.0-68.7% w/w, much higher than 11.4% w/w of lactose-SS. Moreover, all modified microparticles showed augmented emitted fractions of 88.0-96.9% w/w, over 86.5% w/w of pullulan-SS. The pullulan-Leu-SS and pullulan-(AB)-SS microparticles demonstrated further increased fine particle (<1.66µm) doses of 54.7µg and 53.3µg respectively, surpassing that (49.6µg) of pullulan-SS, suggesting an additionally increased drug deposition in the deep lungs. Furthermore, pullulan-based microparticles revealed sustained drug release profiles with elongated time (60mins) over the control (2mins). Clearly, pullulan has a great potential to construct dual functional microparticles for inhalation with improved pulmonary delivery efficiency and sustained drug release on-site.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NN.
| | - En-Yu Xu
- Department of Forensic Toxicological Analysis, School of Forensic Medicine, China Medical University, Shen-Yang, Liao-Ning, 110122, China
| |
Collapse
|
11
|
Smolarkiewicz-Wyczachowski A, Kaczmarek H, Piskorz J, Nowak P, Ziegler-Borowska M. Chitosan Composites Containing Boron-Dipyrromethene Derivatives for Biomedical Applications. Int J Mol Sci 2023; 24:1770. [PMID: 36675294 PMCID: PMC9860782 DOI: 10.3390/ijms24021770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
The work is devoted to preparing and characterizing the properties of photosensitive composites, based on chitosan proposed for photodynamic therapy. Chitosan films with a 5% addition of two BODIPY dyes were prepared by solution casting. These dyes are dipyrromethene boron derivatives with N-alkyl phthalimide substituent, differing in the presence of iodine atoms in positions 2 and 6 of the BODIPY core. The spectral properties of the obtained materials have been studied by infrared and UV-vis absorption spectroscopy and fluorescence, both in solutions and in a solid state. Surface properties were investigated using the contact angle measurement. The morphology of the sample has been characterized by Scanning Electron and Atomic Force Microscopy. Particular attention was paid to studying the protein absorption and kinetics of the dye release from the chitosan. Adding BODIPY to the chitosan matrix leads to a slight increase in hydrophilicity, higher structure heterogeneity, and roughness, than pure chitosan. The presence of iodine atoms in the BODIPY structure caused the bathochromic effect, but the emission quantum yield decreased in the composites. It has been found that BODIPY-doped chitosan interacts better with human serum albumin and acidic α-glycoprotein than unmodified chitosan. The release rate of dyes from films immersed in methanol depends on the iodine present in the structure.
Collapse
Affiliation(s)
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Pawel Nowak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
12
|
Handayani NA, Mulia K, Kartohardjono S, Krisanti EA. Fortifying jelly foods with microencapsulated anti-anaemic compounds, ferrous gluconate, ascorbic acid and folic acid. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:147-159. [PMID: 36618066 PMCID: PMC9813336 DOI: 10.1007/s13197-022-05599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
Low ferrous iron bioavailability presents a challenge for food fortification programmes. In this study, jelly foods were fortified with spray-dried chitosan microparticles that had been loaded with ferrous gluconate (FeG) and folic acid (FA) to alleviate iron deficiency anaemia and FA deficiency anaemia, respectively. The presence of FA and ascorbic acid (AA) increased the in vitro iron bioavailability of the FeG-AA-FA microparticles up to sixfold. Furthermore, the iron bioavailability of the fortified jelly foods increased more than 5 folds compared to that of the FeG-AA-FA microparticles. The use of lower temperature during the preparation of fortified jelly foods is recommended to avoid the microparticles' decomposition and a Maillard browning reaction. These findings can help food technologists and product developers select formulations with higher ferrous bioavailability to reduce the prevalence of anaemia. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05599-7.
