1
|
Islam N, Suwandecha T, Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: challenges and future strategies. Daru 2024; 32:761-779. [PMID: 38861247 PMCID: PMC11555000 DOI: 10.1007/s40199-024-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES The efficient delivery of drugs from dry powder inhaler (DPI) formulations is associated with the complex interaction between the device design, drug formulations, and patient's inspiratory forces. Several challenges such as limited emitted dose of drugs from the formulation, low and variable deposition of drugs into the deep lungs, are to be resolved for obtaining the efficiency in drug delivery from DPI formulations. The objective of this study is to review the current challenges of inhaled drug delivery technology and find a way to enhance the efficiency of drug delivery from DPIs. METHODS/EVIDENCE ACQUISITION Using appropriate keywords and phrases as search terms, evidence was collected from the published articles following SciFinder, Web of Science, PubMed and Google Scholar databases. RESULTS Successful lung drug delivery from DPIs is very challenging due to the complex anatomy of the lungs and requires an integrated strategy for particle technology, formulation design, device design, and patient inhalation force. New DPIs are still being developed with limited performance and future device design employs computer simulation and engineering technology to overcome the ongoing challenges. Many issues of drug formulation challenges and particle technology are concerning factors associated with drug dispersion from the DPIs into deep lungs. CONCLUSION This review article addressed the appropriate design of DPI devices and drug formulations aligned with the patient's inhalation maneuver for efficient delivery of drugs from DPI formulations.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Tan Suwandecha
- Drug and Cosmetic Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand.
| |
Collapse
|
2
|
Chen J, Ye Y, Yang Q, Fan Z, Shao Y, Wei X, Shi K, Dong J, Ma Y, Zhu J. Understanding the role of swirling flow in dry powder inhalers: Implications for design considerations and pulmonary delivery. J Control Release 2024; 373:410-425. [PMID: 39038545 DOI: 10.1016/j.jconrel.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Dry powder inhalers (DPIs) are widely employed to treat respiratory diseases, offering numerous advantages such as high dose capacity and stable formulations. However, they usually face challenges in achieving sufficient pulmonary drug delivery and minimizing excessive oropharyngeal deposition. This review provides a new viewpoint to address these challenges by focusing on the role of swirling flow, a crucial yet under-researched aspect that induces strong turbulence. In the review, we comprehensively discuss both key classic designs (tangential inlet, swirling chamber, grid mesh, and mouthpiece) and innovative designs in inhalers, exploring how the induced swirling flow initiates powder dispersion and promotes delivery efficiency. Valuable design considerations to effectively coordinate inhalers with formulations and patients are also provided. It is highlighted that the delicate manipulation of swirling flow is essential to maximize benefits. By emphasizing the role of swirling flow and its potential application, this review offers promising insights for advancing DPI technology and optimizing therapeutic outcomes in inhaled therapy.
Collapse
Affiliation(s)
- Jiale Chen
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China.
| | - Qingliang Yang
- College of Pharmaceutical Science, Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ziyi Fan
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jie Dong
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Ying Ma
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jesse Zhu
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Eastern Institute of Technology, Ningbo 315200, China.
| |
Collapse
|
3
|
Wostry M, Scherließ R. Possibilities and advantages of additive manufacturing in dry powder formulations for inhalation. Eur J Pharm Sci 2023; 190:106583. [PMID: 37703932 DOI: 10.1016/j.ejps.2023.106583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
In dry powder formulations for inhalation, coarse carrier particles are often used to improve handling, dosing and dispersion of the active pharmaceutical ingredient (API). Carrier particles, mostly alpha-lactose monohydrate crystals, always show a certain size distribution and are never exactly uniform in their geometry. This might be one factor of the rather high invivo variability in fine particle dose from dry powder inhalers. To address the inhomogeneity of carrier particles, additive manufacturing has come to mind. The parametric design of the perfect carrier geometry could further improve the efficiency of dry powder formulations. In this study, a numerical simulation setup using the discrete element method as well as an experimental approach with 3D printed particles were used to determine the loading capacity of a model API onto two different carrier geometries. The difference between the two geometries was reduced solely to their surface's topology to assess the impact of that. The results indicate differences in the loading capacity for the two geometries, depending on the loading process. This study highlights the importance of the carrier geometry for the efficiency of dry powder formulations and thus, strengthens the idea of artificially designed and printed carrier particles.