Collapse
Affiliation(s)
- Noer Abyor Handayani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro Kampus Undip Tembalang, Semarang, Central Java Indonesia
| | - Kamarza Mulia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Sutrasno Kartohardjono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Elsa Anisa Krisanti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| |
Collapse
|
13
|
Xu Y, Li Q, Ge P, Mao H, Yang C. Chitosan nanoparticles attenuate intestinal damage and inflammatory responses in LPS-challenged weaned piglets via prevention of IκB degradation. J Anim Physiol Anim Nutr (Berl) 2023; 107:173-181. [PMID: 34820921 DOI: 10.1111/jpn.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Chitosan nanoparticles (CNP), widely applied as oral drug/gene/vaccine carrier, were found to have anti-inflammatory properties. In this study, the effects of CNP on lipopolysaccharide (LPS)-induced intestinal damage in weaned piglets and the related mechanisms were investigated. Twenty-four weaned piglets (Duroc × Landrace × Yorkshire, 21 ± 2 day of age, initial mass: 8.58 ± 0.59 kg) were randomly assigned into four groups: control, LPS, CNP and CNP + LPS. The control and LPS groups were fed a corn-soybean meal-based control diet, whereas the CNP and CNP + LPS groups were fed a control diet supplemented with 400 mg/kg CNP. After 28 days of feeding, piglets in LPS and CNP + LPS groups were injected with LPS (100 μg/kg); meanwhile, the piglets in control and CNP groups were injected with sterile saline. After 4 h from the LPS challenge, pigs were sacrificed to collect the intestinal samples for analysis. The results showed that CNP could attenuate the intestinal damages and inflammatory response stimulated by LPS treatment. LPS induced dramatically higher levels of CD177+ neutrophils invasion in jejunum mucosa (p < 0.01), which accompanied by increased secretion of marks of inflammation (p < 0.01) compared with the control, whereas CNP administration obviously inhibited LPS-induced CD177+ neutrophils invasion (p < 0.01) and secretion of marks of inflammation, such as interleukin-8 (p < 0.05), intercellular adhesion molecule-1 (p < 0.05) secretion in jejunum mucosa compared with LPS group. Moreover, CNP was shown to inhibit IκB-α degradation in cytoplasm, which resulted in reduced nuclear translocation of NF-κB p65 in LPS-challenged piglets. These findings suggest that CNP attenuates intestinal damage and inflammatory responses in LPS-challenged weaned piglets by impairing the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Pu Ge
- Pathophysiology Department of ChongQing Medical University, Chongqing, China
| | - Huiling Mao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
14
|
Antiulcerogenic and Antibacterial Effects of Chitosan Derivatives on Experimental Gastric Ulcers in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4743041. [PMID: 36159581 PMCID: PMC9507741 DOI: 10.1155/2022/4743041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022]
Abstract
Gastric ulcer is an injury that develops on the lining of the stomach due to an imbalance between aggressive and defensive agents. Chitosan derivatives demonstrate promising biological activities in accelerating the healing activity of gastric lesions. Thus, this study aimed at investigating the healing activity of gastric lesion, induced by acetic acid (80%), of the chitosan derivative with acetylacetone (Cac) modified with ethylenediamine (Cacen) or diethylenetriamine (Cacdien). The biological activity was determined based on cytotoxicity, antibacterial activity, and gastroprotective activities. The results showed no significant difference in the cytotoxicity, a better antibacterial activity against S. aureus and E. coli, and a positive result on the healing of gastric lesions of the materials (Cac 18.4%, Cacen 55.2%, and Cacdien 68.1%) compared to pure chitosan (50.7%). Therefore, the results indicate that derivatives of chitosan are promising biomaterials for application in the control of lesions on the gastric mucosa.
Collapse
|
15
|
Chowdhury NK, Deepika, Choudhury R, Sonawane GA, Mavinamar S, Lyu X, Pandey RP, Chang CM. Nanoparticles as an effective drug delivery system in COVID-19. Biomed Pharmacother 2021; 143:112162. [PMID: 34649334 PMCID: PMC8426213 DOI: 10.1016/j.biopha.2021.112162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The global healthcare sector has been dealing with a situation known as a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019. Covid-19 is an acronym for Covid-19 (Coronavirus Disease- 2019). It causes a respiratory infection that includes cold, sneezing and coughing, and pneumonia. In the case of an animal, it causes diarrhea and upper respiratory diseases. Covid-19 transmitted human to human via airborne droplets. First Covid-19 emerged in Wuhan market China and it spread rapidly throughout the World. As we know nanoparticles are a novel drug delivery system. They have various advantageous effects like increasing the efficacy of the drug, safety, etc. In this review, we study about the nanoparticles and summarize how it is effective during drug delivery system in Covid-19. Chitosan is a much focused biopolymeric nanoparticle. It delivers drugs to the specific target site. In a recent health crisis, chitosan nanoparticles are one of the ways to release drugs of Covid-19, and specifically in the lungs of the affected patients. We studied and extracted our data from various research papers, review papers, and some other articles. OBJECTIVE The main goal is to study the nanoparticles and their future aspects which is an effective drug delivery system in Covid-19. METHODS The bibliographic search was done through a systematic search. The terms "Nanoparticles", "Covid-19 ", "Drug delivery" etc. were used to search the databases/search engines like "Google Scholar", "NCBI", "PubMed", "Science Direct" etc. These databases and search engines used here perform the limited criteria of search to conduct a systematic literature survey for the study and report writing. All the text from the articles and research papers were studied and analyzed. The various articles and research papers were used in writing this report and all of which are mentioned in the reference section of this report. CONCLUSION Our current studies reveal that nanoparticles may prove very helpful in the delivery of drugs for Covid-19 treatment. Many cases showed that patients, where drugs are delivered with the help of nanoparticles, produced very few side effects.
Collapse
Affiliation(s)
| | - Deepika
- Department of Biotechnology, Deenbandhu Choturam University, and Technology, Sonepat, Haryana, India.
| | - Reshma Choudhury
- Department of Biotechnology, Royal Global University, Guwahati, Assam, India.
| | - Gaurav Ambadas Sonawane
- Department of Pharmacy, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, India.
| | - Shankar Mavinamar
- Department of Botany, Karnataka State Akkamahadevi Women's University, Vijayapura, India.
| | - Xiaoming Lyu
- Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, No.183 West Zhongshan Avenue, Guangzhou, China.
| | | | - Chung-Ming Chang
- Master & Ph.D. program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC..
| |
Collapse
|
16
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Tuğcu-Demiröz F, Saar S, Kara AA, Yıldız A, Tunçel E, Acartürk F. Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. Eur J Pharm Sci 2021; 161:105801. [PMID: 33691155 DOI: 10.1016/j.ejps.2021.105801] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
Vaginal infections caused by various pathogens such as fungi, viruses and protozoa are frequently seen. Systemic and local treatments can be applied to eliminate these infections. Novel vaginal drug delivery systems can be used to provide local treatment. Vaginal drug delivery systems prevent systemic side effects and can provide long-term drug release in the vaginal area. Nanofibers and nanoparticles have a wide range of applications and can also be preferred as vaginal drug delivery systems. Benzydamine is a non-steroidal anti-inflammatory and antiseptic drug which is used for treatment of vaginal infections. The aim of this study was to compare the nanofiber and gel formulations containing lyophilized benzydamine nanoparticles with nanofiber and gel formulations containing free benzydamine, and to provide prolonged release for protection from the vaginal infections. Ionic gelation method was used for the preparation of benzydamine loaded nanoparticles. To produce benzydamine nanoparticles loaded nanofiber formulations, polyvinylpyrrolidone (PVP) solutions were prepared at 10% concentrations and mixed with nanoparticles. Hydroxypropyl methylcellulose (HPMC) was used as a gelling agent at the concentration of 1% for the vaginal gel formulation. Nanoparticles were characterized in terms of zeta potential, polydispersity index and particle size. Viscosity, surface tension and conductivity values of the polymer solutions were measured for the electrospinning. Mechanical properties, contact angle and drug loading capacity of the fibers were determined. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), fourier-transform infrared (FT-IR) spectroscopy, mucoadhesion, ex vivo permeability studies and in vitro release studies were performed for the selected formulations. Ex vivo permeability studies were performed using Franz diffusion cell method. SEM and TEM images showed that fiber diameters increased with loading of nanoparticles. DSC studies showed no interaction between excipients used in the formulation. Tensile strength and elongation at break values of the fibers increased with the loading of nanoparticles, and the contact angle values of the fibers were found to be 0°. Addition of benzydamine nanoparticles to gel and nanofiber formulations increased mucoadhesion compared to free benzydamine loading formulations. Benzydamine nanoparticle loaded gel and nanofiber formulations penetrated slower than that of free benzydamine gel and fiber formulations. The results demonstrated that benzydamine and benzydamine nanoparticle loaded fibers and gels could be a potential drug delivery system for the treatment of vaginal infections. Chitosan nanoparticle loaded nanofiber formulations are offered as an alternative controlled release vaginal formulations for vaginal infections.