Collapse
Affiliation(s)
- Melvin Wostry
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, Kiel 24118, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, Kiel 24118, Germany; Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel, Germany.
| |
Collapse
|
4
|
Ye Y, Fan Z, Ma Y, Zhu J. Investigation on the Influence of Design Features on the Performance of Dry Powder Inhalers: Spiral Channel, Mouthpiece Dimension, and Gas Inlet. Int J Pharm 2023:123116. [PMID: 37302669 DOI: 10.1016/j.ijpharm.2023.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
As inhaler design is rarely studied but critically important in pulmonary drug delivery, this study investigated the influence of inhaler designs, including a novel spiral channel, mouthpiece dimensions (diameter and length) as well as gas inlet. Experimental dispersion of a carrier-based formulation in conjugation with computational fluid dynamics (CFD) analysis, was performed to determine how the designs affect inhaler performance. Results reveal that inhalers with a narrow spiral channel could effectively increase drug-carrier detachment by introducing high velocity and strong turbulent flow in the mouthpiece, although the drug retention in the device is significantly high. It is also found that reducing mouthpiece diameter and gas inlet size could greatly improve the fine particle dose delivered to the lungs, whereas the mouthpiece length plays a trivial influence on the aerosolization performance. This study contributes toward a better understanding of inhaler designs as relevant to overall inhaler performance, and sheds light on how the designs affect device performance.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 108 Yuxi Road, Suzhou, 215125, China
| | - Ziyi Fan
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 108 Yuxi Road, Suzhou, 215125, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
5
|
Alfano FO, Sommerfeld M, Di Maio FP, Di Renzo A. DEM analysis of powder deaggregation and discharge from the capsule of a carrier-based Dry Powder Inhaler. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Ye Y, Ma Y, Fan Z, Zhu J. The effects of grid design on the performance of 3D-printed dry powder inhalers. Int J Pharm 2022; 627:122230. [PMID: 36162608 DOI: 10.1016/j.ijpharm.2022.122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
The grid structure is an indispensable part of most dry powder inhalers, but the effects of grid geometry on inhaler performance are rarely reported. This study aims to systemically investigate the influence of grid design on the aerosolization performance of capsule-based inhalers through experiments and computational analysis. In-vitro aerosolization and deposition performance of commercial and 3D-printed customized inhalers with different grid mesh designs were experimentally studied using a Next Generation Impactor (NGI). Flow fields in the inhalers were generated, and average turbulence kinetic energy (TKE) and airstream trajectories were obtained through Computational Fluid Dynamics (CFD) analysis, delineating the effects of the different grid designs. Comparative studies using the commercial inhalers and the 3D-printed inhalers show a slightly better performance for the latter, probably due to the different materials used for the inhalers, confirming the suitability of 3D printing. Experimental results show that intensive grid meshes with a relatively small aperture size are beneficial to enhancing inhaler performance. Computational results illustrate that the intensive grid meshes can reduce vortexed airstreams and increase turbulent kinetic energy at the grids in general, which also supports the experimental results. In summary, inhalers with intensive grid meshes are preferred for capsule-based inhalers to enhance aerosolization performance. These findings have significant implications for the comprehensive understanding of how grid designs influence inhaler performance.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 502-Bldf A SIP, 108 Yuxi Road, Suzhou 215125, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada; Suzhou Inhal Pharma Co., Ltd., 502-Bldf A SIP, 108 Yuxi Road, Suzhou 215125, China
| | - Ziyi Fan
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Canada.
| |
Collapse
|
7
|
A CFD-DEM investigation of powder transport and aerosolization in ELLIPTA® dry powder inhaler. POWDER TECHNOL 2022; 409. [DOI: 10.1016/j.powtec.2022.117817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Modelling Deaggregation Due to Normal Carrier–Wall Collision in Dry Powder Inhalers. Processes (Basel) 2022. [DOI: 10.3390/pr10081661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Powder deaggregation in Dry Powder Inhalers (DPI) with carrier-based formulations is a key process for the effectiveness of drug administration. Carrier-wall collisions are one of the recognised mechanisms responsible for active pharmaceutical ingredient (API) aerosolisation, and DPI geometries are designed to maximise their efficacy. The detachment of fine and cohesive API particles is investigated at a fundamental level by simulating with DEM the normal collision of a carrier sphere with an API particle attached. The impact velocity at which detachment occurs (escape velocity) is determined as a function of key parameters, such as cohesiveness, coefficient of restitution, static and rolling friction. An analytical model for the escape velocity is then derived, examining the role of the initial position of the particle, cohesion model and particle size. Finally, the results are framed in the context of DPI inhalers, comparing the results obtained with impact velocities typically recorded in commercial devices.