Collapse
Affiliation(s)
- Fatmanur Tuğcu-Demiröz
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330- Etiler, Ankara, Turkey.
| | - Sinem Saar
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330- Etiler, Ankara, Turkey
| | - Adnan Altuğ Kara
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330- Etiler, Ankara, Turkey
| | - Ayşegül Yıldız
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330- Etiler, Ankara, Turkey
| | - Emre Tunçel
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330- Etiler, Ankara, Turkey
| | - Füsun Acartürk
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330- Etiler, Ankara, Turkey
| |
Collapse
|
18
|
de Souza IFF, Dos Santos TQ, Placido RV, Mangerona BA, Carvalho FC, Boralli VB, Ruela ALM, Pereira GR. The liquid crystalline phase behaviour of a nasal formulation modifies the brain disposition of donepezil in rats in the treatment of Alzheimer's disease. Colloids Surf B Biointerfaces 2021; 203:111721. [PMID: 33798905 DOI: 10.1016/j.colsurfb.2021.111721] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022]
Abstract
Although nanoparticles, polymeric micelles, liposomes, nanoemulsions, and microemulsions were extensively evaluated as formulations for nasal administration of drugs, lyotropic liquid crystal (LLC) mesophases have been few studied. The phase transition from a low-viscosity microemulsion to a more viscous LLC may improve the mucoadhesion of the formulation. Donepezil is a drug administered orally in the treatment of Alzheimer's disease, and with gastrointestinal side effects that are typical of acetylcholinesterase inhibitors. Based on this, donepezil administration by nasal pathway using a mucoadhesive LLC may be a feasible alternative. A colloidal formulation was selected from a ternary diagram, combining CETETH-10, oleic acid, and water (40:45:15, w/w). Donepezil was incorporated into the formulation, and the characterisation included in vitro studies, such as mucoadhesion and drug release. Pharmacokinetics in Wistar rats included evaluations by the nasal pathway with donepezil incorporated into microemulsion. A phase transition from an isotropic to an anisotropic system was observed after the swelling of the microemulsion with artificial nasal fluid (12-20 %). The release of donepezil in vitro occurred in a sustained manner. Significant levels of donepezil were achieved in the brain after nasal administration of the microemulsion, as a promising strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Flávia Chiva Carvalho
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.
| | | | | | | |
Collapse
|
19
|
Matarazzo AP, Elisei LMS, Carvalho FC, Bonfílio R, Ruela ALM, Galdino G, Pereira GR. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur J Pharm Sci 2021; 159:105698. [PMID: 33406408 DOI: 10.1016/j.ejps.2020.105698] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
The therapeutic potential of cannabidiol (CBD) has been explored to treat several pathologies, including those in which pain is prevalent. However, the oral bioavailability of CBD is low owing to its high lipophilicity and extensive first-pass metabolism. Considering the ability of the nasal route to prevent liver metabolism and increase brain bioavailability, we developed nanostructured lipid carriers (NLCs) for the nasal administration of CBD. We prepared particles with a positively charged surface, employing stearic acid, oleic acid, Span 20Ⓡ, and cetylpyridinium chloride to obtain mucoadhesive formulations. Characterisation of the CBD-NLC dispersions showed uniform nano-sized particles with diameters smaller than 200 nm, and high drug encapsulation. The mucoadhesion of cationic particles has been related to interactions with negatively charged mucin. Next, we added in-situ gelling polymers to the CBD-NLC dispersion to obtain a CBD-NLC-gel. A thermo-reversible in-situ forming gel was prepared by the addition of PluronicsⓇ. CBD-NLC-gel was characterised by its gelation temperature, rheological behaviour, and mucoadhesion. Both formulations, CBD-NLC and CBD-NLC-gel, showed high mucoadhesion, as assessed by the flow-through method and similar in vitro drug release profiles. The in vivo evaluation showed that CBD-NLC dispersion (without gel), administered intranasally, produced a more significant and lasting antinociceptive effect in animals with neuropathic pain than the oral or nasal administration of CBD solution. However, the nasal administration of CBD-NLC-gel did not lessen mechanical allodynia. These findings demonstrate that in-situ gelling hydrogels are not suitable vehicles for highly lipophilic drugs such as CBD, while cationic CBD-NLC dispersions are promising formulations for the nasal administration of CBD.
Collapse
Affiliation(s)
- Ananda Pulini Matarazzo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Flávia Chiva Carvalho
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Rudy Bonfílio
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Giovane Galdino
- Science of Motricity Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Gislaine Ribeiro Pereira
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Al Zaitone B, Al-Zahrani A. Modeling Drying Behavior of an Aqueous Chitosan Single Droplet Using the Reaction Engineering Approach. AAPS PharmSciTech 2020; 21:315. [PMID: 33165655 DOI: 10.1208/s12249-020-01853-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
Spray drying of Chitosan solutions to prepare microparticles either using pilot or industrial scale spray dryer is a complex process; tracking morphological changes and obtaining drying kinetics of a single droplet would be very difficult. The acoustic levitator being a non-intrusive method is a useful experimental apparatus that enables particle/droplet suspension in the gaseous medium and capable of mimicking the drying process in a spray dryer. The drying of chitosan aqueous solutions into solid particles was investigated. The prediction of the size and drying kinetics until the formation of the solid structure was performed in an acoustic levitator. Studying the drying of single droplets is crucial for revealing the influence of the drying process parameters on the formation of dried particles. Droplets with initial chitosan concentration (10, 20, and 30 mg/ml) were investigated at different air-drying temperatures. A Reaction Engineering Approach (REA) model was developed and compared with the experimental drying curves, a very well agreement was found between the drying experiments and the REA model with a relative error of about 3% between the initial droplet mass and predicted droplet mass by the REA model.
Collapse
|
21
|
Ibrahim YHEY, Regdon G, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru 2020; 28:403-416. [PMID: 31811628 PMCID: PMC7214593 DOI: 10.1007/s40199-019-00316-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The main objective of present review is to explore and evaluate the effectiveness of recently developed methods to improve the bioavailability of orally administered biopharmaceutical drugs. METHODS A systematic search of sciencedirect, tandfonline and Google Scholar databases based on various sets of keywords was performed. All results were evaluated based on their abstracts, and irrelevant studies were neglected during further evaluation. RESULTS At present, biopharmaceuticals are used as injectable therapies as they are not absorbed adequately from the different routes of drug administration, particularly the oral one. Their insufficient absorption is attributed to their high molecular weight, degradation by proteolytic enzymes, high hydrophilicity and rigidity of the absorptive tissues. From industrial aspect incorporation of enzyme inhibitors (EIs) and permeation enhancers (PEs) and mucoadhesive polymers into conventional dosage forms may be the easiest way of formulation of orally administered macromolecular drugs, but the effectiveness of protection and absorption enhancement here is the most questionable. Conjugation may be problematic from regulatory aspect. Encapsulation into lipid-based vesicles sufficiently protects the incorporated macromolecule and improves intestinal uptake but have considerable stability issues. In contrast, polymeric nanocarriers may provide good stability but provides lower internalization efficacy in comparison with the lipid-based carriers. CONCLUSION It can be concluded that the combination of the advantages of mucoadhesive polymeric and lid-based carriers in hybrid lipid/polymer nanoparticles may result in improved absorption and might represent a potential means for the oral administration of therapeutic proteins in the near future. Graphical abstract Delivery systems for oral protein daministration.