Collapse
|
9
|
Deagglomeration of selected high-load API-carrier particles in swirl-based dry powder inhalers. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Sommerfeld M. Detailed evaluation of drug powder deposition in swirl-type dry powder inhalers. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Utilising micron scale 3D printed morphologies for particle adhesion reduction. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Schulz D, Woschny N, Schmidt E, Kruggel-Emden H. Modelling of the detachment of adhesive dust particles during bulk solid particle impact to enhance dust detachment functions. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Sulaiman M, Liu X, Sundaresan S. Effects of dose loading conditions and device geometry on the transport and aerosolization in dry powder inhalers: A simulation study. Int J Pharm 2021; 610:121219. [PMID: 34699949 DOI: 10.1016/j.ijpharm.2021.121219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
The transport and aerosolization of particles are studied in several different dry powder inhaler geometries via Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) simulations. These simulations combine Large Eddy Simulation of gas with Discrete Element Model simulation of all the carrier particles and a representative subset of the active pharmaceutical ingredient (API) particles. The purpose of the study is to probe the dominant mechanism leading to the release of the API particles and to demonstrate the value of the CFD-DEM simulations where one tracks the motion of all the carrier and API particles. Simulations are performed at different inhalation rates and initial dose loading conditions for the screen-haler geometry, a simple cylindrical tube inhaler, and five different geometry modifications that took the form of bumpy walls and baffles. These geometry modifications alter the residence time of the powder sample in the inhaler, pressure drop across the inhaler, the severity of gas-carrier interactions, and the number of collisions experienced by the carrier particles, all of which are quantified. The quality of aerosolization is found to correlate with the average air-carrier slip velocity, while collisions played only a secondary role. Some geometry modifications improved aerosolization quality with very little increase in the pressure drop across the device.
Collapse
Affiliation(s)
- Mostafa Sulaiman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| | - Xiaoyu Liu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Sankaran Sundaresan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Alfano FO, Benassi A, Gaspari R, Di Renzo A, Di Maio FP. Full-Scale DEM Simulation of Coupled Fluid and Dry-Coated Particle Flow in Swirl-Based Dry Powder Inhalers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Andrea Benassi
- DP Manufacturing & Innovation, Chiesi Farmaceutici SpA, 43122 Parma, Italy
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Roberto Gaspari
- DP Manufacturing & Innovation, Chiesi Farmaceutici SpA, 43122 Parma, Italy
| | | | | |
Collapse
|
15
|
Liu X, Sulaiman M, Kolehmainen J, Ozel A, Sundaresan S. Particle-based coarse-grained approach for simulating dry powder inhaler. Int J Pharm 2021; 606:120821. [PMID: 34171427 PMCID: PMC10679953 DOI: 10.1016/j.ijpharm.2021.120821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/02/2021] [Accepted: 06/20/2021] [Indexed: 11/30/2022]
Abstract
Drug delivery via dry powder inhaler (DPI) is a complex process affected by multiple factors involving gas and particles. The performance of a carrier-based formulation depends on the release of active pharmaceutical ingredient (API) particles, typically characterized by fine particle fraction (FPF) and dispersion fraction (DF). Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) can capture relevant gas and particle interactions but is computationally expensive, especially when tracking all carrier and API particles. This study assessed the efficacy of two coarse-grained CFD-DEM approaches, the Discrete Parcel Method and the representative particle approach, through highly-resolved CFD-DEM simulations. The representative particle approach simulates all carrier particles and a subset of API particles, whereas the Discrete Parcel Method tracks parcels representing a specified number of carrier or API particles. Both approaches are viable for a small carrier-API size ratio which requires modest degrees of coarse-graining, but the Discrete Parcel Method showed limitations for a large carrier-API size ratio. The representative particle approach can approximate CFD-DEM results with reasonable accuracies when simulations include at least 10 representative API particles per carrier. Using the representative particle approach, we probed powder characteristics that could affect FPF and DF in a model problem and correlated these fractions with the maximum carrier-API cohesive force per unit mass of API particles.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Mostafa Sulaiman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jari Kolehmainen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ali Ozel
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Sankaran Sundaresan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Ding L, Brunaugh AD, Stegemann S, Jermain SV, Herpin MJ, Kalafat J, Smyth HDC. A Quality by Design Framework for Capsule-Based Dry Powder Inhalers. Pharmaceutics 2021; 13:1213. [PMID: 34452174 PMCID: PMC8399055 DOI: 10.3390/pharmaceutics13081213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Capsule-based dry powder inhalers (cDPIs) are widely utilized in the delivery of pharmaceutical powders to the lungs. In these systems, the fundamental nature of the interactions between the drug/formulation powder, the capsules, the inhaler device, and the patient must be fully elucidated in order to develop robust manufacturing procedures and provide reproducible lung deposition of the drug payload. Though many commercially available DPIs utilize a capsule-based dose metering system, an in-depth analysis of the critical factors associated with the use of the capsule component has not yet been performed. This review is intended to provide information on critical factors to be considered for the application of a quality by design (QbD) approach for cDPI development. The quality target product profile (QTPP) defines the critical quality attributes (CQAs) which need to be understood to define the critical material attributes (CMA) and critical process parameters (CPP) for cDPI development as well as manufacturing and control.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (L.D.); (A.D.B.); (S.V.J.); (M.J.H.)
| | - Ashlee D. Brunaugh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (L.D.); (A.D.B.); (S.V.J.); (M.J.H.)
| | - Sven Stegemann
- Institute for Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria;
| | - Scott V. Jermain
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (L.D.); (A.D.B.); (S.V.J.); (M.J.H.)
| | - Matthew J. Herpin
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (L.D.); (A.D.B.); (S.V.J.); (M.J.H.)
| | - Justin Kalafat
- ACG North America, LLC, 262 Old New Brunswick Road, Suite A, Piscataway, NJ 08854, USA;
| | - Hugh D. C. Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (L.D.); (A.D.B.); (S.V.J.); (M.J.H.)
| |
Collapse
|
17
|
Abstract
This work proposes a model of particle agglomeration in elastic valves replicating the geometry and the fluid dynamics of a venous valve. The fluid dynamics is simulated with Smooth Particle Hydrodynamics, the elastic leaflets of the valve with the Lattice Spring Model, while agglomeration is modelled with a 4-2 Lennard-Jones potential. All the models are combined together within a single Discrete Multiphysics framework. The results show that particle agglomeration occurs near the leaflets, supporting the hypothesis, proposed in previous experimental work, that clot formation in deep venous thrombosis is driven by the fluid dynamics in the valve.
Collapse
|
18
|
Abstract
LAMMPS is a powerful simulator originally developed for molecular dynamics that, today, also accounts for other particle-based algorithms such as DEM, SPH, or Peridynamics. The versatility of this software is further enhanced by the fact that it is open-source and modifiable by users. This property suits particularly well Discrete Multiphysics and hybrid models that combine multiple particle methods in the same simulation. Modifying LAMMPS can be challenging for researchers with little coding experience. The available material explaining how to modify LAMMPS is either too basic or too advanced for the average researcher. In this work, we provide several examples, with increasing level of complexity, suitable for researchers and practitioners in physics and engineering, who are familiar with coding without been experts. For each feature, step by step instructions for implementing them in LAMMPS are shown to allow researchers to easily follow the procedure and compile a new version of the code. The aim is to fill a gap in the literature with particular reference to the scientific community that uses particle methods for (discrete) multiphysics.
Collapse
|
19
|
Coupled CFD-DEM model for dry powder inhalers simulation: Validation and sensitivity analysis for the main model parameters. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Zheng Z, Leung SSY, Gupta R. Flow and Particle Modelling of Dry Powder Inhalers: Methodologies, Recent Development and Emerging Applications. Pharmaceutics 2021; 13:189. [PMID: 33535512 PMCID: PMC7912775 DOI: 10.3390/pharmaceutics13020189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients' inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.