Collapse
Affiliation(s)
- Yousif H-E Y Ibrahim
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
- Pharmaceutics Department, Omdurman Islamic University, Omdurman, Sudan
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
| | | | - Tamás Sovány
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary.
| |
Collapse
|
22
|
Ibrahim YHE, Regdon G, Kristó K, Kelemen A, Adam ME, Hamedelniel EI, Sovány T. Design and characterization of chitosan/citrate films as carrier for oral macromolecule delivery. Eur J Pharm Sci 2020; 146:105270. [DOI: 10.1016/j.ejps.2020.105270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
|
23
|
Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci 2020; 21:E487. [PMID: 31940963 PMCID: PMC7014278 DOI: 10.3390/ijms21020487] [Citation(s) in RCA: 408] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a product of the deacetylation of chitin, which is widely found in nature. Chitosan is insoluble in water and most organic solvents, which seriously limits both its application scope and applicable fields. However, chitosan contains active functional groups that are liable to chemical reactions; thus, chitosan derivatives can be obtained through the chemical modification of chitosan. The modification of chitosan has been an important aspect of chitosan research, showing a better solubility, pH-sensitive targeting, an increased number of delivery systems, etc. This review summarizes the modification of chitosan by acylation, carboxylation, alkylation, and quaternization in order to improve the water solubility, pH sensitivity, and the targeting of chitosan derivatives. The applications of chitosan derivatives in the antibacterial, sustained slowly release, targeting, and delivery system fields are also described. Chitosan derivatives will have a large impact and show potential in biomedicine for the development of drugs in future.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qiuyu Meng
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qi Li
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Jinbao Liu
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
24
|
Mucoadhesive Particles: A Novel, Prolonged-Release Nanocarrier of Sitagliptin for the Treatment of Diabetics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3950942. [PMID: 31815135 PMCID: PMC6878770 DOI: 10.1155/2019/3950942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022]
Abstract
Sitagliptin (MK–0431) is a widely and commonly used oral hypoglycemic drug in the treatment of type 2 diabetes mellitus; patients typically take higher doses of this drug (50 mg, twice daily). One drawback is that only 38% of the drug is bound reversibly to plasma proteins and 79% is excreted in urine without being metabolized. To overcome this issue, there is a need for a better drug-delivery method to improve its efficacy in patients. It has been found that in existing formulations, the drug content is 72.5% ± 5% and the percentage yield is 84.9% ± 3%. In this study, sitagliptin nanoparticles (sizes ranging from 210 to 618 nm) were developed. The bioadhesion properties of the nanoparticles, as well as the swelling of the nanoparticles on the mucus membrane aided in sustained drug release. The pattern of drug release was in accordance with the Peppas model. Fourier-transform infrared (FTIR) spectroscopy demonstrated that there were no significant interactions between sitagliptin and chitosan. Differential scanning calorimetry (DSC) results showed an absence of drug peaks due to the fact that the drug was present in an amorphous state. Mucoadhesive nanoparticles were formulated using sitagliptin and were effective for about 12 hours in the gastrointestinal tract. When compared to conventional sitagliptin administration, use of a nanoparticle delivery system demonstrated greater benefits for use in oral delivery applications. This is the first time that a drug-delivery method based on the mucoadhesive properties of nanoparticles could prolong the drug-release time of sitagliptin.