Collapse
Affiliation(s)
- Zhanying Zheng
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong;
| | - Raghvendra Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India;
| |
Collapse
|
21
|
Bass K, Farkas D, Longest W. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler. AAPS PharmSciTech 2019; 20:329. [PMID: 31676991 DOI: 10.1208/s12249-019-1535-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to optimize the performance of a high-efficiency pediatric inhaler, referred to as the pediatric air-jet DPI, using computational fluid dynamics (CFD) simulations with supporting experimental analysis of aerosol formation. The pediatric air-jet DPI forms an internal flow pathway consisting of an inlet jet of high-speed air, capsule chamber containing a powder formulation, and outlet orifice. Instead of simulating full breakup of the powder bed to an aerosol in this complex flow system, which is computationally expensive, flow-field-based dispersion parameters were sought that correlated with experimentally determined aerosolization metrics. For the pediatric air-jet DPI configuration that was considered, mass median aerodynamic diameter (MMAD) directly correlated with input turbulent kinetic energy normalized by actuation pressure and flow kinetic energy. Emitted dose (ED) correlated best with input flow rate multiplied by the ratio of capillary diameters. Based on these dispersion parameters, an automated CFD process was used over multiple iterations of over 100 designs to identify optimal inlet and outlet capillary diameters, which affected system performance in complex and unexpected ways. Experimental verification of the optimized designs indicated an MMAD < 1.6 μm and an ED > 90% of loaded dose. While extrathoracic depositional loss will be determined in future studies, at an operating flow rate of 15 L/min, it is expected that pediatric mouth-throat or even nose-throat aerosol deposition fractions will be below 10% and potentially less than 5% representing a significant improvement in the delivery efficiency of dry powder pharmaceutical aerosols to children.
Collapse
|
22
|
Tamadondar MR, Rasmuson A. The effect of carrier surface roughness on wall collision‐induced detachment of micronized pharmaceutical particles. AIChE J 2019. [DOI: 10.1002/aic.16771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad R. Tamadondar
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Anders Rasmuson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
23
|
Alexiadis A. Deep multiphysics: Coupling discrete multiphysics with machine learning to attain self-learning in-silico models replicating human physiology. Artif Intell Med 2019; 98:27-34. [PMID: 31521250 DOI: 10.1016/j.artmed.2019.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVES The objective of this study is to devise a modelling strategy for attaining in-silico models replicating human physiology and, in particular, the activity of the autonomic nervous system. METHOD Discrete Multiphysics (a multiphysics modelling technique) and Reinforcement Learning (a Machine Learning algorithm) are combined to achieve an in-silico model with the ability of self-learning and replicating feedback loops occurring in human physiology. Computational particles, used in Discrete Multiphysics to model biological systems, are associated to (computational) neurons: Reinforcement Learning trains these neurons to behave like they would in real biological systems. RESULTS As benchmark/validation, we use the case of peristalsis in the oesophagus. Results show that the in-silico model effectively learns by itself how to propel the bolus in the oesophagus. CONCLUSIONS The combination of first principles modelling (e.g. multiphysics) and machine learning (e.g. Reinforcement Learning) represents a new powerful tool for in-silico modelling of human physiology. Biological feedback loops occurring, for instance, in peristaltic or metachronal motion, which until now could not be accounted for in in-silico models, can be tackled by the proposed technique.
Collapse
Affiliation(s)
- Alessio Alexiadis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
24
|
Longest W, Farkas D. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling. AAPS JOURNAL 2019; 21:25. [PMID: 30734133 DOI: 10.1208/s12248-018-0281-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/01/2018] [Indexed: 01/05/2023]
Abstract
Computational fluid dynamics (CFD) modeling offers a powerful tool for the development of drug delivery devices using a first principles approach but has been underutilized in the development of pharmaceutical inhalers. The objective of this study was to develop quantitative correlations for predicting the aerosolization behavior of a newly proposed dry powder inhaler (DPI). The dose aerosolization and containment (DAC) unit DPI utilizes inlet and outlet air orifices designed to maximize the dispersion of spray-dried powders, typically with low air volumes (~ 10 mL) and relatively low airflow rates (~ 3 L/min). Five DAC unit geometries with varying orifice outlet sizes, configurations, and protrusion distances were considered. Aerosolization experiments were performed using cascade impaction to determine mean device emitted dose (ED) and mass median aerodynamic diameter (MMAD). Concurrent CFD simulations were conducted to predict both flow field-based and particle-based dispersion parameters that captured different measures of turbulence. Strong quantitative correlations were established between multiple measures of turbulence and the experimentally observed aerosolization metrics of ED and MMAD. As expected, increasing turbulence produced increased ED with best case values reaching 85% of loaded dose. Surprisingly, decreasing turbulence produced an advantageous decrease in MMAD with values as low as approximately 1.6 μm, which is in contrast with previous studies. In conclusion, CFD provided valuable insights into the performance of the DAC unit DPI as a new device including a two-stage aerosolization process offering multiple avenues for future enhancements.
Collapse
Affiliation(s)
- Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA. .,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, Virginia, 23284, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA
| |
Collapse
|
25
|
Cui Y, Sommerfeld M. The modelling of carrier-wall collision with drug particle detachment for dry powder inhaler applications. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Eur J Pharm Sci 2019; 128:299-324. [DOI: 10.1016/j.ejps.2018.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022]
|
27
|
Yeung S, Traini D, Tweedie A, Lewis D, Church T, Young PM. Assessing Aerosol Performance of a Dry Powder Carrier Formulation with Increasing Doses Using a Novel Inhaler. AAPS PharmSciTech 2019; 20:94. [PMID: 30690674 DOI: 10.1208/s12249-019-1302-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/03/2019] [Indexed: 02/02/2023] Open
Abstract
This study aims to investigate the implications of loaded formulation mass on aerosol performance using a reservoir novel dry powder inhaler containing a custom dosing cup to deliver carrier-based formulation to the lungs. A 3D printed dosing cup with volume size of 133.04 mm3 was manufactured to allow for the progressive loading of different carrier formulation masses of 1% beclomethasone dipropionate BDP (w/w) formulation (10 to 60 mg, with increments of 10 mg), in a novel customizable DPI device. Scanning electron micrographs were used to investigate BDP detachment from carrier particles post-aerosolisation and particle deposition on the USP induction port. The subsequent aerosol performance analysis was performed using the next generation impactor (NGI). Incrementally increasing the loading mass to 60 mg led to decreases in BDP detachment from carrier particles, resulting in significant decreases in aerosol performance. Increases in loading dose mass led to progressively decreased detachment of BDP from the carrier and the overall aerosol performance in comparison to the initial mass of 10 mg. These results are likely to be due to a decrease in void volume within the dosing cup with increased loading mass leading to altered airflow, decreased impaction forces and the possibility of a significant quantity of large carrier particles introducing a 'sweeping' effect on the inhaler inner surface. This study has shown that despite the decreased BDP detachment from the carrier and decreased aerosol performance, the dose delivered to the lung still increased due to the higher loaded dose.
Collapse
|
28
|
Lee HJ, Kwon IH, Lee HG, Kwon YB, Woo HM, Cho SM, Choi YW, Chon J, Kim K, Kim DW, Park CW. Spiral mouthpiece design in a dry powder inhaler to improve aerosolization. Int J Pharm 2018; 553:149-156. [DOI: 10.1016/j.ijpharm.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
29
|
Yeung S, Traini D, Tweedie A, Lewis D, Church T, Young PM. Effect of Dosing Cup Size on the Aerosol Performance of High-Dose Carrier-Based Formulations in a Novel Dry Powder Inhaler. J Pharm Sci 2018; 108:949-959. [PMID: 30312722 DOI: 10.1016/j.xphs.2018.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022]
Abstract
This study investigated how varying the dosing cup size of a novel reservoir dry powder inhaler (DPI) affects the detachment of a micronized active pharmaceutical ingredient from larger carrier particles, and the aerosol performance of a DPI carrier formulation. Three different-sized dosing cups were designed: 3D printed with cup volumes of 16.26 mm3, 55.99 mm3, and 133.04 mm3, and tested with five different carrier type formulations with beclomethasone dipropionate (BDP) concentrations between 1% and 30% (w/w). The morphology of the BDP attached to the carrier was investigated using scanning electron microscopy and the aerosol performance using the Next Generation Impactor. Increasing the volume of the dosing cup led to a reduction of BDP deposition in the Next Generation Impactor preseparator, and an increase in BDP detachment from the carrier was observed, leading to increased aerosol performance. The decreased amount of BDP attached to carrier after aerosolization was attributed to the increased dosing cup void volume. This may enable greater particle-particle and particle-wall collisions, with greater BDP detachment from the carrier and deagglomeration of smaller agglomerates. The dosing cup volume was observed to have significant influence on particle dispersion and the overall aerosol performance of a DPI.
Collapse
Affiliation(s)
- Stewart Yeung
- Respiratory Technology, The Woolcock Institute for Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute for Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | | | | | | | - Paul M Young
- Respiratory Technology, The Woolcock Institute for Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|