Collapse
|
25
|
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263:131-194. [PMID: 30530176 DOI: 10.1016/j.cis.2018.11.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 01/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide which is achieved by deacetylation of chitin, which is the second most plentiful compound in nature, after cellulose. It is a linear copolymer of β-(1 → 4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-β-d-glucopyranose. It has appreciated properties such as biocompatibility, biodegradability, hydrophilicity, nontoxicity, high bioavailability, simplicity of modification, favorable permselectivity of water, outstanding chemical resistance, capability to form films, gels, nanoparticles, microparticles and beads as well as affinity to metals, proteins and dyes. Also, the biodegradable CS is broken down in the human body to safe compounds (amino sugars) which are easily absorbed. At present, CS and its derivatives are broadly investigated in numerous pharmaceutical and medical applications including drug/gene delivery, wound dressings, implants, contact lenses, tissue engineering and cell encapsulation. Besides, CS has several OH and NH2 functional groups which allow protein binding. CS with a deacetylation degree of ~50% is soluble in aqueous acidic environment. While CS is dissolved in acidic medium, its amino groups in the polymeric chains are protonated and it becomes cationic which allows its strong interaction with different kinds of molecules. It is believed that this positive charge is responsible for the antimicrobial activity of CS through the interaction with the negatively charged cell membranes of microorganisms. This review presents properties and numerous applications of chitosan-based compounds in drug delivery, gene delivery, cell encapsulation, protein binding, tissue engineering, preparation of implants and contact lenses, wound healing, bioimaging, antimicrobial food additives, antibacterial food packaging materials and antibacterial textiles. Moreover, some recent molecular dynamics simulations accomplished on the pharmaceutical applications of chitosan were presented.
Collapse
|
26
|
Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S. Biopolymers and Their Composites for Drug Delivery: A Brief Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sreeraj Gopi
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
- Chemical Faculty; Gdansk University of Technology; Gdańsk Poland
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| | - Augustine Amalraj
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
| | | | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| |
Collapse
|
27
|
Encapsulation of trans-aconitic acid in mucoadhesive microspheres prolongs the anti-inflammatory effect in LPS-induced acute arthritis. Eur J Pharm Sci 2018; 119:112-120. [PMID: 29627623 DOI: 10.1016/j.ejps.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 01/20/2023]
Abstract
trans-Aconitic acid (TAA) is the main constituent of the leaves from the medicinal plant Echinodorus grandiflorus, used to treat different inflammatory diseases. TAA induces a potent but short-lasting biological response, credited to its high polarity and unfavorable pharmacokinetics. Here we developed, characterized and evaluated the anti-inflammatory activity of mucoadhesive microspheres loaded with TAA. Seven batches of mucoadhesive microspheres were prepared by the emulsification/solvent evaporation method, employing different proportions of TAA and Carbopol 934 or/and hydroxypropylmethylcellulose. All batches were characterized for their particle medium size, polydispersity index and entrapment percentage. The batch coded F3c showed highest entrapment percentage and was characterized by infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and zeta potential. The anti-inflammatory activity of F3c was assessed in a model of acute arthritis induced by injection of LPS in the knee joint of Swiss mice. The granulometric analyses indicated heterogeneous size distribution for F3c. SEM characterization indicated microspheres with slightly irregular shape and rough surface. Results from ATR-FTIR and thermal analyses (DSC and TGA) pointed out absence of incompatibility between the components of the formulation; thermal events related to the constituents were isolated and randomly located, suggesting amorphous distribution of TAA in the formulation matrix. The zeta potential of the formulations varied from -30 to -34 mV, which may contribute to good stability. When given orally to mice, F3c induced a prolonged anti-inflammatory response by reducing total cell count and neutrophilic accumulation in the joint cavity even when given 48 and 36 h before the stimulus, respectively, in comparison to free TAA (up to 24 and 6 h, respectively). Therefore, the encapsulation of TAA in mucoadhesive microspheres provided its sustained release, indicating that this drug delivery system is a potential agent to treat inflammatory diseases by regulating cell influx.
Collapse
|